1
|
Marshall VA, Cornejo Castro EM, Goodman CA, Labo N, Liu I, Fisher NC, Moore KN, Nair A, Immonen T, Keele BF, Polizzotto MN, Uldrick TS, Mu Y, Saswat T, Krug LT, McBride KM, Lurain K, Ramaswami R, Yarchoan R, Whitby D. Sequencing of Kaposi's Sarcoma Herpesvirus (KSHV) genomes from persons of diverse ethnicities and provenances with KSHV-associated diseases demonstrate multiple infections, novel polymorphisms, and low intra-host variance. PLoS Pathog 2024; 20:e1012338. [PMID: 39008527 PMCID: PMC11271956 DOI: 10.1371/journal.ppat.1012338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/25/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Recently published near full-length KSHV genomes from a Cameroon Kaposi sarcoma case-control study showed strong evidence of viral recombination and mixed infections, but no sequence variations associated with disease. Using the same methodology, an additional 102 KSHV genomes from 76 individuals with KSHV-associated diseases have been sequenced. Diagnoses comprise all KSHV-associated diseases (KAD): Kaposi sarcoma (KS), primary effusion lymphoma (PEL), KSHV-associated large cell lymphoma (KSHV-LCL), a type of multicentric Castleman disease (KSHV-MCD), and KSHV inflammatory cytokine syndrome (KICS). Participants originated from 22 different countries, providing the opportunity to obtain new near full-length sequences of a wide diversity of KSHV genomes. These include near full-length sequence of genomes with KSHV K1 subtypes A, B, C, and F as well as subtype E, for which no full sequence was previously available. High levels of recombination were observed. Fourteen individuals (18%) showed evidence of infection with multiple KSHV variants (from two to four unique genomes). Twenty-six comparisons of sequences, obtained from various sampling sites including PBMC, tissue biopsies, oral fluids, and effusions in the same participants, identified near complete genome conservation between different biological compartments. Polymorphisms were identified in coding and non-coding regions, including indels in the K3 and K15 genes and sequence inversions here reported for the first time. One such polymorphism in KSHV ORF46, specific to the KSHV K1 subtype E2, encoded a mutation in the leucine loop extension of the uracil DNA glycosylase that results in alteration of biochemical functions of this protein. This confirms that KSHV sequence variations can have functional consequences warranting further investigation. This study represents the largest and most diverse analysis of KSHV genome sequences to date among individuals with KAD and provides important new information on global KSHV genomics.
Collapse
Affiliation(s)
- Vickie A. Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Elena M. Cornejo Castro
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Charles A. Goodman
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Isabella Liu
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Nicholas C. Fisher
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kyle N. Moore
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ananthakrishnan Nair
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Taina Immonen
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Brandon F. Keele
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mark N. Polizzotto
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Thomas S. Uldrick
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yunxiang Mu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Tanuja Saswat
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Laurie T. Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
2
|
Santiago JC, Adams SV, Towlerton A, Okuku F, Phipps W, Mullins JI. Genomic changes in Kaposi Sarcoma-associated Herpesvirus and their clinical correlates. PLoS Pathog 2022; 18:e1010524. [PMID: 36441790 PMCID: PMC9731496 DOI: 10.1371/journal.ppat.1010524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/08/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Kaposi sarcoma (KS), a common HIV-associated malignancy, presents a range of clinicopathological features. Kaposi sarcoma-associated herpesvirus (KSHV) is its etiologic agent, but the contribution of viral genomic variation to KS development is poorly understood. To identify potentially influential viral polymorphisms, we characterized KSHV genetic variation in 67 tumors from 1-4 distinct sites from 29 adults with advanced KS in Kampala, Uganda. Whole KSHV genomes were sequenced from 20 tumors with the highest viral load, whereas only polymorphic genes were screened by PCR and sequenced from 47 other tumors. Nine individuals harbored ≥1 tumors with a median 6-fold over-coverage of a region centering on K5 and K6 genes. K8.1 gene was inactivated in 8 individuals, while 5 had mutations in the miR-K10 microRNA coding sequence. Recurring inter-host polymorphisms were detected in K4.2 and K11.2. The K5-K6 region rearrangement breakpoints and K8.1 mutations were all unique, indicating that they arise frequently de novo. Rearrangement breakpoints were associated with potential G-quadruplex and Z-DNA forming sequences. Exploratory evaluations of viral mutations with clinical and tumor traits were conducted by logistic regression without multiple test corrections. K5-K6 over-coverage and K8.1 inactivation were tentatively correlated (p<0.001 and p = 0.005, respectively) with nodular rather than macular tumors, and with individuals that had lesions in ≤4 anatomic areas (both p≤0.01). Additionally, a trend was noted for miR-K10 point mutations and lower survival rates (HR = 4.11, p = 0.053). Two instances were found of distinct tumors within an individual sharing the same viral mutation, suggesting metastases or transmission of the aberrant viruses within the host. To summarize, KSHV genomes in tumors frequently have over-representation of the K5-K6 region, as well as K8.1 and miR-K10 mutations, and each might be associated with clinical phenotypes. Studying their possible effects may be useful for understanding KS tumorigenesis and disease progression.
