1
|
Murray K, Oldfield L, Stefanova I, Gentiluomo M, Aretini P, O'Sullivan R, Greenhalf W, Paiella S, Aoki MN, Pastore A, Birch-Ford J, Rao BH, Uysal-Onganer P, Walsh CM, Hanna GB, Narang J, Sharma P, Campa D, Rizzato C, Turtoi A, Sever EA, Felici A, Sucularli C, Peduzzi G, Öz E, Sezerman OU, Van der Meer R, Thompson N, Costello E. Biomarkers, omics and artificial intelligence for early detection of pancreatic cancer. Semin Cancer Biol 2025; 111:76-88. [PMID: 39986585 DOI: 10.1016/j.semcancer.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is frequently diagnosed in its late stages when treatment options are limited. Unlike other common cancers, there are no population-wide screening programmes for PDAC. Thus, early disease detection, although urgently needed, remains elusive. Individuals in certain high-risk groups are, however, offered screening or surveillance. Here we explore advances in understanding high-risk groups for PDAC and efforts to implement biomarker-driven detection of PDAC in these groups. We review current approaches to early detection biomarker development and the use of artificial intelligence as applied to electronic health records (EHRs) and social media. Finally, we address the cost-effectiveness of applying biomarker strategies for early detection of PDAC.
Collapse
Affiliation(s)
- Kate Murray
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Oldfield
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Irena Stefanova
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Rachel O'Sullivan
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - William Greenhalf
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Salvatore Paiella
- Pancreatic Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Italy
| | - Mateus N Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Brazil
| | - Aldo Pastore
- Fondazione Pisana per la Scienza, Scuola Normale Superiore di Pisa, Italy
| | - James Birch-Ford
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Bhavana Hemantha Rao
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | - Pinar Uysal-Onganer
- School of Life Sciences, Cancer Mechanisms and Biomarkers Group, The University of Westminster, United Kingdom
| | - Caoimhe M Walsh
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | | | | | | | | | - Andrei Turtoi
- Tumor Microenvironment and Resistance to Treatment Lab, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, France
| | - Elif Arik Sever
- Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Turkiye
| | | | | | | | - Elif Öz
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Turkiye
| | - Osman Uğur Sezerman
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Turkiye
| | | | | | - Eithne Costello
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
2
|
Ishizaki T, Sugimoto M, Kuboyama Y, Mazaki J, Kasahara K, Tago T, Udo R, Iwasaki K, Hayashi Y, Nagakawa Y. Stage-Specific Plasma Metabolomic Profiles in Colorectal Cancer. J Clin Med 2024; 13:5202. [PMID: 39274416 PMCID: PMC11396754 DOI: 10.3390/jcm13175202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: The objective of this study was to investigate the metabolomic profiles of patients with colorectal cancer (CRC) across various stages of the disease. Methods: The plasma samples were obtained from 255 subjects, including patients with CRC in stages I-IV, polyps, and controls. We employed capillary electrophoresis time-of-flight mass spectrometry and liquid chromatography triple quadrupole mass spectrometry to analyze hydrophilic metabolites comprehensively. The data were randomly divided into two groups, and consistent differences observed in both groups were analyzed. Results: Acetylated polyamines, such as N1-acetylspermine and N1, N12-diacetylspermine, consistently showed elevated concentrations in stage IV compared to stages I-III. Non-acetylated polyamines, including spermine and spermidine, exhibited increasing trends from polyp to stage IV. Other metabolites, such as histidine and o-acetylcarnitine, showed decreasing trends across stages. While acetylated polyamines have been reported as CRC detection markers, our findings suggest that they also possess diagnostic potential for distinguishing stage IV from other stages. Conclusions: This study showed stage-specific changes in metabolic profiles, including polyamines, of colorectal cancer.
