1
|
Masbuchin AN, Widodo, Rohman MS, Liu PY. The two facets of receptor tyrosine kinase in cardiovascular calcification-can tyrosine kinase inhibitors benefit cardiovascular system? Front Cardiovasc Med 2022; 9:986570. [PMID: 36237897 PMCID: PMC9552878 DOI: 10.3389/fcvm.2022.986570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 01/09/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are widely used in cancer treatment due to their effectiveness in cancer cell killing. However, an off-target of this agent limits its success. Cardiotoxicity-associated TKIs have been widely reported. Tyrosine kinase is involved in many regulatory processes in a cell, and it is involved in cancer formation. Recent evidence suggests the role of tyrosine kinase in cardiovascular calcification, specifically, the calcification of heart vessels and valves. Herein, we summarized the accumulating evidence of the crucial role of receptor tyrosine kinase (RTK) in cardiovascular calcification and provided the potential clinical implication of TKIs-related ectopic calcification. We found that RTKs, depending on the ligand and tissue, can induce or suppress cardiovascular calcification. Therefore, RTKs may have varying effects on ectopic calcification. Additionally, in the context of cardiovascular calcification, TKIs do not always relate to an unfavored outcome-they might offer benefits in some cases.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Widodo
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Bertero L, Gambella A, Barreca A, Osella-Abate S, Chiusa L, Francia di Celle P, Lista P, Papotti M, Cassoni P. Caveolin-1 expression predicts favourable outcome and correlates with PDGFRA mutations in gastrointestinal stromal tumours (GISTs). J Clin Pathol 2021; 75:825-831. [PMID: 34155091 DOI: 10.1136/jclinpath-2021-207595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/08/2021] [Indexed: 11/04/2022]
Abstract
AIMS Novel prognostic markers are warranted for gastrointestinal stromal tumours. Caveolin-1 is a multifunctional protein that proved to be associated with outcome in multiple tumour types. Aim of this study was to investigate Caveolin-1 expression and prognostic efficacy in a series of gastrointestinal stromal tumours. METHODS Caveolin-1 expression was assessed by immunohistochemistry in a retrospective series of 66 gastrointestinal stromal tumours representative of the different molecular subtypes. Correlations with clinical, histopathological and molecular features were investigated. Statistical analyses were performed as appropriate. RESULTS Thirty-five cases out of 66 (53.0%) expressed Caveolin-1. Presence of Caveolin-1 expression correlated with favourable histopathologic and clinical traits, including a lower mitotic count (p=0.003) and lower relapse rate (p=0.005). Caveolin-1 expression also resulted associated with the presence of PDGFRA mutations (p=0.010). Outcome analyses showed a favourable prognostic significance of Caveolin-1 expression in terms of relapse-free survival (HR=0.14; 95% CI=0.03 to 0.63) and overall survival (HR=0.29; 95% CI=0.11 to 0.74), even after adjusting for the mutational subgroup (relapse-free survival: HR=0.14, 95% CI=0.04 to 0.44; overall survival: HR=0.29, 95% CI=0.11 to 0.51) and imatinib treatment (relapse-free survival: HR=0.14, 95% CI=0.02 to 0.81; overall survival: HR=0.29, 95% CI=0.17 to 0.48). CONCLUSION Caveolin-1 represents a novel prognostic marker in gastrointestinal stromal tumours. Further studies are warranted to validate these results and to explore the mechanisms linking Caveolin-1 expression with the PDGFRA oncogenic pathway.
Collapse
Affiliation(s)
- Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessandro Gambella
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonella Barreca
- Pathology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Simona Osella-Abate
- Molecular Pathology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Luigi Chiusa
- Pathology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Paola Francia di Celle
- Molecular Pathology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Patrizia Lista
- Oncology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Mauro Papotti
- Pathology Unit, Department of Oncology, University of Turin, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Song Y, Xie F, Ma S, Deng G, Li Y, Nie Y, Wang F, Yu G, Gao Z, Chen K, Han L, Gao L. Caveolin-1 protects against DSS-induced colitis through inhibiting intestinal nitrosative stress and mucosal barrier damage in mice. Biochem Pharmacol 2020; 180:114153. [PMID: 32679126 DOI: 10.1016/j.bcp.2020.114153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023]
|
4
|
Yan C, Sun C, Ding X, Rizeq FK, Ren M, Yang F, Chen Y, Wang B. Association of CAV1 polymorphisms with the risks of breast cancer: A systematic review and meta-analysis. Pathol Res Pract 2019; 215:152518. [PMID: 31303379 DOI: 10.1016/j.prp.2019.152518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Caveolin-1 (CAV1) polymorphisms have been shown to correlated with breast cancer risk in previous studies. However, the role of CAV1 polymorphisms still remained indecisive, and dual functions of CAV1 was demonstrated in breast cancer development. Consequently, a meta-analysis to evaluate and summarize the association of the CAV1 polymorphisms with breast cancer susceptibility. MATERIAL AND METHODS Extensive search was performed in PubMed, Web of Science, Google scholar, EMBASE.com, CNKI and Wanfang searching platform up to March 2019. The Newcastle-Ottawa Scale (NOS) were used to evaluate the quality of each study. The Odds ratios (ORs) and the 95% confidence intervals (CIs) were analyzed to evaluate the strength of the associations in five genetic models. Inter-study heterogeneity was quantified using the I-squared (I2) test. In addition, the Egger's test and Begg's test were applied to evaluate the publication bias. RESULTS 4 case-control studies with 2115 cases and 2138 controls were enrolled into this analysis. There was a significant association between rs3807987 polymorphism of CAV1 and breast cancer in allele comparison (A vs. G: OR = 1.288, 95%CI = 1.162-1.428, P < 0.001), heterozygote comparison (AG vs. GG: OR= 1.422, 95%CI=1.233-1.639, P < 0.001), and dominant comparison (AA+AG vs. GG: OR=1.395, 95%CI=1.228-1.586, P < 0.001). A significant association of rs3807987 polymorphism in allele comparison (A vs. G: OR=1.238, 95%CI=1.109-1.383, P < 0.001), heterozygote comparison (AG VS. GG: OR=1.466, 95%CI=1.267-1.697, P < 0.05), and dominant comparison (AA+AG vs. GG: OR=1.384, 95%CI=1.209-1.585, P < 0.001) was also founded amongst Chinese population. A significant association between rs7804372 polymorphism and breast cancer amongst Chinese population in recessive comparison (AA vs. AT + TT: OR = 0.730, 95%CI = 0.567-0.940, P = 0.015) was identified. No significant association between breast cancer risk and rs1997623 was found. CONCLUSION CAV1 rs3807987 and rs7804372 polymorphisms are associated with the change of breast cancer risk. More well-designed and large studies in various populations are needed to further elaborate these associations.