Collapse
Affiliation(s)
- Jan Clement Santiago
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Scott V. Adams
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrea Towlerton
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Fred Okuku
- Uganda Cancer Institute, Kampala, Uganda
| | - Warren Phipps
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
3
|
Marshall VA, Fisher NC, Goodman CA, Castro EMC, Liu I, Khanal S, Holdridge BM, Thorpe AL, Labo N, Stolka KB, Hemingway-Foday JJ, Abassora M, N’Dom P, Smith JS, Sallah N, Palser AL, Kellam P, Keele BF, Whitby D. Systematic analysis of Kaposi's sarcoma (KS)-associated herpesvirus genomes from a KS case-control study in Cameroon: Evidence of dual infections but no association between viral sequence variation and KS risk. Int J Cancer 2022; 151:1127-1141. [PMID: 35608873 PMCID: PMC10043945 DOI: 10.1002/ijc.34136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 11/06/2022]
Abstract
In sub-Saharan Africa, Kaposi's sarcoma-associated herpesvirus (KSHV) is endemic, and Kaposi's sarcoma (KS) is a significant public health problem. Until recently, KSHV genotype analysis was performed using variable gene regions, representing a small fraction of the genome, and thus the contribution of sequence variation to viral transmission or pathogenesis are understudied. We performed near full-length KSHV genome sequence analysis on samples from 43 individuals selected from a large Cameroonian KS case-control study. KSHV genomes were obtained from 21 KS patients and 22 control participants. Phylogenetic analysis of the K1 region indicated the majority of sequences were A5 or B1 subtypes and all three K15 alleles were represented. Unique polymorphisms in the KSHV genome were observed including large gene deletions. We found evidence of multiple distinct KSHV genotypes in three individuals. Additionally, our analyses indicate that recombination is prevalent suggesting that multiple KSHV infections may not be uncommon overall. Most importantly, a detailed analysis of KSHV genomes from KS patients and control participants did not find a correlation between viral sequence variations and disease. Our study is the first to systematically compare near full-length KSHV genome sequences between KS cases and controls in the same endemic region to identify possible sequence variations associated with disease risk.
Collapse
Affiliation(s)
- Vickie A. Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Nicholas C. Fisher
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Charles A. Goodman
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Elena M. Cornejo Castro
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Isabella Liu
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sirish Khanal
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Benjamin M. Holdridge
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Abigail L. Thorpe
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | | | | | | | | | - Neneh Sallah
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Paul Kellam
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
- Department of Medicine, Division of Infectious Diseases, Imperial College London, London, UK
| | - Brandon F. Keele
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
4
|
Epstein-Barr virus miR-BHRF1-3 targets the BZLF1 3'UTR and regulates the lytic cycle. J Virol 2021; 96:e0149521. [PMID: 34878852 DOI: 10.1128/jvi.01495-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Suppression of lytic viral gene expression is a key aspect of the Epstein-Barr virus (EBV) life cycle to facilitate the establishment of latent infection. Molecular mechanisms regulating transitions between EBV lytic replication and latency are not fully understood. Here, we investigated the impact of viral microRNAs on the EBV lytic cycle. Through functional assays, we found that miR-BHRF1-3 attenuates EBV lytic gene expression following reactivation. To understand the miRNA targets contributing to this activity, we performed Ago PAR-CLIP analysis on EBV-positive, reactivated Burkitt's lymphoma cells and identified multiple miR-BHRF1-3 interactions with viral transcripts. Using luciferase reporter assays, we confirmed a miRNA interaction site within the 3'UTR of BZLF1 which encodes the essential immediate early (IE) transactivator Zta. Comparison of >850 published EBV genomes identified sequence polymorphisms within the miR-BHRF1-3 locus that deleteriously affect miRNA expression and function. Molecular interactions between the homologous viral miRNA, miR-rL1-17, and IE transcripts encoded by rhesus lymphocryptovirus were further identified. Our data demonstrate that regulation of IE gene expression by a BHRF1 miRNA is conserved amongst lymphocryptoviruses, and further reveal virally-encoded genetic elements that orchestrate viral antigen expression during the lytic cycle. Importance Epstein-Barr virus infection is predominantly latent in healthy individuals, while periodic cycles of reactivation are thought to facilitate persistent lifelong infection. Lytic infection has been linked to development of certain EBV-associated diseases. Here, we demonstrate that EBV miR-BHRF1-3 can suppress lytic replication by directly inhibiting Zta expression. Moreover, we identify nucleotide variants that impact the function of miR-BHRF1-3, which may contribute to specific EBV pathologies.