Collapse
Affiliation(s)
- Tetsuo Ishizaki
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute of Medical Science, Tokyo Medical University, Shinjuku 160-8402, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan
| | - Yu Kuboyama
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Junichi Mazaki
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Kenta Kasahara
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Tomoya Tago
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Ryutaro Udo
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Kenichi Iwasaki
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Yutaka Hayashi
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| |
Collapse
|
3
|
Robles J, Prakash A, Vizcaíno JA, Casal JI. Integrated meta-analysis of colorectal cancer public proteomic datasets for biomarker discovery and validation. PLoS Comput Biol 2024; 20:e1011828. [PMID: 38252632 PMCID: PMC10833860 DOI: 10.1371/journal.pcbi.1011828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/01/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The cancer biomarker field has been an object of thorough investigation in the last decades. Despite this, colorectal cancer (CRC) heterogeneity makes it challenging to identify and validate effective prognostic biomarkers for patient classification according to outcome and treatment response. Although a massive amount of proteomics data has been deposited in public data repositories, this rich source of information is vastly underused. Here, we attempted to reuse public proteomics datasets with two main objectives: i) to generate hypotheses (detection of biomarkers) for their posterior/downstream validation, and (ii) to validate, using an orthogonal approach, a previously described biomarker panel. Twelve CRC public proteomics datasets (mostly from the PRIDE database) were re-analysed and integrated to create a landscape of protein expression. Samples from both solid and liquid biopsies were included in the reanalysis. Integrating this data with survival annotation data, we have validated in silico a six-gene signature for CRC classification at the protein level, and identified five new blood-detectable biomarkers (CD14, PPIA, MRC2, PRDX1, and TXNDC5) associated with CRC prognosis. The prognostic value of these blood-derived proteins was confirmed using additional public datasets, supporting their potential clinical value. As a conclusion, this proof-of-the-concept study demonstrates the value of re-using public proteomics datasets as the basis to create a useful resource for biomarker discovery and validation. The protein expression data has been made available in the public resource Expression Atlas.
Collapse
Affiliation(s)
- Javier Robles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Protein Alternatives SL, Tres Cantos, Madrid, Spain
| | - Ananth Prakash
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - J. Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
4
|
Turtoi E, Jeudy J, Henry S, Dadi I, Valette G, Enjalbal C, Turtoi A. Analysis of polar primary metabolites in biological samples using targeted metabolomics and LC-MS. STAR Protoc 2023; 4:102400. [PMID: 37590149 PMCID: PMC10440349 DOI: 10.1016/j.xpro.2023.102400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 08/19/2023] Open
Abstract
Primary metabolites are molecules of essential biochemical reactions that define the biological phenotype. All primary metabolites cannot be measured in a single analysis. In this protocol, we outline the multiplexed and quantitative measurement of 106 metabolites that cover the central part of primary metabolism. The protocol includes several sample preparation techniques and one liquid chromatography-mass spectrometry method. Then, we describe the steps of the bioinformatic data analysis to better understand the metabolic perturbations that may occur in a biological system. For complete details on the use and execution of this protocol, please refer to: Costanza et al.,1 Blomme et al.,2 Blomme et al.,3 Guillon et al.,4 Stuani et al.5.
Collapse
Affiliation(s)
- Evgenia Turtoi
- Platform for Translational Oncometabolomics, Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | | | - Sylvain Henry
- Platform for Translational Oncometabolomics, Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Ikrame Dadi
- Tumor Microenvironment and Resistance to Therapy Laboratory, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM U1194, Montpellier, France
| | - Gilles Valette
- Laboratoire de Mesures Physiques, Université de Montpellier, Montpellier, France
| | - Christine Enjalbal
- Laboratoire de Mesures Physiques, Université de Montpellier, Montpellier, France
| | - Andrei Turtoi
- Platform for Translational Oncometabolomics, Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France; Tumor Microenvironment and Resistance to Therapy Laboratory, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM U1194, Montpellier, France; Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan.
| |
Collapse
|
5
|
Turtoi E, Jeudy J, Valette G, Enjalbal C, Vila IK, Laguette N, Turtoi A. Multiplexed targeted analysis of polyunsaturated fatty acids and oxylipins using liquid chromatography-tandem mass spectrometry. STAR Protoc 2023; 4:102226. [PMID: 37597187 PMCID: PMC10462884 DOI: 10.1016/j.xpro.2023.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/18/2022] [Accepted: 03/15/2023] [Indexed: 08/21/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) and their oxidized products (oxylipins) are important mediators in intra- and extra-cellular signaling. We describe here the simultaneous quantification of 163 PUFAs and oxylipins using liquid chromatography-mass spectrometry (LC-MS). The protocol details steps for PUFA purification from various biological materials, the conditions for LC-MS analysis, as well as quantitative approaches for data evaluation. We provide an example of PUFA quantification in animal tissue along with the bioinformatic protocol, enabling efficient inter-sample comparison and statistical analysis. For complete details on the use and execution of this protocol, please refer to Vila et al.,1 Costanza et al.,2 Blomme et al.,3 and Blomme et al.4.