Collapse
Affiliation(s)
- Cunye Yan
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, PR China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL 60657, USA
| | - Xiuxiu Ding
- Lianhua Community Health Service Centre, The Second Affiliated Hospital of Anhui Medical University, 217 Furong Street, Hefei, Anhui, PR China
| | - Feras Kamel Rizeq
- Avalon University School of Medicine, Santa Rosaweg 122-124, Willemstad, Curaçao
| | - Min Ren
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, PR China
| | - Fan Yang
- Maternal and Chile Health Care Hospital of Anhui Province, No.15 Yimin Street, Hefei, 230001, Anhui, PR China
| | - Ying Chen
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, PR China
| | - Benzhong Wang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, PR China.
| |
Collapse
|
5
|
Codenotti S, Faggi F, Ronca R, Chiodelli P, Grillo E, Guescini M, Megiorni F, Marampon F, Fanzani A. Caveolin-1 enhances metastasis formation in a human model of embryonal rhabdomyosarcoma through Erk signaling cooperation. Cancer Lett 2019; 449:135-144. [DOI: 10.1016/j.canlet.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Accepted: 02/10/2019] [Indexed: 11/15/2022]
|
6
|
Ren J, Li X, Sun G, Li S, Liang S, Li Z, Li B, Xia M. Protective effect of leptin-mediated caveolin-1 expression on neurons after spinal cord injury. Cell Calcium 2018; 76:122-128. [PMID: 30469142 DOI: 10.1016/j.ceca.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/18/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Spinal cord injury (SCI) causes long-term disability and has no effective clinical treatment. After SCI, extracellular adenosine triphosphate (ATP) leads to an influx of extracellular Ca2+, and this Ca2+ overload causes neuronal toxicosis and apoptosis. The biological functions of leptin have been widely investigated in the central nervous system. In this study, we discovered that the administration of leptin could improve locomotor recovery following SCI. The aim of this study was to determine the neuroprotective mechanism of leptin in vivo and in vitro. The neuronal apoptosis and Ca2+ imaging signal induced by ATP were suppressed by leptin, due to elevated caveolin-1 expression. In vivo two-photon observations revealed that leptin reduced the neuronal Ca2+ imaging signal in the exposed spinal cords of live Thy1-YFP mice. In conclusion, leptin promotes locomotor functional recovery and suppresses neuronal impairment after SCI, suggesting that leptin has a promising clinical therapeutic value for treatment of SCI.
Collapse
Affiliation(s)
- Jiaan Ren
- Department of Orthopaedics, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Xiaowei Li
- Laboratory Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Guangfeng Sun
- Department of Orthopaedics, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Shuai Li
- Laboratory Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Shanshan Liang
- Laboratory Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Zexiong Li
- Laboratory Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Baoman Li
- Laboratory Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Maosheng Xia
- Department of Orthopaedics, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
7
|
The level of caveolin-1 expression determines response to TGF-β as a tumour suppressor in hepatocellular carcinoma cells. Cell Death Dis 2017; 8:e3098. [PMID: 29022911 PMCID: PMC5680590 DOI: 10.1038/cddis.2017.469] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous tumour associated with poor prognostic outcome. Caveolin-1 (CAV1), a membrane protein involved in the formation of caveolae, is frequently overexpressed in HCC. Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine having a dual role in hepatocarcinogenesis: inducer of apoptosis at early phases, but pro-tumourigenic once cells acquire mechanisms to overcome its suppressor effects. Apoptosis induced by TGF-β is mediated by upregulation of the NADPH oxidase NOX4, but counteracted by transactivation of the epidermal growth factor receptor (EGFR) pathway. Previous data suggested that CAV1 is required for the anti-apoptotic signals triggered by TGF-β in hepatocytes. Whether this mechanism is relevant in hepatocarcinogenesis has not been explored yet. Here we analysed the TGF-β response in HCC cell lines that express different levels of CAV1. Accordingly, stable CAV1 knockdown or overexpressing cell lines were generated. We demonstrate that CAV1 is protecting HCC cells from TGF-β-induced apoptosis, which attenuates its suppressive effect on clonogenic growth and increases its effects on cell migration. Downregulation of CAV1 in HLE cells promotes TGF-β-mediated induction of the pro-apoptotic BMF, which correlates with upregulation of NOX4, whereas CAV1 overexpression in Huh7 cells shows the opposite effect. CAV1 silenced HLE cells show attenuation in TGF-β-induced EGFR transactivation and activation of the PI3K/AKT pathway. On the contrary, Huh7 cells, which do not respond to TGF-β activating the EGFR pathway, acquire the capacity to do so when CAV1 is overexpressed. Analyses in samples from HCC patients revealed that tumour tissues presented higher expression levels of CAV1 compared with surrounding non-tumoural areas. Furthermore, a significant positive correlation among the expression of CAV1 and TGFB1 was observed. We conclude that CAV1 has an essential role in switching the response to TGF-β from cytostatic to tumourigenic, which could have clinical meaning in patient stratification.
Collapse
|
8
|
Rello-Varona S, Tirado OM. DNA methylation profiling opens a new phase in the search of targeted therapy against Ewing sarcoma. Pharmacogenomics 2017; 18:1307-1309. [DOI: 10.2217/pgs-2017-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Santi Rello-Varona
- Sarcoma Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Oscar M Tirado
- Sarcoma Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| |
Collapse
|
9
|
Machado I, Yoshida A, López-Guerrero JA, Nieto MG, Navarro S, Picci P, Llombart-Bosch A. Immunohistochemical analysis of NKX2.2, ETV4, and BCOR in a large series of genetically confirmed Ewing sarcoma family of tumors. Pathol Res Pract 2017; 213:1048-1053. [DOI: 10.1016/j.prp.2017.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
|
10
|
Spencer A, Yu L, Guili V, Reynaud F, Ding Y, Ma J, Jullien J, Koubi D, Gauthier E, Cluet D, Falk J, Castellani V, Yuan C, Rudkin BB. Nerve Growth Factor Signaling from Membrane Microdomains to the Nucleus: Differential Regulation by Caveolins. Int J Mol Sci 2017; 18:E693. [PMID: 28338624 PMCID: PMC5412279 DOI: 10.3390/ijms18040693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 11/16/2022] Open
Abstract
Membrane microdomains or "lipid rafts" have emerged as essential functional modules of the cell, critical for the regulation of growth factor receptor-mediated responses. Herein we describe the dichotomy between caveolin-1 and caveolin-2, structural and regulatory components of microdomains, in modulating proliferation and differentiation. Caveolin-2 potentiates while caveolin-1 inhibits nerve growth factor (NGF) signaling and subsequent cell differentiation. Caveolin-2 does not appear to impair NGF receptor trafficking but elicits prolonged and stronger activation of MAPK (mitogen-activated protein kinase), Rsk2 (ribosomal protein S6 kinase 2), and CREB (cAMP response element binding protein). In contrast, caveolin-1 does not alter initiation of the NGF signaling pathway activation; rather, it acts, at least in part, by sequestering the cognate receptors, TrkA and p75NTR, at the plasma membrane, together with the phosphorylated form of the downstream effector Rsk2, which ultimately prevents CREB phosphorylation. The non-phosphorylatable caveolin-1 serine 80 mutant (S80V), no longer inhibits TrkA trafficking or subsequent CREB phosphorylation. MC192, a monoclonal antibody towards p75NTR that does not block NGF binding, prevents exit of both NGF receptors (TrkA and p75NTR) from lipid rafts. The results presented herein underline the role of caveolin and receptor signaling complex interplay in the context of neuronal development and tumorigenesis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- CREB-Binding Protein/metabolism
- Caveolin 1/antagonists & inhibitors
- Caveolin 1/genetics
- Caveolin 1/metabolism
- Caveolin 2/antagonists & inhibitors
- Caveolin 2/genetics
- Caveolin 2/metabolism
- Cell Differentiation/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Membrane Microdomains/metabolism
- Mice
- Nerve Growth Factor/pharmacology
- Nerve Tissue Proteins
- PC12 Cells
- Phosphorylation/drug effects
- Protein Binding
- Protein Transport/drug effects
- RNA Interference
- RNA, Small Interfering/metabolism
- Rats
- Receptor, Nerve Growth Factor/metabolism
- Receptor, trkA/chemistry
- Receptor, trkA/immunology
- Receptor, trkA/metabolism
- Receptors, Growth Factor
- Receptors, Nerve Growth Factor/chemistry
- Receptors, Nerve Growth Factor/immunology
- Receptors, Nerve Growth Factor/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Ambre Spencer
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Lingli Yu
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Vincent Guili
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - Florie Reynaud
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, CGphiMC UMR5534, 69622 Villeurbanne Cedex, France.
