1
|
Parvaresh H, Roozitalab G, Golandam F, Behzadi P, Jabbarzadeh Kaboli P. Unraveling the Potential of ALK-Targeted Therapies in Non-Small Cell Lung Cancer: Comprehensive Insights and Future Directions. Biomedicines 2024; 12:297. [PMID: 38397899 PMCID: PMC10887432 DOI: 10.3390/biomedicines12020297] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Background and Objective: This review comprehensively explores the intricate landscape of anaplastic lymphoma kinase (ALK), focusing specifically on its pivotal role in non-small cell lung cancer (NSCLC). Tracing ALK's discovery, from its fusion with nucleolar phosphoprotein (NPM)-1 in anaplastic large cell non-Hodgkin's lymphoma (ALCL) in 1994, the review elucidates the subsequent impact of ALK gene alterations in various malignancies, including inflammatory myofibroblastoma and NSCLC. Approximately 3-5% of NSCLC patients exhibit complex ALK rearrangements, leading to the approval of six ALK-tyrosine kinase inhibitors (TKIs) by 2022, revolutionizing the treatment landscape for advanced metastatic ALK + NSCLC. Notably, second-generation TKIs such as alectinib, ceritinib, and brigatinib have emerged to address resistance issues initially associated with the pioneer ALK-TKI, crizotinib. Methods: To ensure comprehensiveness, we extensively reviewed clinical trials on ALK inhibitors for NSCLC by 2023. Additionally, we systematically searched PubMed, prioritizing studies where the terms "ALK" AND "non-small cell lung cancer" AND/OR "NSCLC" featured prominently in the titles. This approach aimed to encompass a spectrum of relevant research studies, ensuring our review incorporates the latest and most pertinent information on innovative and alternative therapeutics for ALK + NSCLC. Key Content and Findings: Beyond exploring the intricate details of ALK structure and signaling, the review explores the convergence of ALK-targeted therapy and immunotherapy, investigating the potential of immune checkpoint inhibitors in ALK-altered NSCLC tumors. Despite encouraging preclinical data, challenges observed in trials assessing combinations such as nivolumab-crizotinib, mainly due to severe hepatic toxicity, emphasize the necessity for cautious exploration of these novel approaches. Additionally, the review explores innovative directions such as ALK molecular diagnostics, ALK vaccines, and biosensors, shedding light on their promising potential within ALK-driven cancers. Conclusions: This comprehensive analysis covers molecular mechanisms, therapeutic strategies, and immune interactions associated with ALK-rearranged NSCLC. As a pivotal resource, the review guides future research and therapeutic interventions in ALK-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Hannaneh Parvaresh
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
| | - Ghazaal Roozitalab
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Fatemeh Golandam
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Department of Pharmacy, Mashhad University of Medical Science, Mashhad 9177948974, Iran
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Parham Jabbarzadeh Kaboli
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 407, Taiwan
| |
Collapse
|
2
|
Using Single-Cell RNA Sequencing and MicroRNA Targeting Data to Improve Colorectal Cancer Survival Prediction. Cells 2023; 12:cells12020228. [PMID: 36672162 PMCID: PMC9856396 DOI: 10.3390/cells12020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Colorectal cancer has proven to be difficult to treat as it is the second leading cause of cancer death for both men and women worldwide. Recent work has shown the importance of microRNA (miRNA) in the progression and metastasis of colorectal cancer. Here, we develop a metric based on miRNA-gene target interactions, previously validated to be associated with colorectal cancer. We use this metric with a regularized Cox model to produce a small set of top-performing genes related to colon cancer. We show that using the miRNA metric and a Cox model led to a meaningful improvement in colon cancer survival prediction and correct patient risk stratification. We show that our approach outperforms existing methods and that the top genes identified by our process are implicated in NOTCH3 signaling and general metabolism pathways, which are essential to colon cancer progression.