Collapse
Affiliation(s)
- Evgenia Turtoi
- Platform for Translational Oncometabolomics, Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | | | - Gilles Valette
- Laboratoire de Mesures Physiques, Université de Montpellier, Montpellier, France
| | - Christine Enjalbal
- Laboratoire de Mesures Physiques, Université de Montpellier, Montpellier, France
| | - Isabelle K Vila
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, Université de Montpellier, Montpellier, France
| | - Nadine Laguette
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, Université de Montpellier, Montpellier, France
| | - Andrei Turtoi
- Platform for Translational Oncometabolomics, Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France; Tumor Microenvironment and Resistance to Therapy Laboratory, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM U1194, Montpellier, France; Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan.
| |
Collapse
|
6
|
Rappu P, Suwal U, Siljamäki E, Heino J. Inflammation-related citrullination of matrisome proteins in human cancer. Front Oncol 2022; 12:1035188. [PMID: 36531007 PMCID: PMC9753687 DOI: 10.3389/fonc.2022.1035188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Protein arginine deiminases (PADs) are intracellular enzymes that may, especially in pathological conditions, also citrullinate extracellular substrates, including matrisome proteins such as structural proteins in extracellular matrix (ECM). PADs are abundantly expressed in human cancer cells. Citrullination of matrisome proteins has been reported in colon cancer but the phenomenon has never been systematically studied. METHODS To gain a broader view of citrullination of matrisome proteins in cancer, we analyzed cancer proteomics data sets in 3 public databases for citrullinated matrisome proteins. In addition, we used three-dimensional cell cocultures of fibroblasts and cancer cells and analyzed citrullination of ECM. RESULTS AND DISCUSSION Our new analysis indicate that citrullination of ECM occurs in human cancer, and there is a significant variation between tumors. Most frequently citrullinated proteins included fibrinogen and fibronectin, which are typically citrullinated in rheumatoid inflammation. We also detected correlation between immune cell marker proteins, matrix metalloproteinases and ECM citrullination, which suggests that in cancer, citrullination of matrisome proteins is predominantly an inflammation-related phenomenon. This was further supported by our analysis of three-dimensional spheroid co-cultures of nine human cancer cell lines and fibroblasts by mass spectrometry, which gave no evidence that cancer cells or fibroblasts could citrullinate matrisome proteins in tumor stroma. It also appears that in the spheroid cultures, matrisome proteins are protected from citrullination.
Collapse
|
7
|
Yang H, Datta-Chaudhuri T, George SJ, Haider B, Wong J, Hepler TD, Andersson U, Brines M, Tracey KJ, Chavan SS. High-frequency electrical stimulation attenuates neuronal release of inflammatory mediators and ameliorates neuropathic pain. Bioelectron Med 2022; 8:16. [PMID: 36195968 PMCID: PMC9533511 DOI: 10.1186/s42234-022-00098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Neuroinflammation is an important driver of acute and chronic pain states. Therefore, targeting molecular mediators of neuroinflammation may present an opportunity for developing novel pain therapies. In preclinical models of neuroinflammatory pain, calcitonin gene-related peptide (CGRP), substance P and high mobility group box 1 protein (HMGB1) are molecules synthesized and released by sensory neurons which activate inflammation and pain. High-frequency electrical nerve stimulation (HFES) has achieved clinical success as an analgesic modality, but the underlying mechanism is unknown. Here, we reasoned that HFES inhibits neuroinflammatory mediator release by sensory neurons to reduce pain. METHODS Utilizing in vitro and in vivo assays, we assessed the modulating effects of HFES on neuroinflammatory mediator release by activated sensory neurons. Dorsal root ganglia (DRG) neurons harvested from wildtype or transgenic mice expressing channelrhodopsin-2 (ChR2) were cultured on micro-electrode arrays, and effect of HFES on optogenetic- or capsaicin-induced neuroinflammatory mediator release was determined. Additionally, the effects of HFES on local neuroinflammatory mediator release and hyperalgesia was assessed in vivo using optogenetic paw stimulation and the neuropathic pain model of chronic constriction injury (CCI) of the sciatic nerve. RESULTS Light- or capsaicin-evoked neuroinflammatory mediator release from cultured transgenic DRG sensory neurons was significantly reduced by concurrent HFES (10 kHz). In agreement with these findings, elevated levels of neuroinflammatory mediators were detected in the affected paw following optogenetic stimulation or CCI and were significantly attenuated using HFES (20.6 kHz for 10 min) delivered once daily for 3 days. CONCLUSION These studies reveal a previously unidentified mechanism for the pain-modulating effect of HFES in the setting of acute and chronic nerve injury. The results support the mechanistic insight that HFES may reset sensory neurons into a less pro-inflammatory state via inhibiting the release of neuroinflammatory mediators resulting in reduced inflammation and pain.