| | - Yindi Ding
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Ji Ma
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Jérôme Jullien
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - David Koubi
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - Emmanuel Gauthier
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - David Cluet
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - Julien Falk
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, CGphiMC UMR5534, 69622 Villeurbanne Cedex, France.
| | - Valérie Castellani
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, CGphiMC UMR5534, 69622 Villeurbanne Cedex, France.
| | - Chonggang Yuan
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Brian B Rudkin
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
- Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
11
|
Caveolin-1 expression in oral lichen planus, dysplastic lesions and squamous cell carcinoma. Pathol Res Pract 2017; 213:809-814. [PMID: 28554768 DOI: 10.1016/j.prp.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/06/2017] [Accepted: 03/04/2017] [Indexed: 12/24/2022]
Abstract
Caveolin-1(Cav-1), the main part of caveolae structure, is supposed to play a role in pathogenesis of many human tumors. Since oral lichen planus (OLP) is considered as a potential premalignant disease, this study evaluated Cav-1 expression in OLP in comparison with benign hyperkeratosis, dysplastic epithelium and oral squamous cell carcinoma (OSCC), to investigate its possible role in pathogenesis and malignant transformation of OLP. In this cross-sectional retrospective study, immunohistochemical expression of Cav-1 in the epithelial component and stroma was evaluated in 81 samples, including 12 cases of hyperkeratosis, 24 OLP, 22 epithelial dysplasia, and 23 OSCC samples. Correlations between Cav-1 expression and clinicopathological variables were evaluated statistically. Positive Cav-1 staining was found in 58% of OLP, 91% of hyperkeratosis, 100% of epithelial dysplasia, and 95% of OSCC samples. OSCC showed the highest Cav-1 expression and OLP had the lowest (P=0.001). The intensity of staining was significantly increased in stepwise manner from OLP to OSCC (P=0.001). Expression of Cav-1 was related to the grade of samples in OSCC and dysplastic samples (P=0.04). Based on the findings, it was concluded that Cav-1 may play a role in the pathogenesis of OLP and carcinogenesis of SCC, but its role in malignant transformation of OLP is not confirmed. Further studies are needed to evaluate its potential therapeutic function in OLP and SCC.
Collapse
|
12
|
Codenotti S, Vezzoli M, Monti E, Fanzani A. Focus on the role of Caveolin and Cavin protein families in liposarcoma. Differentiation 2017; 94:21-26. [DOI: 10.1016/j.diff.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023]
|
13
|
Thapa B, Walkiewicz M, Murone C, Asadi K, Deb S, Barnett S, Knight S, Mitchell P, Liew D, Watkins DN, John T. Calretinin but not caveolin-1 correlates with tumour histology and survival in malignant mesothelioma. Pathology 2016; 48:660-665. [PMID: 27780599 DOI: 10.1016/j.pathol.2016.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/14/2016] [Accepted: 08/18/2016] [Indexed: 12/28/2022]
Abstract
Malignant mesothelioma (MM) continues to be a disease with poor prognosis and limited treatment options. Calretinin and caveolin-1 expression by tumour in MM have recently been described to be associated with tumour histology, differentiation and consequently survival. In a large, well annotated cohort, we studied both of these biomarkers and explored their association with clinicopathological parameters and survival. A retrospective search of patients with MM who underwent surgery at the Austin Hospital in Melbourne, Australia, was conducted. Clinical history and outcome data were retrieved from patient records. Tissue microarrays (TMAs) were constructed and stained for calretinin and caveolin-1. 'H scores' were derived, taking intensity and distribution of staining, and the cohort was dichotomised using median values for both markers. In the 329 patients evaluated, median age was 67 years. Males outnumbered females by 5:1. Epithelioid histology 202/319 (62.9%) was the most common, followed by biphasic 72/319 (21.8%) and sarcomatoid 45/319 (13.6%); histology could not be confirmed in 10 patients. Calretinin expression was detected in 246 of the 324 (76%) evaluable patients and high expression was associated with epithelioid histology (p < 0.0001). Caveolin-1 was expressed in 298 (94%) of 317 evaluable patients which was much higher compared to its expression in a cohort of lung adenocarcinomas (8/58, 13.7%). However, no association with histology was found (p = 0.409). When taken as a continuous variable, calretinin expression was found to be an independent predictor of survival, alongside histology, neutrophil-lymphocyte ratio, weight loss and stage. No prognostic value was demonstrable for caveolin-1 expression and calretinin/caveolin-1 ratio. There was no relationship between calretinin and caveolin-1 expression. In MM, increased calretinin expression is associated with epithelioid histology and better survival. Caveolin-1 is a sensitive MM marker and is expressed in a high proportion of cases but lacks association with histology and survival.