Collapse
|
3
|
Ruzzi F, Angelicola S, Landuzzi L, Nironi E, Semprini MS, Scalambra L, Altimari A, Gruppioni E, Fiorentino M, Giunchi F, Ferracin M, Astolfi A, Indio V, Ardizzoni A, Gelsomino F, Nanni P, Lollini PL, Palladini A. ADK-VR2, a cell line derived from a treatment-naïve patient with SDC4-ROS1 fusion-positive primarily crizotinib-resistant NSCLC: a novel preclinical model for new drug development of ROS1-rearranged NSCLC. Transl Lung Cancer Res 2022; 11:2216-2229. [PMID: 36519016 PMCID: PMC9742620 DOI: 10.21037/tlcr-22-163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/12/2022] [Indexed: 08/27/2023]
Abstract
BACKGROUND ROS1 fusions are driver molecular alterations in 1-2% of non-small cell lung cancers (NSCLCs). Several tyrosine kinase inhibitors (TKIs) have shown high efficacy in patients whose tumors harbour a ROS1 fusion. However, the limited availability of preclinical models of ROS1-positive NSCLC hinders the discovery of new drugs and the understanding of the mechanisms underlying drug resistance and strategies to overcome it. METHODS The ADK-VR2 cell line was derived from the pleural effusion of a treatment-naïve NSCLC patient bearing SDC4-ROS1 gene fusion. The sensitivity of ADK-VR2 and its crizotinib-resistant clone ADK-VR2 AG143 (selected in 3D culture in the presence of crizotinib) to different TKIs was tested in vitro, in both 2D and 3D conditions. Tumorigenic and metastatic ability was assessed in highly immunodeficient mice. In addition, crizotinib efficacy on ADK-VR2 was evaluated in vivo. RESULTS 2D-growth of ADK-VR2 cells was partially inhibited by crizotinib. On the contrary, the treatment with other TKIs, such as lorlatinib, entrectinib and DS-6051b, did not result in cell growth inhibition. TKIs showed dramatically different efficacy on ADK-VR2 cells, depending on the cell culture conditions. In 3D culture, ADK-VR2 growth was indeed almost totally inhibited by lorlatinib and DS-6051b. The clone ADK-VR2 AG143 showed higher resistance to crizotinib treatment in vitro, compared to its parental cell line, in both 2D and 3D cultures. Similarly to ADK-VR2, ADK-VR2 AG143 growth was strongly inhibited by lorlatinib in 3D conditions. Nevertheless, ADK-VR2 AG143 sphere formation was less affected by TKIs treatment, compared to the parental cell line. In vivo experiments highlighted the high tumorigenic and metastatic ability of ADK-VR2 cell line, which, once injected in immunodeficient mice, gave rise to both spontaneous and experimental lung metastases while the crizotinib-resistant clone ADK-VR2 AG143 showed a slower growth in vivo. In addition, ADK-VR2 tumor growth was significantly reduced but not eradicated by crizotinib treatment. CONCLUSIONS The ADK-VR2 cell line is a promising NSCLC preclinical model for the study of novel targeted therapies against ROS1 fusions and the mechanisms of resistance to TKI therapies.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Stefania Angelicola
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elena Nironi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Laura Scalambra
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Annalisa Altimari
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Gruppioni
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Giunchi
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Gelsomino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Alma Mater Institute on Healthy Planet, University of Bologna, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Alma Mater Institute on Healthy Planet, University of Bologna, Bologna, Italy
| | - Arianna Palladini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Patel RA, Coleman I, Roudier MP, Konnick EQ, Hanratty B, Dumpit R, Lucas JM, Ang LS, Low JY, Tretiakova MS, Ha G, Lee JK, True LD, De Marzo AM, Nelson PS, Morrissey C, Pritchard CC, Haffner MC. Comprehensive assessment of anaplastic lymphoma kinase in localized and metastatic prostate cancer reveals targetable alterations. CANCER RESEARCH COMMUNICATIONS 2022; 2:277-285. [PMID: 36337169 PMCID: PMC9635400 DOI: 10.1158/2767-9764.crc-21-0156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 06/16/2023]
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase with genomic and expression changes in many solid tumors. ALK inhibition is first line therapy for lung cancers with ALK alterations, and an effective therapy in other tumor types, but has not been well-studied in prostate cancer. Here, we aim to delineate the role of ALK genomic and expression changes in primary and metastatic prostate cancer. We determined ALK expression by immunohistochemistry and RNA-Seq, and genomic alterations by NGS. We assessed functional consequences of ALK overexpression and pharmacological ALK inhibition by cell proliferation and cell viability assays. Among 372 primary prostate cancer cases we identified one case with uniformly high ALK protein expression. Genomic analysis revealed a SLC45A3-ALK fusion which promoted oncogenesis in in vitro assays. We observed ALK protein expression in 5/52 (9%) of metastatic prostate cancer cases, of which 4 of 5 had neuroendocrine features. ALK-expressing neuroendocrine prostate cancer had a distinct transcriptional program, and earlier disease progression. An ALK-expressing neuroendocrine prostate cancer model was sensitive to pharmacological ALK inhibition. In summary, we found that ALK overexpression is rare in primary prostate cancer, but more frequent in metastatic prostate cancers with neuroendocrine differentiation. Further, ALK fusions similar to lung cancer are an occasional driver in prostate cancer. Our data suggest that ALK-directed therapies could be an option in selected patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Radhika A. Patel
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Eric Q. Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- The Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ruth Dumpit
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jared M. Lucas
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Lisa S. Ang
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jin-Yih Low
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Maria S. Tretiakova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Gavin Ha
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- The Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - John K. Lee