Collapse
Affiliation(s)
- Huan Yang
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Timir Datta-Chaudhuri
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Sam J George
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Bilal Haider
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Jason Wong
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Tyler D Hepler
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Michael Brines
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kevin J Tracey
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Sangeeta S Chavan
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
8
|
Rademaker G, Costanza B, Pyr Dit Ruys S, Peiffer R, Agirman F, Maloujahmoum N, Vertommen D, Turtoi A, Bellahcène A, Castronovo V, Peulen O. Paladin, overexpressed in colon cancer, is required for actin polymerisation and liver metastasis dissemination. Oncogenesis 2022; 11:42. [PMID: 35882839 PMCID: PMC9325978 DOI: 10.1038/s41389-022-00416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Colorectal cancer remains a public health issue and most colon cancer patients succumb to the development of metastases. Using a specific protocol of pressure-assisted interstitial fluid extrusion to recover soluble biomarkers, we identified paladin as a potential colon cancer liver metastases biomarker. Methods Using shRNA gene knockdown, we explored the biological function of paladin in colon cancer cells and investigated the phospho-proteome within colon cancer cells. We successively applied in vitro migration assays, in vivo metastasis models and co-immunoprecipitation experiments. Results We discovered that paladin is required for colon cancer cell migration and metastasis, and that paladin depletion altered the phospho-proteome within colon cancer cells. Data are available via ProteomeXchange with identifier PXD030803. Thanks to immunoprecipitation experiments, we demonstrated that paladin, was interacting with SSH1, a phosphatase involved in colon cancer metastasis. Finally, we showed that paladin depletion in cancer cells results in a less dynamic actin cytoskeleton. Conclusions Paladin is an undervalued protein in oncology. This study highlights for the first time that, paladin is participating in actin cytoskeleton remodelling and is required for efficient cancer cell migration. ![]()
Collapse
Affiliation(s)
- Gilles Rademaker
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium.,Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Brunella Costanza
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, 20139, Italy
| | - Sébastien Pyr Dit Ruys
- MassProt platform, de Duve Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Ferman Agirman
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Naïma Maloujahmoum
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Didier Vertommen
- MassProt platform, de Duve Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Andrei Turtoi
- Tumor microenvironment and resistance to treatment Laboratory, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Akeila Bellahcène
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium.
| |
Collapse
|
9
|
de Seny D, Baiwir D, Bianchi E, Cobraiville G, Deroyer C, Poulet C, Malaise O, Paulissen G, Kaiser MJ, Hauzeur JP, Mazzucchelli G, Delvenne P, Malaise M. New Proteins Contributing to Immune Cell Infiltration and Pannus Formation of Synovial Membrane from Arthritis Diseases. Int J Mol Sci 2021; 23:ijms23010434. [PMID: 35008858 PMCID: PMC8745719 DOI: 10.3390/ijms23010434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/15/2023] Open
Abstract
An inflamed synovial membrane plays a major role in joint destruction and is characterized by immune cells infiltration and fibroblast proliferation. This proteomic study considers the inflammatory process at the molecular level by analyzing synovial biopsies presenting a histological inflammatory continuum throughout different arthritis joint diseases. Knee synovial biopsies were obtained from osteoarthritis (OA; n = 9), chronic pyrophosphate arthropathy (CPPA; n = 7) or rheumatoid arthritis (RA; n = 8) patients. The histological inflammatory score was determined using a semi-quantitative scale based on synovial hyperplasia, lymphocytes, plasmocytes, neutrophils and macrophages infiltration. Proteomic analysis was performed by liquid chromatography-mass spectrometry (LC-MS/MS). Differentially expressed proteins were confirmed by immunohistochemistry. Out of the 1871 proteins identified and quantified by LC-MS/MS, 10 proteins (LAP3, MANF, LCP1, CTSZ, PTPRC, DNAJB11, EML4, SCARA5, EIF3K, C1orf123) were differentially expressed in the synovial membrane of at least one of the three disease groups (RA, OA and CPPA). Significant increased expression of the seven first proteins was detected in RA and correlated to the histological inflammatory score. Proteomics is therefore a powerful tool that provides a molecular pattern to the classical histology usually applied for synovitis characterization. Except for LCP1, CTSZ and PTPRC, all proteins have never been described in human synovitis.