Collapse
Affiliation(s)
- Bibhusal Thapa
- Department of Medicine, University of Melbourne, Vic, Australia; Olivia Newton John Cancer Research Institute, Vic, Australia
| | | | - Carmel Murone
- Olivia Newton John Cancer Research Institute, Vic, Australia; Department of Pathology, Austin Health, Vic, Australia
| | | | - Siddhartha Deb
- Olivia Newton John Cancer Research Institute, Vic, Australia; Anatpath, Gardenvale, Vic, Australia
| | - Stephen Barnett
- Department of Thoracic Surgery, Austin Hospital, Melbourne, Vic, Australia
| | - Simon Knight
- Department of Thoracic Surgery, Austin Hospital, Melbourne, Vic, Australia
| | - Paul Mitchell
- Department of Medical Oncology, Austin Health, Olivia-Newton John Cancer and Wellness Centre, Vic, Australia
| | - Danny Liew
- Department of Epidemiology and Preventive Medicine, Monash University, Vic, Australia
| | | | - Thomas John
- Olivia Newton John Cancer Research Institute, Vic, Australia; Department of Medical Oncology, Austin Health, Olivia-Newton John Cancer and Wellness Centre, Vic, Australia; School of Cancer Medicine, La Trobe University, Vic, Australia.
| |
Collapse
|
14
|
Wang Z, Wang N, Liu P, Peng F, Tang H, Chen Q, Xu R, Dai Y, Lin Y, Xie X, Peng C, Situ H. Caveolin-1, a stress-related oncotarget, in drug resistance. Oncotarget 2016; 6:37135-50. [PMID: 26431273 PMCID: PMC4741920 DOI: 10.18632/oncotarget.5789] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/08/2015] [Indexed: 12/28/2022] Open
Abstract
Caveolin-1 (Cav-1) is both a tumor suppressor and an oncoprotein. Cav-1 overexpression was frequently confirmed in advanced cancer stages and positively associated with ABC transporters, cancer stem cell populations, aerobic glycolysis activity and autophagy. Cav-1 was tied to various stresses including radiotherapy, fluid shear and oxidative stresses and ultraviolet exposure, and interacted with stress signals such as AMP-activated protein kinase. Finally, a Cav-1 fluctuation model during cancer development is provided and Cav-1 is suggested to be a stress signal and cytoprotective. Loss of Cav-1 may increase susceptibility to oncogenic events. However, research to explore the underlying molecular network between Cav-1 and stress signals is warranted.
Collapse
Affiliation(s)
- Zhiyu Wang
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- Department of Breast Oncology, Sun Yat-sen Univeristy Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Pengxi Liu
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fu Peng
- Pharmacy College, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Guangzhou, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen Univeristy Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Qianjun Chen
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Xu
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Dai
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Lin
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen Univeristy Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Cheng Peng
- Pharmacy College, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Guangzhou, China
| | - Honglin Situ
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Codenotti S, Vezzoli M, Poliani PL, Cominelli M, Bono F, Kabbout H, Faggi F, Chiarelli N, Colombi M, Zanella I, Biasiotto G, Montanelli A, Caimi L, Monti E, Fanzani A. Caveolin-1, Caveolin-2 and Cavin-1 are strong predictors of adipogenic differentiation in human tumors and cell lines of liposarcoma. Eur J Cell Biol 2016; 95:252-64. [DOI: 10.1016/j.ejcb.2016.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/15/2022] Open
|
16
|
Nassar ZD, Hill MM, Parton RG, Francois M, Parat MO. Non-caveolar caveolin-1 expression in prostate cancer cells promotes lymphangiogenesis. Oncoscience 2015; 2:635-45. [PMID: 26328273 PMCID: PMC4549361 DOI: 10.18632/oncoscience.180] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022] Open
Abstract
Lymphangiogenesis allows prostate cancer (PCa) lymphatic metastasis, which is associated with poor prognosis and short survival rates. Caveolin-1 (Cav-1) is a membrane protein localized in caveolae, but also exists in non-caveolar, cellular or extracellular forms. Cav-1 is overexpressed in PCa, promotes prostate tumour progression and metastasis. We investigated the effect of caveolar and non-caveolar Cav-1 on PCa lymphangiogenic potential. Cav-1 was down-regulated in PC3 and DU145, and ectopically expressed in LNCaP cells. The effect of PCa cell conditioned media on lymphatic endothelial cell (LEC) viability, chemotaxis, chemokinesis and differentiation was assessed. The effect of Cav-1 on PCa cell expression of lymphangiogenesis-modulators VEGF-A and VEGF-C was assessed using qPCR and ELISA of the conditioned medium. Non-caveolar Cav-1, whether exogenous or endogenous (in LNCaP and PC3 cells, respectively) enhanced LEC proliferation, migration and differentiation. In contrast, caveolar Cav-1 (in DU145 cells) did not significantly affect PCa cell lymphangiogenic potential. The effect of non-caveolar Cav-1 on LECs was mediated by increased expression of VEGF-A as demonstrated by neutralization by anti-VEGF-A antibody. This study unveils for the first time a crucial role for non-caveolar Cav-1 in modulating PCa cell expression of VEGF-A and subsequent LEC proliferation, migration and tube formation.
Collapse
Affiliation(s)
- Zeyad D Nassar
- The University of Queensland, School of Pharmacy, QLD, Australia
| | - Michelle M Hill
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, Australia
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, QLD, Australia
| | - Mathias Francois
- The University of Queensland, Institute for Molecular Bioscience, QLD, Australia
| | | |
Collapse
|
17
|
Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood and adolescence. Despite advances in therapy, patients with histological variant of rhabdomyosarcoma known as alveolar rhabdomyosarcoma (ARMS) have a 5-year survival of less than 30%. Caveolin-1 (CAV1), encoding the structural component of cellular caveolae, is a suggested tumor suppressor gene involved in cell signaling. In the present study we report that compared to other forms of rhabdomyosarcoma (RMS) CAV1 expression is either undetectable or very low in ARMS cell lines and tumor samples. DNA methylation analysis of the promoter region and azacytidine-induced re-expression suggest the involvement of epigenetic mechanisms in the silencing of CAV1. Reintroduction of CAV1 in three of these cell lines impairs their clonogenic capacity and promotes features of muscular differentiation. In vitro, CAV1-expressing cells show high expression of Caveolin-3 (CAV3), a muscular differentiation marker. Blockade of MAPK signaling is also observed. In vivo, CAV1-expressing xenografts show growth delay, features of muscular differentiation and increased cell death. In summary, our results suggest that CAV1 could function as a potent tumor suppressor in ARMS tumors. Inhibition of CAV1 function therefore, could contribute to aberrant cell proliferation, leading to ARMS development.