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Angelo M. De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- The Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Colin C. Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- The Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Michael C. Haffner
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Sunpaweravong P, Thongwatchara P, Chotipanvithayakul R, Sangkhathat S, Thongsuksai P. Expression and Prognostic Significance of c-Myc, ALK, ROS1, BRAF, and PD-L1 Among Patients With Non-Small Cell Lung Cancer. Clin Med Insights Oncol 2022; 16:11795549221092747. [PMID: 35479767 PMCID: PMC9036383 DOI: 10.1177/11795549221092747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains a leading cause of cancer death worldwide, for which better knowledge in molecular prognostic factors is needed to improve clinical outcome. This study aimed to investigate the clinical significance of c-Myc, ALK, ROS1, BRAF, and PD-L1 in NSCLC patients. METHODS Formalin-fixed paraffin-embedded tissue specimens were obtained from 124 NSCLC patients. Of these, 66 matched specimens of normal respiratory epithelial and tumor tissue from patients with stages I-III, who underwent surgical resection, and 58 NSCLC specimens from stage IV patients were recruited into this analysis. Immunohistochemistry staining along with semiquantitative criteria were used to evaluate the expression of the interested proteins. RESULTS Of the 66 patients with stages I-III, positive expression of c-Myc was detected in 12 specimens (18.2%) of NSCLC tissue, whereas none of the normal respiratory epithelial tissue was found to have c-Myc expression (P < .001). Of the 66 NSCLC patients, 28 (43.8%) had PD-L1-positive staining on 1%-49% tumor cells and 7 (10.9%) patients expressed PD-L1 in ⩾50% tumor cells. One (2.3%) adenocarcinoma patient was found to have ROS1 rearrangement. Patients with no expression of c-Myc and PD-L1 (co-negative expression) tended to have a better prognosis than other subgroups. CONCLUSIONS NSCLC tissue significantly expressed more c-Myc and PD-L1, compared with the matched normal respiratory epithelium, emphasizing the important role of these key drivers in tumorigenesis. Therapeutic approach to precisely inhibit the targetable molecular pathways should be considered on an individual patient basis to improve survival outcome.
Collapse
Affiliation(s)
- Patrapim Sunpaweravong
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Patcharaporn Thongwatchara
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Surasak Sangkhathat
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Paramee Thongsuksai
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
6
|
Enhancer RNA AL928768.3 from the IGH Locus Regulates MYC Expression and Controls the Proliferation and Chemoresistance of Burkitt Lymphoma Cells with IGH/MYC Translocation. Int J Mol Sci 2022; 23:ijms23094624. [PMID: 35563017 PMCID: PMC9103539 DOI: 10.3390/ijms23094624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
Chromosomal rearrangements leading to the relocation of proto-oncogenes into transcription-active regions are found in various types of tumors. In particular, the transfer of proto-oncogenes to the locus of heavy chains of immunoglobulins (IGH) is frequently observed in B-lymphomas. The increased expression of the MYC proto-oncogene due to IGH/MYC translocation is detected in approximately 85% of Burkitt lymphoma cases. The regulatory mechanisms affecting the oncogenes upon translocation include non-coding enhancer RNAs (eRNAs). We conducted a search for the eRNAs that may affect MYC transcription in the case of IGH/MYC translocation in Burkitt lymphoma, looking for potentially oncogenic eRNAs located at the IGH locus and predominantly expressed in B cells. Overexpression and knockdown of our primary candidate eRNA AL928768.3 led to the corresponding changes in the expression of MYC proto-oncogene in Burkitt lymphoma cells. Furthermore, we demonstrated that AL928768.3 knockdown decreased lymphoma cell proliferation and resistance to chemotherapy. Significant effects were observed only in cell lines bearing IGH/MYC abnormality but not in B-cell lines without this translocation nor primary B-cells. Our results indicate that AL928768.3 plays an important role in the development of Burkitt’s lymphoma and suggest it and similar, yet undiscovered eRNAs as potential tissue-specific targets for cancer treatment.
Collapse
|
7
|
Somasundaram DB, Aravindan S, Gupta N, Yu Z, Baker A, Aravindan N. ALK expression, prognostic significance, and its association with MYCN expression in MYCN non-amplified neuroblastoma. World J Pediatr 2022; 18:285-293. [PMID: 35132576 DOI: 10.1007/s12519-022-00517-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Dinesh Babu Somasundaram
- Department of Radiation Oncology, BMSB 311C, Radiation Biology Laboratory, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | | | | | - Zhongxin Yu
- Department of Pathology, BMSB 311C, Radiation Biology Laboratory, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | - Ashley Baker
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, BMSB 311C, Radiation Biology Laboratory, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Department of Pathology, BMSB 311C, Radiation Biology Laboratory, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
8
|
Pan Y, Deng C, Qiu Z, Cao C, Wu F. The Resistance Mechanisms and Treatment Strategies for ALK-Rearranged Non-Small Cell Lung Cancer. Front Oncol 2021; 11:713530. [PMID: 34660278 PMCID: PMC8517331 DOI: 10.3389/fonc.2021.713530] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a validated molecular target for non-small-cell lung cancer (NSCLC). The use of tyrosine kinase inhibitors (TKIs) has led to significantly improved survival benefits. However, the clinical benefits of targeting ALK using TKIs are limited due to the emergence of drug resistance. The landscape of resistance mechanisms and treatment decisions has become increasingly complex. Therefore, continued research into new drugs and combinatorial therapies is required to improve outcomes in NSCLC. In this review, we explore the resistance mechanisms of ALK TKIs in advanced NSCLC in order to provide a theoretical basis and research ideas for solving the problem of ALK drug resistance.