Collapse
Affiliation(s)
- Dominique de Seny
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
- Correspondence: ; Tel.: +32-366-24-74
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liège, 4000 Liège, Belgium; (D.B.); (P.D.)
| | - Elettra Bianchi
- Department of Pathology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium;
| | - Gaël Cobraiville
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Céline Deroyer
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Christophe Poulet
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Olivier Malaise
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Geneviève Paulissen
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Marie-Joëlle Kaiser
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Jean-Philippe Hauzeur
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium;
| | - Philippe Delvenne
- GIGA Proteomics Facility, University of Liège, 4000 Liège, Belgium; (D.B.); (P.D.)
| | - Michel Malaise
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| |
Collapse
|
10
|
Hubert P, Roncarati P, Demoulin S, Pilard C, Ancion M, Reynders C, Lerho T, Bruyere D, Lebeau A, Radermecker C, Meunier M, Nokin MJ, Hendrick E, Peulen O, Delvenne P, Herfs M. Extracellular HMGB1 blockade inhibits tumor growth through profoundly remodeling immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. J Immunother Cancer 2021; 9:e001966. [PMID: 33712445 PMCID: PMC7959241 DOI: 10.1136/jitc-2020-001966] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High-mobility group box 1 (HMGB1) is a multifunctional redox-sensitive protein involved in various intracellular (eg, chromatin remodeling, transcription, autophagy) and extracellular (inflammation, autoimmunity) processes. Regarding its role in cancer development/progression, paradoxical results exist in the literature and it is still unclear whether HMGB1 mainly acts as an oncogene or a tumor suppressor. METHODS HMGB1 expression was first assessed in tissue specimens (n=359) of invasive breast, lung and cervical cancer and the two distinct staining patterns detected (nuclear vs cytoplasmic) were correlated to the secretion profile of malignant cells, patient outcomes and the presence of infiltrating immune cells within tumor microenvironment. Using several orthotopic, syngeneic mouse models of basal-like breast (4T1, 67NR and EpRas) or non-small cell lung (TC-1) cancer, the efficacy of several HMGB1 inhibitors alone and in combination with immune checkpoint blockade antibodies (anti-PD-1/PD-L1) was then investigated. Isolated from retrieved tumors, 14 immune cell (sub)populations as well as the activation status of antigen-presenting cells were extensively analyzed in each condition. Finally, the redox state of HMGB1 in tumor-extruded fluids and the influence of different forms (oxidized, reduced or disulfide) on both dendritic cell (DC) and plasmacytoid DC (pDC) activation were determined. RESULTS Associated with an unfavorable prognosis in human patients, we clearly demonstrated that targeting extracellular HMGB1 elicits a profound remodeling of tumor immune microenvironment for efficient cancer therapy. Indeed, without affecting the global number of (CD45+) immune cells, drastic reductions of monocytic/granulocytic myeloid-derived suppressor cells (MDSC) and regulatory T lymphocytes, a higher M1/M2 ratio of macrophages as well as an increased activation of both DC and pDC were continually observed following HMGB1 inhibition. Moreover, blocking HMGB1 improved the efficacy of anti-PD-1 cancer monoimmunotherapy. We also reported that a significant fraction of HMGB1 encountered within cancer microenvironment (interstitial fluids) is oxidized and, in opposite to its reduced isoform, oxidized HMGB1 acts as a tolerogenic signal in a receptor for advanced glycation endproducts-dependent manner. CONCLUSION Collectively, we present evidence that extracellular HMGB1 blockade may complement first-generation cancer immunotherapies by remobilizing antitumor immune response.