Collapse
|
18
|
Cavin-1 and Caveolin-1 are both required to support cell proliferation, migration and anchorage-independent cell growth in rhabdomyosarcoma. J Transl Med 2015; 95:585-602. [PMID: 25822667 DOI: 10.1038/labinvest.2015.45] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/26/2015] [Accepted: 02/27/2015] [Indexed: 12/17/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a childhood soft tissue tumor with broad expression of markers that are typically found in skeletal muscle. Cavin-1 is a recently discovered protein actively cooperating with Caveolin-1 (Cav-1) in the morphogenesis of caveolae and whose role in cancer is drawing increasing attention. Using a combined in silico and in vitro analysis here we show that Cavin-1 is expressed in myogenic RMS tumors as well as in human and primary mouse RMS cultures, exhibiting a broad subcellular localization, ranging from nuclei and cytosol to plasma membrane. In particular, the coexpression and plasma membrane interaction between Cavin-1 and Cav-1 characterized the proliferation of human and mouse RMS cell cultures, while a downregulation of their expression levels was observed during the myogenic differentiation. Knockdown of Cavin-1 or Cav-1 in the human RD and RH30 cells led to impairment of cell proliferation and migration. Moreover, loss of Cavin-1 in RD cells impaired the anchorage-independent cell growth in soft agar. While the loss of Cavin-1 did not affect the Cav-1 protein levels in RMS cells, Cav-1 overexpression and knockdown triggered a rise or depletion of Cavin-1 protein levels in RD cells, respectively, in turn reflecting on increased or decreased cell proliferation, migration and anchorage-independent cell growth. Collectively, these data indicate that the interaction between Cavin-1 and Cav-1 underlies the cell growth and migration in myogenic tumors.
Collapse
|
19
|
Dasgupta N, Kumar Thakur B, Ta A, Das S. Caveolin-1 is transcribed from a hypermethylated promoter to mediate colonocyte differentiation and apoptosis. Exp Cell Res 2015; 334:323-36. [DOI: 10.1016/j.yexcr.2015.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/28/2022]
|
20
|
Anti-tumor activity of fenretinide complexed with human serum albumin in lung cancer xenograft mouse model. Oncotarget 2015; 5:4811-20. [PMID: 25015569 PMCID: PMC4148101 DOI: 10.18632/oncotarget.2038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sufficient knowledge regarding cellular and molecular basis of lung cancer progression and metastasis would help in the development of novel and effective strategies for the treatment of lung cancer. 4HPR is a synthetic retinoid with potential anti-tumor activity but is still limited because of its poor bioavailability. The use of albumin as a complexing agent for a hydrophobic drug is expected to improve the water solubility and consequently their bioavailability.This study investigated the antitumor activity of a novel complex between albumin and 4-HPR in a mouse model of human lung cancer and focuses on role and mechanism of Cav-1 mainly involved in regulating cancer and Acsvl3 mainly connected with tumor growth. Their expressions were assayed by immunohistochemistry and qRT-PCR, to demonstrate the reduction of the tumor growth following the drug treatment. Our results showed a high antitumor activity of 4HPR-HSA by reduction of the volume of tumor mass and the presence of a high level of apoptotic cell by TUNEL assay. The downregulation of Cav-1 and Acsvl3 suggested a reduction of tumor growth. In conclusion, we demonstrated the great potential of 4HPR-HSA in the treatment of lung cancer. More data about the mechanism of drug delivery the 4HPR-HSA are necessary.
Collapse
|
21
|
Han B, Tiwari A, Kenworthy AK. Tagging strategies strongly affect the fate of overexpressed caveolin-1. Traffic 2015; 16:417-38. [PMID: 25639341 PMCID: PMC4440517 DOI: 10.1111/tra.12254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 01/01/2023]
Abstract
Caveolin-1 (Cav1) is the primary scaffolding protein of caveolae, flask-shaped invaginations of the plasma membrane thought to function in endocytosis, mechanotransduction, signaling and lipid homeostasis. A significant amount of our current knowledge about caveolins and caveolae is derived from studies of transiently overexpressed, C-terminally tagged caveolin proteins. However, how different tags affect the behavior of ectopically expressed Cav1 is still largely unknown. To address this question, we performed a comparative analysis of the subcellular distribution, oligomerization state and detergent resistance of transiently overexpressed Cav1 labeled with three different C-terminal tags (EGFP, mCherry and myc). We show that addition of fluorescent protein tags enhances the aggregation and/or degradation of both wild-type Cav1 and an oligomerization defective P132L mutant. Strikingly, complexes formed by overexpressed Cav1 fusion proteins excluded endogenous Cav1 and Cav2, and the properties of native caveolins were largely preserved even when abnormal aggregates were present in cells. These findings suggest that differences in tagging strategies may be a source of variation in previously published studies of Cav1 and that overexpressed Cav1 may exert functional effects outside of caveolae. They also highlight the need for a critical re-evaluation of current knowledge based on transient overexpression of tagged Cav1.
Collapse
Affiliation(s)
- Bing Han
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashville, TN, USA
| | - Ajit Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashville, TN, USA
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashville, TN, USA
- Epithelial Biology Program, Vanderbilt University School of MedicineNashville, TN, USA
- Chemical and Physical Biology Program, Vanderbilt UniversityNashville, TN, USA
| |
Collapse
|
22
|
Weiss CR, Guan Q, Ma Y, Qing G, Bernstein CN, Warrington RJ, Peng Z. The potential protective role of caveolin-1 in intestinal inflammation in TNBS-induced murine colitis. PLoS One 2015; 10:e0119004. [PMID: 25756273 PMCID: PMC4355071 DOI: 10.1371/journal.pone.0119004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 01/19/2015] [Indexed: 12/19/2022] Open
Abstract
Background Caveolin-1 (Cav-1) is a multifunctional scaffolding protein serving as a platform for the cell’s signal-transduction and playing an important role in inflammation. However, its role in inflammatory bowel disease is not clear. A recent study showed that Cav-1 is increased and mediates angiogenesis in dextran sodium sulphate-induced colitis, which are contradictory to our pilot findings in 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis. In the present study, we further clarified the role of Cav-1 in TNBS-induced colitis. Methods In BALB/c mice, acute colitis was induced by intra-rectal administration of one dose TNBS, while chronic colitis was induced by administration of TNBS once a week for 7 weeks. To assess the effects of complete loss of Cav-1, Cav-1 knockout (Cav-1−/−) and control wild-type C57 mice received one TNBS administration. Body weight and clinical scores were monitored. Colon Cav-1 and pro-inflammatory cytokine levels were quantified through ELISAs. Inflammation was evaluated through histological analysis. Results Colon Cav-1 levels were significantly decreased in TNBS-induced colitis mice when compared to normal mice and also inversely correlated with colon inflammation scores and proinflammatory cytokine levels (IL-17, IFN-γ and TNF) significantly. Furthermore, after administration of TNBS, Cav-1−/− mice showed significantly increased clinical and colon inflammatory scores and body weight loss when compared with control mice. Conclusions and Significance Cav-1 may play a protective role in the development of TNBS-induced colitis. Our findings raise an important issue in the evaluation of specific molecules in animal models that different models may exhibit opposite results because of the different mechanisms involved.