Collapse
Affiliation(s)
- Yue Pan
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Deng
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Qiu
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China
| | | | - Fang Wu
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Zhang M, Wang Q, Ke Z, Liu Y, Guo H, Fang S, Lu K. LINC01001 Promotes Progression of Crizotinib-Resistant NSCLC by Modulating IGF2BP2/MYC Axis. Front Pharmacol 2021; 12:759267. [PMID: 34630126 PMCID: PMC8497803 DOI: 10.3389/fphar.2021.759267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Crizotinib is a microtubule-related protein-4-anaplastic lymphoma kinase (EML4-ALK) multi-target tyrosine kinase inhibitor applied in the treatment of ALK-rearranged NSCLC. However, the specific molecular mechanism underlying its therapeutic effect remains unclear. Therefore, the purpose of this research is to explore the mechanism by which crizotinib targets NSCLC with ALK-rearrangement, mainly whether it is related to LINC01001 in regulating NSCLC progression via IGF2BP2/MYC axis. Methods: RT-qPCR is conducted to evaluate the mRNA levels of LINC01001, IGF2BP2 and MYC in A549/R and H1299/R cells. CCK-8 and EdU assays are performed to assess the viability and proliferation of A549/R and H1299/R cells. Western blot is conducted to measure the levels of PCNA and Ki-67 proteins in A549/R and H1299/R cells. FACs and TUNEL are performed to detect apoptosis of A549/R and H1299/R cells. Immunohistochemical staining is performed to assess the levels of Ki67 in crizotinib-resistant NSCLC tissue. Bioinformatics analysis of multiple CLIP (crosslinking-immunoprecipitation) data found potential binding sites between LINC01001 and IGF2BP2, IGF2BP2 and MYC, that are confirmed by RIP assay and RNA pulldown assay. Results: Our findings illustrated that LINC01001 is highly expressed in crizotinib-resistant NSCLC cells and associated with poor overall survival of NSCLC patients. Inhibition of LINC01001 depresses crizotinib resistance of NSCLC cells. LINC01001 interacts with IGF2BP2, and inhibition of IGF2BP2 depresses crizotinib resistance of NSCLC cells. IGF2BP2 interacts with the mRNA of MYC, and LINC01001 overexpression increases crizotinib resistance of NSCLC via MYC. Conclusion: LINC01001 promotes the progression of crizotinib-resistant NSCLC by modulating the IGF2BP2/MYC axis. Our research clarifies the specific mechanism of crizotinib-resistance in NSCLC treatment.
Collapse
Affiliation(s)
- Meiling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zihao Ke
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yijing Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huijin Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shencun Fang
- Department of Respiratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Kaihua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Antoni D, Burckel H, Noel G. Combining Radiation Therapy with ALK Inhibitors in Anaplastic Lymphoma Kinase-Positive Non-Small Cell Lung Cancer (NSCLC): A Clinical and Preclinical Overview. Cancers (Basel) 2021; 13:2394. [PMID: 34063424 PMCID: PMC8156706 DOI: 10.3390/cancers13102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
Over the past years, the identification of genetic alterations in oncogenic drivers in non-small cell lung cancer (NSCLC) has significantly and favorably transformed the outcome of patients who can benefit from targeted therapies such as tyrosine kinase inhibitors. Among these genetic alterations, anaplastic lymphoma kinase (ALK) rearrangements were discovered in 2007 and are present in 3-5% of patients with NSCLC. In addition, radiotherapy remains one of the cornerstones of NSCLC treatment. Moreover, improvements in the field of radiotherapy with the use of hypofractionated or ablative stereotactic radiotherapy have led to a better outcome for localized or oligometastatic NSCLC. To date, the effects of the combination of ALK inhibitors and radiotherapy are unclear in terms of safety and efficacy but could potently improve treatment. In this manuscript, we provide a clinical and preclinical overview of combining radiation therapy with ALK inhibitors in anaplastic lymphoma kinase-positive non-small cell lung cancer.