Collapse
Affiliation(s)
- Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Stephanie Demoulin
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Charlotte Pilard
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Marie Ancion
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Celia Reynders
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Thomas Lerho
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Diane Bruyere
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Alizee Lebeau
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Coraline Radermecker
- Laboratory of Immunophysiology, GIGA-I3, University of Liege, Liege, Belgium
- Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Margot Meunier
- Laboratory of Immunophysiology, GIGA-I3, University of Liege, Liege, Belgium
- Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Elodie Hendrick
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
- Department of Pathology, University Hospital Center of Liege, Liege, Belgium
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| |
Collapse
|
11
|
de Seny D, Bianchi E, Baiwir D, Cobraiville G, Collin C, Deliège M, Kaiser MJ, Mazzucchelli G, Hauzeur JP, Delvenne P, Malaise MG. Proteins involved in the endoplasmic reticulum stress are modulated in synovitis of osteoarthritis, chronic pyrophosphate arthropathy and rheumatoid arthritis, and correlate with the histological inflammatory score. Sci Rep 2020; 10:14159. [PMID: 32887899 PMCID: PMC7473860 DOI: 10.1038/s41598-020-70803-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023] Open
Abstract
It is now well recognized that osteoarthritis (OA) synovial membrane presents inflammatory components. The aim of this work is to provide evidence that similar inflammatory mechanisms exist in synovial membrane (n = 24) obtained from three pathologies presenting altogether an inflammatory gradient: OA, chronic pyrophosphate arthropathy (CPPA) and rheumatoid arthritis (RA). Synovial biopsies were first characterized by a histological score based on synovial hyperplasia and infiltration of lymphocytes, plasma cells, polymorphonuclear and macrophages. All biopsies were also analyzed by 2D-nano-UPLC-ESI-Q-Orbitrap for protein identification and quantification. Protein levels were correlated with the histological score. Histological score was in the range of 3 to 8 for OA, 5 to 13 for CPPA and 12 to 17 for RA. Of the 4,336 proteins identified by mass spectrometry, 51 proteins were selected for their strong correlation (p < 0.001) with the histological score of which 11 proteins (DNAJB11, CALR, ERP29, GANAB, HSP90B1, HSPA1A, HSPA5, HYOU1, LMAN1, PDIA4, and TXNDC5) were involved in the endoplasmic reticulum (ER) stress. Protein levels of S100A8 and S100A9 were significantly higher in RA compared to OA (for both) or to CPPA (for S100A8 only) and also significantly correlated with the histological score. Eighteen complement component proteins were identified, but only C1QB and C1QBP were weakly correlated with the histological score. This study highlights the inflammatory gradient existing between OA, CPPA and RA synovitis either at the protein level or at the histological level. Inflamed synovitis was characterized by the overexpression of ER stress proteins.
Collapse
Affiliation(s)
- Dominique de Seny
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium.
| | - Elettra Bianchi
- Department of Pathology, GIGA Research, CHU Liege, 4000, Liège, Belgium
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liege, 4000, Liege, Belgium
| | - Gaël Cobraiville
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Charlotte Collin
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Mégane Deliège
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Marie-Joëlle Kaiser
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Unit Research, University of Liege, 4000, Liege, Belgium
| | - Jean-Philippe Hauzeur
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Philippe Delvenne
- Department of Pathology, GIGA Research, CHU Liege, 4000, Liège, Belgium
| | - Michel G Malaise
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| |
Collapse
|
12
|
Yan K, Yang Y, Zhang Y, Zhao W, Liao L. Normalization Method Utilizing Endogenous Proteins for Quantitative Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1380-1388. [PMID: 32268065 DOI: 10.1021/jasms.0c00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We developed a normalization method utilizing the expression levels of a panel of endogenous proteins as normalization standards (EPNS herein). We tested the validity of the method using two sets of tandem mass tag (TMT)-labeled data and found that this normalization method effectively reduced global intensity bias at the protein level. The coefficient of variation (CV) of the overall median was reduced by 55% and 82% on average, compared to the reduction by 72% and 86% after normalization using the upper quartile. Furthermore, we used differential protein expression analysis and statistical learning to identify biomarkers for colorectal cancer from a CPTAC data set. The expression changes of a panel of proteins, including NUP205, GTPBP4, CNN2, GNL3, and S100A11, all of which highly correlate with colorectal cancer. Applying these five proteins as model features, random forest modeling obtained prediction results with the maximum AUC of 0.9998 using EPNS-normalized data, comparing favorably to the AUC of 0.9739 using the raw data. Thus, the normalization method based on EPNS reduced the global intensity bias and is applicable for quantitative proteomic analysis.
Collapse
Affiliation(s)
- Kai Yan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yueying Yang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yunpeng Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wanbing Zhao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
13
|
Haslene-Hox H. Measuring gradients in body fluids - A tool for elucidating physiological processes, diagnosis and treatment of disease. Clin Chim Acta 2018; 489:233-241. [PMID: 30145208 DOI: 10.1016/j.cca.2018.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Hanne Haslene-Hox
- SINTEF Industry, Department of biotechnology and nanomedicine, Sem Sælands vei 2A, 7034 Trondheim, Norway.
| |
Collapse
|