Collapse
Affiliation(s)
- Carolyn R. Weiss
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qingdong Guan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yanbing Ma
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gefei Qing
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Charles N. Bernstein
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard J. Warrington
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhikang Peng
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
23
|
Gupta R, Toufaily C, Annabi B. Caveolin and cavin family members: dual roles in cancer. Biochimie 2014; 107 Pt B:188-202. [PMID: 25241255 DOI: 10.1016/j.biochi.2014.09.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 09/04/2014] [Indexed: 12/16/2022]
Abstract
Caveolae are specialized plasma membrane subdomains with distinct lipid and protein compositions, which play an essential role in cell physiology through regulation of trafficking and signaling functions. The structure and functions of caveolae have been shown to require the proteins caveolins. Recently, members of the cavin protein family were found to be required, in concert with caveolins, for the formation and function of caveolae. Caveolins have a paradoxical role in the development of cancer formation. They have been involved in both tumor suppression and oncogenesis, depending on tumor type and progress stage. High expression of caveolins and cavins leads to inhibition of cancer-related pathways, such as growth factor signaling pathways. However, certain cancer cells that express caveolins and cavins have been shown to be more aggressive and metastatic because of their increased potential for anchorage-independent growth. Here, we will survey the functional roles of caveolins and of different cavin family members in cancer regulation.
Collapse
Affiliation(s)
- Reshu Gupta
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Département de Chimie, Université du Québec à Montréal, Québec H3C 3P8, Canada.
| | - Chirine Toufaily
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Département de Chimie, Université du Québec à Montréal, Québec H3C 3P8, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Département de Chimie, Université du Québec à Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
24
|
Routray S. Caveolin-1 in oral squamous cell carcinoma microenvironment: an overview. Tumour Biol 2014; 35:9487-95. [PMID: 25123270 DOI: 10.1007/s13277-014-2482-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 08/08/2014] [Indexed: 11/29/2022] Open
Abstract
Caveolin-1 plays an important role in the pathogenesis of oncogenic cell transformation, tumorigenesis, and metastasis. Increased expression of caveolin-1 in an array of tumors has confirmed its value in prognosis. It has been established that oxidative stress is the main cause for loss of stromal caveolin-1 via autophagy in the tumor microenvironment. In this overview, we attempt to abridge the relationship between caveolin-1 and oral squamous cell carcinoma, taking all the established theories into consideration.
Collapse
Affiliation(s)
- Samapika Routray
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, SOA University, Ghatikia, Sector 8, Bhubaneswar, 751003, India,
| |
Collapse
|
25
|
Nassar ZD, Moon H, Duong T, Neo L, Hill MM, Francois M, Parton RG, Parat MO. PTRF/Cavin-1 decreases prostate cancer angiogenesis and lymphangiogenesis. Oncotarget 2014; 4:1844-55. [PMID: 24123650 PMCID: PMC3858569 DOI: 10.18632/oncotarget.1300] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Caveolae are specialized plasma membrane subdomains implicated in cellular functions such as migration, signalling and trafficking. Caveolin-1 and polymerase I and transcript release factor (PTRF)/cavin-1 are essential for caveola formation. Caveolin-1 is overexpressed and secreted in prostate tumors and promotes aggressiveness and angiogenesis. In contrast, a lack of PTRF expression is reported in prostate cancer, and ectopic PTRF expression in prostate cancer cells inhibits tumor growth and metastasis. We experimentally manipulated PTRF expression in three prostate cancer cell lines, namely the caveolin-1 positive cells PC3 and DU145 and the caveolin-1-negative LNCaP cells, to evaluate angiogenesis- and lymphangiogenesis-regulating functions of PTRF. We show that the conditioned medium of PTRF-expressing prostate cancer cells decreases ECs proliferation, migration and differentiation in vitro and ex vivo. This can occur independently from caveolin-1 expression and secretion or caveola formation, since the anti-angiogenic effects of PTRF were detected in caveolin-1-negative LNCaP cells. Additionally, PTRF expression in PC3 cells significantly decreased blood and lymphatic vessel densities in orthotopic tumors in mice. Our results suggest that the absence of PTRF in prostate cancer cells contributes significantly to tumour progression and metastasis by promoting the angiogenesis and lymphangiogenesis potential of the cancer cells, and this could be exploited for therapy.
Collapse
Affiliation(s)
- Zeyad D Nassar
- The University of Queensland, School of Pharmacy, QLD, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma. Virchows Arch 2014; 465:599-605. [DOI: 10.1007/s00428-014-1627-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 06/16/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
|
27
|
Faggi F, Mitola S, Sorci G, Riuzzi F, Donato R, Codenotti S, Poliani PL, Cominelli M, Vescovi R, Rossi S, Calza S, Colombi M, Penna F, Costelli P, Perini I, Sampaolesi M, Monti E, Fanzani A. Phosphocaveolin-1 enforces tumor growth and chemoresistance in rhabdomyosarcoma. PLoS One 2014; 9:e84618. [PMID: 24427291 PMCID: PMC3888403 DOI: 10.1371/journal.pone.0084618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/15/2013] [Indexed: 12/24/2022] Open
Abstract
Caveolin-1 (Cav-1) can ambiguously behave as either tumor suppressor or oncogene depending on its phosphorylation state and the type of cancer. In this study we show that Cav-1 was phosphorylated on tyrosine 14 (pCav-1) by Src-kinase family members in various human cell lines and primary mouse cultures of rhabdomyosarcoma (RMS), the most frequent soft-tissue sarcoma affecting childhood. Cav-1 overexpression in the human embryonal RD or alveolar RH30 cells yielded increased pCav-1 levels and reinforced the phosphorylation state of either ERK or AKT kinase, respectively, in turn enhancing in vitro cell proliferation, migration, invasiveness and chemoresistance. In contrast, reducing the pCav-1 levels by administration of a Src-kinase inhibitor or through targeted Cav-1 silencing counteracted the malignant in vitro phenotype of RMS cells. Consistent with these results, xenotransplantation of Cav-1 overexpressing RD cells into nude mice resulted in substantial tumor growth in comparison to control cells. Taken together, these data point to pCav-1 as an important and therapeutically valuable target for overcoming the progression and multidrug resistance of RMS.