Collapse
Affiliation(s)
- Delphine Antoni
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
- Department of Radiotherapy, ICANS, Institut de Cancérologie Strasbourg Europe, 17 rue Albert Calmette, CEDEX, 67200 Strasbourg, France
| | - Hélène Burckel
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
| | - Georges Noel
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
- Department of Radiotherapy, ICANS, Institut de Cancérologie Strasbourg Europe, 17 rue Albert Calmette, CEDEX, 67200 Strasbourg, France
| |
Collapse
|
11
|
Neuwelt AJ, Kimball AK, Johnson AM, Arnold BW, Bullock BL, Kaspar RE, Kleczko EK, Kwak JW, Wu MH, Heasley LE, Doebele RC, Li HY, Nemenoff RA, Clambey ET. Cancer cell-intrinsic expression of MHC II in lung cancer cell lines is actively restricted by MEK/ERK signaling and epigenetic mechanisms. J Immunother Cancer 2021; 8:jitc-2019-000441. [PMID: 32312906 PMCID: PMC7204826 DOI: 10.1136/jitc-2019-000441] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Programmed death 1/programmed death ligand 1 (PD-1/PD-L1) targeted immunotherapy affords clinical benefit in ~20% of unselected patients with lung cancer. The factor(s) that determine whether a tumor responds or fails to respond to immunotherapy remains an active area of investigation. We have previously defined divergent responsiveness of two KRAS-mutant cell lines to PD-1/PD-L1 blockade using an orthotopic, immunocompetent mouse model. Responsiveness to PD-1/PD-L1 checkpoint blockade correlates with an interferon gamma (IFNγ)-inducible gene signature and major histocompatibility complex class II (MHC II) expression by cancer cells. In the current study, we aim to identify therapeutic targets that can be manipulated in order to enhance cancer-cell-specific MHC II expression. METHODS Responsiveness to IFNγ and induction of MHC II expression was assessed after various treatment conditions in mouse and human non-small cell lung cancer (NSCLC) cell lines using mass cytometric and flow cytometric analysis. RESULTS Single-cell analysis using mass and flow cytometry demonstrated that IFNγ consistently induced PD-L1 and MHC class I (MHC I) across multiple murine and human NSCLC cell lines. In contrast, MHC II showed highly variable induction following IFNγ treatment both between lines and within lines. In mouse models of NSCLC, MHC II induction was inversely correlated with basal levels of phosphorylated extracellular signal-regulated kinase (ERK) 1/2, suggesting potential mitogen-activated protein (MAP) kinase-dependent antagonism of MHC II expression. To test this, cell lines were subjected to varying levels of stimulation with IFNγ, and assessed for MHC II expression in the presence or absence of mitogen-activated protein kinase kinase (MEK) inhibitors. IFNγ treatment in the presence of MEK inhibitors significantly enhanced MHC II induction across multiple lung cancer lines, with minimal impact on expression of either PD-L1 or MHC I. Inhibition of histone deacetylases (HDACs) also enhanced MHC II expression to a more modest extent. Combined MEK and HDAC inhibition led to greater MHC II expression than either treatment alone. CONCLUSIONS These studies emphasize the active inhibitory role that epigenetic and ERK signaling cascades have in restricting cancer cell-intrinsic MHC II expression in NSCLC, and suggest that combinatorial blockade of these pathways may engender new responsiveness to checkpoint therapies.
Collapse
Affiliation(s)
- Alexander J Neuwelt
- Medical Oncology, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Abigail K Kimball
- Anesthesiology, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amber M Johnson
- Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Benjamin W Arnold
- Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bonnie L Bullock
- Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachael E Kaspar
- Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily K Kleczko
- Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeff W Kwak
- Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Meng-Han Wu
- Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lynn E Heasley
- Craniofacial Biology, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA.,VA Eastern Colorado Health Care System, Denver, Colorado, USA
| | - Robert C Doebele
- Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Howard Y Li
- Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,Medical Service, Pulmonary Section, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Raphael A Nemenoff
- Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric T Clambey
- Anesthesiology, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
12
|
Redl E, Sheibani-Tezerji R, Cardona CDJ, Hamminger P, Timelthaler G, Hassler MR, Zrimšek M, Lagger S, Dillinger T, Hofbauer L, Draganić K, Tiefenbacher A, Kothmayer M, Dietz CH, Ramsahoye BH, Kenner L, Bock C, Seiser C, Ellmeier W, Schweikert G, Egger G. Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK-driven lymphomagenesis. Life Sci Alliance 2021; 4:e202000794. [PMID: 33310759 PMCID: PMC7768196 DOI: 10.26508/lsa.202000794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Elisa Redl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Melanie Rosalia Hassler
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Maša Zrimšek
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Dillinger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Lorena Hofbauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Tiefenbacher