Collapse
Affiliation(s)
- Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefania Rossi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Penna
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Paola Costelli
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Ilaria Perini
- Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
| | - Maurilio Sampaolesi
- Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
- Human Anatomy Section, University of Pavia, Pavia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
- * E-mail:
| |
Collapse
|
28
|
Tan K, Goldstein D, Crowe P, Yang JL. Uncovering a key to the process of metastasis in human cancers: a review of critical regulators of anoikis. J Cancer Res Clin Oncol 2013; 139:1795-805. [PMID: 23912151 DOI: 10.1007/s00432-013-1482-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/19/2013] [Indexed: 12/28/2022]
Abstract
PURPOSE Anoikis ('homelessness' in Greek) is a form of apoptosis following the detachment of cells from the appropriate extracellular matrix (Chiarugi and Giannoni in Biochem Pharmacol 76:1352-1364, 2008). Resistance to anoikis is a critical mediator of metastasis in cancer by enabling cancer cells to survive during invasion and transport in the blood and lymph. Numerous regulators and mechanisms of anoikis in human cancer have been proposed to date. Consequently, the identification of key regulators of anoikis that can be targeted to at least partially restore anoikis sensitivity in cancer cells is important in the development of therapies to treat metastatic cancer. METHODS A literature search focusing on the regulators of anoikis in human cancer was performed on the Medline, Embase and Scopus databases. RESULTS Mcl-1, Cav-1, Bcl-(xL), cFLIP, 14-3-3ζ and Bit1 appear to regulate anoikis in human cancer by participating in the intrinsic apoptotic pathway, extrinsic apoptotic pathway or caspase-independent pathways. Mcl-1, Cav-1, Bcl-(xL), cFLIP and 14-3-3ζ are suppressors of anoikis, and their upregulation confers anoikis resistance to cancer cells. Bit1 is a promoter of anoikis and is downregulated to confer anoikis resistance in metastatic cancer. CONCLUSION Anoikis is a complex process involving the crosstalk between different signalling pathways. The dysregulated expression of key regulators of anoikis that participate in these signalling pathways promotes anoikis resistance in human cancer. These regulators of anoikis might therefore be the targets for developing therapies to overcome anoikis resistance in metastatic cancer.
Collapse
Affiliation(s)
- Kevin Tan
- Adult Cancer Program, Sarcoma and Nano-Oncology Research Group, Faculty of Medicine, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Room 209, Sydney, NSW, 2052, Australia
| | | | | | | |
Collapse
|
29
|
Sáinz-Jaspeado M, Huertas-Martinez J, Lagares-Tena L, Martin Liberal J, Mateo-Lozano S, de Alava E, de Torres C, Mora J, del Muro XG, Tirado OM. EphA2-induced angiogenesis in ewing sarcoma cells works through bFGF production and is dependent on caveolin-1. PLoS One 2013; 8:e71449. [PMID: 23951165 PMCID: PMC3741133 DOI: 10.1371/journal.pone.0071449] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/03/2013] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is the result of the combined activity of the tumor microenvironment and signaling molecules. The angiogenic switch is represented as an imbalance between pro- and anti-angiogenic factors and is a rate-limiting step in the development of tumors. Eph receptor tyrosine kinases and their membrane-anchored ligands, known as ephrins, constitute the largest receptor tyrosine kinase (RTK) subfamily and are considered a major family of pro-angiogenic RTKs. Ewing sarcoma (EWS) is a highly aggressive bone and soft tissue tumor affecting children and young adults. As other solid tumors, EWS are reliant on a functional vascular network for the delivery of nutrients and oxygen and for the removal of waste. Based on the biological roles of EphA2 in promoting angiogenesis, we explored the functional role of this receptor and its relationship with caveolin-1 (CAV1) in EWS angiogenesis. We demonstrated that lack of CAV1 results in a significant reduction in micro vascular density (MVD) on 3 different in vivo models. In vitro, this phenomenon correlated with inactivation of EphA2 receptor, lack of AKT response and downregulation of bFGF. We also demonstrated that secreted bFGF from EWS cells acted as chemoattractant for endothelial cells. Furthermore, interaction between EphA2 and CAV1 was necessary for the right localization and signaling of the receptor to produce bFGF through AKT and promote migration of endothelial cells. Finally, introduction of a dominant-negative form of EphA2 into EWS cells mostly reproduced the effects occurred by CAV1 silencing, strongly suggesting that the axis EphA2-CAV1 participates in the promotion of endothelial cell migration toward the tumors favoring EWS angiogenesis.
Collapse
MESH Headings
- Animals
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Caveolin 1/genetics
- Caveolin 1/metabolism
- Cell Line, Tumor
- Cell Movement/genetics
- Disease Models, Animal
- Endothelial Cells/metabolism
- Female
- Fibroblast Growth Factor 2/biosynthesis
- Fibroblast Growth Factor 2/genetics
- Gene Silencing
- Heterografts
- Humans
- Mice
- Mice, Knockout
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Protein Binding
- Protein Transport
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Signal Transduction
- Transcription, Genetic
- Tumor Burden/genetics
Collapse
Affiliation(s)
- Miguel Sáinz-Jaspeado
- Sarcoma Research Group, Laboratori d’Oncología Molecular, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Huertas-Martinez
- Sarcoma Research Group, Laboratori d’Oncología Molecular, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Lagares-Tena
- Sarcoma Research Group, Laboratori d’Oncología Molecular, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Martin Liberal
- Sarcoma Research Group, Laboratori d’Oncología Molecular, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Silvia Mateo-Lozano
- Nanomedicine Research Program, Molecular Biology and Biochemistry Research Center, CIBBIM-Nanomedicine, Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - Enrique de Alava
- Centro de Investigación del Cáncer-IBMCC (University of Salamanca-CSIC), and University Hospital of Salamanca, Salamanca, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Xavier Garcia del Muro
- Sarcoma Research Group, Laboratori d’Oncología Molecular, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Oscar M. Tirado
- Sarcoma Research Group, Laboratori d’Oncología Molecular, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- * E-mail:
| |
Collapse
|
30
|
Stepanenko AA, Vassetzky YS, Kavsan VM. Antagonistic functional duality of cancer genes. Gene 2013; 529:199-207. [PMID: 23933273 DOI: 10.1016/j.gene.2013.07.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/08/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022]
Abstract
Cancer evolution is a stochastic process both at the genome and gene levels. Most of tumors contain multiple genetic subclones, evolving in either succession or in parallel, either in a linear or branching manner, with heterogeneous genome and gene alterations, extensively rewired signaling networks, and addicted to multiple oncogenes easily switching with each other during cancer progression and medical intervention. Hundreds of discovered cancer genes are classified according to whether they function in a dominant (oncogenes) or recessive (tumor suppressor genes) manner in a cancer cell. However, there are many cancer "gene-chameleons", which behave distinctly in opposite way in the different experimental settings showing antagonistic duality. In contrast to the widely accepted view that mutant NADP(+)-dependent isocitrate dehydrogenases 1/2 (IDH1/2) and associated metabolite 2-hydroxyglutarate (R)-enantiomer are intrinsically "the drivers" of tumourigenesis, mutant IDH1/2 inhibited, promoted or had no effect on cell proliferation, growth and tumorigenicity in diverse experiments. Similar behavior was evidenced for dozens of cancer genes. Gene function is dependent on genetic network, which is defined by the genome context. The overall changes in karyotype can result in alterations of the role and function of the same genes and pathways. The diverse cell lines and tumor samples have been used in experiments for proving gene tumor promoting/suppressive activity. They all display heterogeneous individual karyotypes and disturbed signaling networks. Consequently, the effect and function of gene under investigation can be opposite and versatile in cells with different genomes that may explain antagonistic duality of cancer genes and the cell type- or the cellular genetic/context-dependent response to the same protein. Antagonistic duality of cancer genes might contribute to failure of chemotherapy. Instructive examples of unexpected activity of cancer genes and "paradoxical" effects of different anticancer drugs depending on the cellular genetic context/signaling network are discussed.