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Michael Kothmayer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Charles H Dietz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernard H Ramsahoye
- Centre for Genetic and Experimental Medicine, Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), CoreLab 2, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schweikert
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| |
Collapse
|
13
|
cMyc and ERK activity are associated with resistance to ALK inhibitory treatment in glioblastoma. J Neurooncol 2019; 146:9-23. [DOI: 10.1007/s11060-019-03348-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
|
14
|
Zhu XX, Li JH, Cai JP, Hou X, Huang CS, Huang XT, Wang JQ, Li SJ, Xu QC, Yin XY. EYA4 inhibits hepatocellular carcinoma by repressing MYCBP by dephosphorylating β-catenin at Ser552. Cancer Sci 2019; 110:3110-3121. [PMID: 31385398 PMCID: PMC6778622 DOI: 10.1111/cas.14159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and the fourth leading cause of cancer-related death worldwide. Our previous study showed that EYA4 functioned by suppressing growth of HCC tumor cells, but its molecular mechanism is still not elucidated. Based on the results of gene microassay, EYA4 was inversely correlated with MYCBP and was verified in human HCC tissues by immunohistochemistry and western blot. Overexpressed and KO EYA4 in human HCC cell lines confirmed the negative correlation between EYA4 and MYCBP by qRT-PCR and western blot. Transfected siRNA of MYCBP in EYA4 overexpressed cells and overexpressed MYCBP in EYA4 KO cells could efficiently rescue the proliferation and G2/M arrest effects of EYA4 on HCC cells. Mechanistically, armed with serine/threonine-specific protein phosphatase activity, EYA4 reduced nuclear translocation of β-catenin by dephosphorylating β-catenin at Ser552, thereby suppressing the transcription of MYCBP which was induced by β-catenin/LEF1 binding to the promoter of MYCBP. Clinically, HCC patients with highly expressed EYA4 and poorly expressed MYCBP had significantly longer disease-free survival and overall survival than HCC patients with poorly expressed EYA4 and highly expressed MYCBP. In conclusion, EYA4 suppressed HCC tumor cell growth by repressing MYCBP by dephosphorylating β-catenin S552. EYA4 combined with MYCBP could be potential prognostic biomarkers in HCC.
Collapse
Affiliation(s)
- Xiao-Xu Zhu
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-Hui Li
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-Peng Cai
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xun Hou
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chen-Song Huang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi-Tai Huang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie-Qin Wang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shi-Jin Li
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiong-Cong Xu
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yu Yin
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Martinez-Useros J, Garcia-Carbonero N, Li W, Fernandez-Aceñero MJ, Cristobal I, Rincon R, Rodriguez-Remirez M, Borrero-Palacios A, Garcia-Foncillas J. UNR/ CSDE1 Expression Is Critical to Maintain Invasive Phenotype of Colorectal Cancer through Regulation of c-MYC and Epithelial-to-Mesenchymal Transition. J Clin Med 2019; 8:560. [PMID: 31027221 PMCID: PMC6517883 DOI: 10.3390/jcm8040560] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
CSDE1 (cold shock domain containing E1) gene is located upstream of the N-RAS locus, and codes for an RNA-binding protein named Upstream of N-Ras (UNR). In cancer, CSDE1 has been shown to regulate c-Fos, c-Myc, Pten, Rac1, or Vimentin. UNR/CSDE1 has been studied in breast, melanoma, pancreatic and prostate cancer. Then, the aim of this study is to evaluate the role of CSDE1 /UNR in colorectal cancer progression and maintenance of aggressive phenotype. We firstly evaluated UNR/CSDE1 expression in human colon cancer derived cell lines and patient samples. Subsequently, we performed functional experiments by UNR/CSDE1 downregulation. We also evaluated UNR/CSDE1 prognostic relevance in two independent sets of patients. Not only was UNR/CSDE1 expression higher in tumor samples compared to untransformed samples, but also in colonospheres and metastatic origin cell lines than their parental and primary cell lines, respectively. Downregulation of UNR/CSDE1 reduced cell viability and migration throughout a restrain of epithelial-to-mesenchymal transition and increases sensitivity to apoptosis. Interestingly, high UNR/CSDE1 expression was associated with poor prognosis and correlated positively with c-MYC expression in colorectal cancer samples and cell lines. Here, we show for the first time compelling data reporting the oncogenic role of UNR/CSDE1 in human colorectal cancer.
Collapse
Affiliation(s)
- Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | - Nuria Garcia-Carbonero
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | - Weiyao Li
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | | | - Ion Cristobal
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | - Raul Rincon
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | - Maria Rodriguez-Remirez
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | - Aurea Borrero-Palacios
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, FIIS-Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid, 28040 Madrid, Spain; (N.G.-C.); (W.L.); (I.C.); (R.R.); (M.R.-R.); (A.B.-P.)