Collapse
Affiliation(s)
- A A Stepanenko
- State Key Laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine.
| | | | | |
Collapse
|
31
|
Senetta R, Stella G, Pozzi E, Sturli N, Massi D, Cassoni P. Caveolin-1 as a promoter of tumour spreading: when, how, where and why. J Cell Mol Med 2013; 17:325-36. [PMID: 23521716 PMCID: PMC3823014 DOI: 10.1111/jcmm.12030] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/15/2013] [Indexed: 11/29/2022] Open
Abstract
Caveolae are non-clathrin invaginations of the plasma membrane in most cell types; they are involved in signalling functions and molecule trafficking, thus modulating several biological functions, including cell growth, apoptosis and angiogenesis. The major structural protein in caveolae is caveolin-1, which is known to act as a key regulator in cancer onset and progression through its role as a tumour suppressor. Caveolin-1 can also promote cell proliferation, survival and metastasis as well as chemo- and radioresistance. Here, we discuss recent findings and novel concepts that support a role for caveolin-1 in cancer development and its distant spreading. We also address the potential application of caveolin-1 in tumour therapy and diagnosis.
Collapse
Affiliation(s)
- Rebecca Senetta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Martín Liberal J, Lagares-Tena L, Sáinz-Jaspeado M, Mateo-Lozano S, García del Muro X, Tirado OM. Targeted therapies in sarcomas: challenging the challenge. Sarcoma 2012; 2012:626094. [PMID: 22701332 PMCID: PMC3372278 DOI: 10.1155/2012/626094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/27/2012] [Indexed: 12/16/2022] Open
Abstract
Sarcomas are a heterogeneous group of mesenchymal malignancies that very often lead to death. Nowadays, chemotherapy is the only available treatment for most sarcomas but there are few active drugs and clinical results still remain very poor. Thus, there is an imperious need to find new therapeutic alternatives in order to improve sarcoma patient's outcome. During the last years, there have been described a number of new molecular pathways that have allowed us to know more about cancer biology and tumorigenesis. Sarcomas are one of the tumors in which more advances have been made. Identification of specific chromosomal translocations, some important pathways characterization such as mTOR pathway or the insulin-like growth factor pathway, the stunning development in angiogenesis knowledge, and brand new agents like viruses have lead to the development of new therapeutic options with promising results. This paper makes an exhaustive review of preclinical and clinical evidence of the most recent targeted therapies in sarcomas and provides a future view of treatments that may lead to improve prognosis of patients affected with this disease.
Collapse
Affiliation(s)
- Juan Martín Liberal
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Laura Lagares-Tena
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Miguel Sáinz-Jaspeado
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Silvia Mateo-Lozano
- Nanomedicine Research Program, Molecular Biology and Biochemistry Research Center, CIBBIM-Nanomedicine, Vall d'Hebron Hospital Research Institute, 08035 Barcelona, Spain
| | - Xavier García del Muro
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Oscar M. Tirado
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
33
|
Caveolin-1 silencing arrests the proliferation of metastatic lung cancer cells through the inhibition of STAT3 signaling. Cell Signal 2012; 24:1390-7. [PMID: 22406084 DOI: 10.1016/j.cellsig.2012.02.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/01/2012] [Accepted: 02/22/2012] [Indexed: 01/22/2023]
Abstract
Cav-1 is an essential structural constituent of caveolae implicated in mitogenic signaling, oncogenesis, angiogenesis, neurodegenerative diseases and senescence. Its role as a tumor suppressor gene or as a tumor promoter seems to strictly depend on cell type and tumor stage/grade. The high expression of Cav-1 in some tumors in vivo, amongst which lung adenocarcinoma, is associated with increased tumor aggressiveness, metastatic potential and suppression of apoptosis. In the present study we investigated the role of Cav-1 in metastatic lung cancer proliferation. Cell lines were from metastatic lesions of lung adenocarcinoma (RAL) and of small cell lung carcinoma (SCLC-R1), in which we found Cav-1 expressed at high levels. Results show that siRNA-mediated down-regulation of Cav-1 caused stable arrest of proliferation in both cell lines. A marked reduction of cyclin D1 and of CDK4 expression was evident in the cells transfected with Cav-1 siRNA and consequently of phospho-Rb on ser(795) and ser(780). Furthermore, a significant decrease of the expression of phosphorylated AKT and of its down-stream effectors phosphorylated ERK and STAT3 was evident. Together, these findings indicate that Cav-1 silencing induces an arrest of human metastatic lung proliferation in vitro by a new inhibitory pathway in lung cancer and provide new insights into the molecular mechanisms underlying the pro-survival and tumor-promoting functions of Cav-1.
Collapse
|
34
|
qing-feng P, wen-jing Y, jing Z, chuan-yi X. Caveola is a key vehicle for paraquat uptake into lung. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2012. [DOI: 10.1016/j.jmhi.2012.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP. Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle 2011; 10:2504-20. [PMID: 21778829 DOI: 10.4161/cc.10.15.16585] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Previously, we proposed that cancer cells behave as metabolic parasites, as they use targeted oxidative stress as a "weapon" to extract recycled nutrients from adjacent stromal cells. Oxidative stress in cancer-associated fibroblasts triggers autophagy and mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis, and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the "reverse Warburg effect." To further test the validity of this hypothesis, here we used an in vitro MCF7-fibroblast co-culture system, and quantitatively measured a variety of metabolic parameters by FACS analysis (analogous to laser-capture micro-dissection). Mitochondrial activity, glucose uptake, and ROS production were measured with highly-sensitive fluorescent probes (MitoTracker, NBD-2-deoxy-glucose, and DCF-DA). Interestingly, using this approach, we directly show that cancer cells initially secrete hydrogen peroxide that then triggers oxidative stress in neighboring fibroblasts. Thus, oxidative stress is contagious (spreads like a virus) and is propagated laterally and vectorially from cancer cells to adjacent fibroblasts. Experimentally, we show that oxidative stress in cancer-associated fibroblasts quantitatively reduces mitochondrial activity, and increases glucose uptake, as the fibroblasts become more dependent on aerobic glycolysis. Conversely, co-cultured cancer cells show significant increases in mitochondrial activity, and corresponding reductions in both glucose uptake and GLUT1 expression. Pre-treatment of co-cultures with extracellular catalase (an anti-oxidant enzyme that detoxifies hydrogen peroxide) blocks the onset of oxidative stress, and potently induces the death of cancer cells, likely via starvation. Given that cancer-associated fibroblasts show the largest increases in glucose uptake, we suggest that PET imaging of human tumors, with Fluoro-2-deoxy-D-glucose (F-2-DG), may be specifically detecting the tumor stroma, rather than epithelial cancer cells.
Collapse
Affiliation(s)
- Ubaldo E Martinez-Outschoorn
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|