| |
Collapse
|
16
|
Next-generation Sequencing for ALK and ROS1 Rearrangement Detection in Patients With Non-small-cell Lung Cancer: Implications of FISH-positive Patterns. Clin Lung Cancer 2019; 20:e421-e429. [PMID: 30898567 DOI: 10.1016/j.cllc.2019.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Detection of ALK and ROS1 gene rearrangements in non-small-cell lung cancer is required for directing patient care. Although fluorescence in situ hybridization (FISH) and immunohistochemistry have been established as gold standard methods, next-generation sequencing (NGS) platforms are called to be at least equally successful. Comparison of these methods for translation into daily use is currently under investigation. PATIENTS AND METHODS Forty non-small-cell lung cancer paraffin-embedded samples with previous ALK (n = 33) and ROS1 (n = 7) FISH results were examined with the Oncomine Focus Assay and tested for ALK and ROS1 immunoreactivity. Clinical implications of concurrent molecular alterations and concordance between methods were evaluated. RESULTS NGS was successful in 32 (80%) cases: 25 ALK and 7 ROS1. Few concomitant alterations were detected: 1 ALK rearranged case had an ALK p.L1196M-resistant mutation, 4 had CDK4, MYC, and/or ALK amplifications, and 1 ROS1 rearranged case showed a FGFR4 amplification. Comparison between techniques revealed 5 (16%) discordant cases that had lower progression-free survival than concordant cases: 7.6 (95% confidence interval, 2.2-13) versus 19.4 (95% confidence interval, 10.1-28.6). Remarkably, 4 of these cases had isolated 3' signal FISH pattern (P = .026). CONCLUSION Our data support that the identification of 3' isolated signal FISH pattern in ALK and ROS1 cases might suggest a false-positive result. NGS seems a reliable technique to assess ALK and ROS1 rearrangements, offering the advantage over immunohistochemistry of detecting other molecular alterations with potential therapeutic implications.
Collapse
|
17
|
Rihawi K, Alfieri R, Fiorentino M, Fontana F, Capizzi E, Cavazzoni A, Terracciano M, La Monica S, Ferrarini A, Buson G, Petronini PG, Ardizzoni A. MYC Amplification as a Potential Mechanism of Primary Resistance to Crizotinib in ALK-Rearranged Non-Small Cell Lung Cancer: A Brief Report. Transl Oncol 2018; 12:116-121. [PMID: 30290287 PMCID: PMC6171095 DOI: 10.1016/j.tranon.2018.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Translocations of the anaplastic lymphoma kinase (ALK) can be effectively targeted in advanced non-small cell lung cancer by ALK-TKI inhibitors including Crizotinib. However, the development of acquired resistance often limits the duration of these therapies. While several mechanisms of secondary resistance have been already identified, little is known about molecular determinants of primary resistance. In our brief report we investigated the tumor molecular profile of a patient who failed to respond to Crizotinib. METHODS Fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) were run on tumor specimen as well as search and characterization of circulating tumor cells (CTCs) in the blood. Confirmation of clinical findings was achieved using a translational cell-line in vitro model. RESULTS We identified the amplification of MYC as a potential new mechanism of primary resistance to ALK inhibition. Human EML4-ALK rearranged cells infected with a lentiviral vector carrying full-length human MYC cDNA were treated in vitro with crizotinib and alectinib. Overexpression of MYC overexpression was associated with a reduced sensitivity to both ALK-inhibitors. MYC-overexpressing clones displayed also increased levels of both cyclin D and E and their growth was reduced by using Cdk4/6 inhibitors such as Palbociclib. CONCLUSIONS We postulate that the MYC gene may be implicated in the mechanism of primary resistance to ALK inhibitors. We also suggest potential MYC-directed inhibition strategies to overcome primary resistance in advanced ALK-rearranged NSCLC.
Collapse
Affiliation(s)
- Karim Rihawi
- Department of Experimental, Diagnostic and Specialty Medicine DIMES - University of Bologna, Via Massarenti 9, 40138, Bologna, Italy; Medical Oncology, S.Orsola-Malpighi University Hospital and Alma Mater University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Roberta Alfieri
- Experimental Oncology Laboratory, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126, Italy
| | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty Medicine DIMES - University of Bologna, Via Massarenti 9, 40138, Bologna, Italy; Molecular Pathology, S.Orsola-Malpighi University Hospital and Alma Mater University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| | - Francesca Fontana
- Menarini Silicon Biosystems SpA, Via Giuseppe di Vittorio 21, 40013, Castel Maggiore, Italy
| | - Elisa Capizzi
- Department of Experimental, Diagnostic and Specialty Medicine DIMES - University of Bologna, Via Massarenti 9, 40138, Bologna, Italy; Molecular Pathology, S.Orsola-Malpighi University Hospital and Alma Mater University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Andrea Cavazzoni
- Experimental Oncology Laboratory, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126, Italy
| | - Mario Terracciano
- Menarini Silicon Biosystems SpA, Via Giuseppe di Vittorio 21, 40013, Castel Maggiore, Italy
| | - Silvia La Monica
- Experimental Oncology Laboratory, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126, Italy
| | - Alberto Ferrarini
- Menarini Silicon Biosystems SpA, Via Giuseppe di Vittorio 21, 40013, Castel Maggiore, Italy
| | - Genny Buson
- Menarini Silicon Biosystems SpA, Via Giuseppe di Vittorio 21, 40013, Castel Maggiore, Italy
| | - Pier Giorgio Petronini
- Experimental Oncology Laboratory, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126, Italy
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine DIMES - University of Bologna, Via Massarenti 9, 40138, Bologna, Italy; Medical Oncology, S.Orsola-Malpighi University Hospital and Alma Mater University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| |
Collapse
|
18
|
McCoach CE, Blakely CM, Banks KC, Levy B, Chue BM, Raymond VM, Le AT, Lee CE, Diaz J, Waqar SN, Purcell WT, Aisner DL, Davies KD, Lanman RB, Shaw AT, Doebele RC. Clinical Utility of Cell-Free DNA for the Detection of ALK Fusions and Genomic Mechanisms of ALK Inhibitor Resistance in Non-Small Cell Lung Cancer. Clin Cancer Res 2018; 24:2758-2770. [PMID: 29599410 PMCID: PMC6157019 DOI: 10.1158/1078-0432.ccr-17-2588] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/06/2018] [Accepted: 03/20/2018] [Indexed: 01/01/2023]
Abstract
Purpose: Patients with advanced non-small cell lung cancer (NSCLC) whose tumors harbor anaplastic lymphoma kinase (ALK) gene fusions benefit from treatment with ALK inhibitors (ALKi). Analysis of cell-free circulating tumor DNA (cfDNA) may provide a noninvasive way to identify ALK fusions and actionable resistance mechanisms without an invasive biopsy.Patients and Methods: The Guardant360 (G360; Guardant Health) deidentified database of NSCLC cases was queried to identify 88 consecutive patients with 96 plasma-detected ALK fusions. G360 is a clinical cfDNA next-generation sequencing (NGS) test that detects point mutations, select copy number gains, fusions, insertions, and deletions in plasma.Results: Identified fusion partners included EML4 (85.4%), STRN (6%), and KCNQ, KLC1, KIF5B, PPM1B, and TGF (totaling 8.3%). Forty-two ALK-positive patients had no history of targeted therapy (cohort 1), with tissue ALK molecular testing attempted in 21 (5 negative, 5 positive, and 11 tissue insufficient). Follow-up of 3 of the 5 tissue-negative patients showed responses to ALKi. Thirty-one patients were tested at known or presumed ALKi progression (cohort 2); 16 samples (53%) contained 1 to 3 ALK resistance mutations. In 13 patients, clinical status was unknown (cohort 3), and no resistance mutations or bypass pathways were identified. In 6 patients with known EGFR-activating mutations, an ALK fusion was identified on progression (cohort 4; 4 STRN, 1 EML4; one both STRN and EML4); five harbored EGFR T790M.Conclusions: In this cohort of cfDNA-detected ALK fusions, we demonstrate that comprehensive cfDNA NGS provides a noninvasive means of detecting targetable alterations and characterizing resistance mechanisms on progression. Clin Cancer Res; 24(12); 2758-70. ©2018 AACR.
Collapse
Affiliation(s)
- Caroline E McCoach
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Collin M Blakely
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | | | - Benjamin Levy
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Ben M Chue
- Lifespring Cancer Treatment Center, Seattle, Washington
| | | | - Anh T Le
- University of Colorado Cancer Center, Aurora, Colorado
| | | | - Joseph Diaz
- Guardant Health Inc., Redwood City, California
| | - Saiama N Waqar
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Dara L Aisner
- University of Colorado Cancer Center, Aurora, Colorado
| | | | | | - Alice T Shaw
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
19
|
ALK in Neuroblastoma: Biological and Therapeutic Implications. Cancers (Basel) 2018; 10:cancers10040113. [PMID: 29642598 PMCID: PMC5923368 DOI: 10.3390/cancers10040113] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023] Open
Abstract
Neuroblastoma (NB) is the most common and deadly solid tumour in children. Despite the development of new treatment options for high-risk NB, over half of patients relapse and five-year survival remains at 40-50%. Therefore, novel treatment strategies aimed at providing long-term disease remission are urgently sought. ALK, encoding the anaplastic lymphoma kinase receptor, is altered by gain-of-function point mutations in around 14% of high-risk NB and represents an ideal therapeutic target given its low or absent expression in healthy tissue postnatally. Small-molecule inhibitors of Anaplastic Lymphoma Kinase (ALK) approved in ALK fusion-positive lung cancer are currently undergoing clinical assessment in patients with ALK-mutant NB. Parallel pre-clinical studies are demonstrating the efficacy of ALK inhibitors against common ALK variants in NB; however, a complex picture of therapeutic resistance is emerging. It is anticipated that long-term use of these compounds will require combinatorial targeting of pathways downstream of ALK, functionally-related 'bypass' mechanisms and concomitant oncogenic pathways.
Collapse
|