Collapse
|
5
|
Intra-host changes in Kaposi sarcoma-associated herpesvirus genomes in Ugandan adults with Kaposi sarcoma. PLoS Pathog 2021; 17:e1008594. [PMID: 33465147 PMCID: PMC7845968 DOI: 10.1371/journal.ppat.1008594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/29/2021] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Intra-host tumor virus variants may influence the pathogenesis and treatment responses of some virally-associated cancers. However, the intra-host variability of Kaposi sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi sarcoma (KS), has to date been explored with sequencing technologies that possibly introduce more errors than that which occurs in the viral population, and these studies have only studied variable regions. Here, full-length KSHV genomes in tumors and/or oral swabs from 9 Ugandan adults with HIV-associated KS were characterized. Furthermore, we used deep, short-read sequencing using duplex unique molecular identifiers (dUMI)–random double-stranded oligonucleotides that barcode individual DNA molecules before library amplification. This allowed suppression of PCR and sequencing errors to ~10−9/base as well as afforded accurate determination of KSHV genome numbers sequenced in each sample. KSHV genomes were assembled de novo, and rearrangements observed were confirmed by PCR and Sanger sequencing. 131-kb KSHV genome sequences, excluding major repeat regions, were successfully obtained from 23 clinical specimens, averaging 2.3x104 reads/base. Strikingly, KSHV genomes were virtually identical within individuals at the point mutational level. The intra-host heterogeneity that was observed was confined to tumor-associated KSHV mutations and genome rearrangements, all impacting protein-coding sequences. Although it is unclear whether these changes were important to tumorigenesis or occurred as a result of genomic instability in tumors, similar changes were observed across individuals. These included inactivation of the K8.1 gene in tumors of 3 individuals and retention of a region around the first major internal repeat (IR1) in all instances of genomic deletions and rearrangements. Notably, the same breakpoint junctions were found in distinct tumors within single individuals, suggesting metastatic spread of rearranged KSHV genomes. These findings define KSHV intra-host heterogeneity in vivo with greater precision than has been possible in the past and suggest the possibility that aberrant KSHV genomes may contribute to aspects of KS tumorigenesis. Furthermore, study of KSHV with use of dUMI provides a proof of concept for utilizing this technique for detailed study of other virus populations in vivo. Kaposi sarcoma (KS) is a leading cancer in sub-Saharan Africa and in persons with HIV co-infection. Kaposi sarcoma-associated herpesvirus (KSHV, also referred to as human herpesvirus-8, or HHV-8) is the etiologic agent of KS, but the factors that contribute to the development of KS, which occurs in only a small subset of infected individuals, remain largely unknown. While strain differences or mutations in other tumor viruses are known to affect the risk and progression of their associated cancers, whether genetic variation in KSHV is important to the natural history of KS is unclear. Most studies of KSHV diversity have only characterized ~4% of its 165-kb genome, and the observed variation in some studies is likely to have been impacted by PCR or cloning artifacts. To precisely define genomic diversity of KSHV in vivo, we evaluated full-length viral genomes (except the internal repeat regions) using a technique that greatly lowers sequencing error rates and thus measures genomic diversity much more accurately than previous studies. In addition, we extended our analyses to look for potential tumor-specific changes in the KSHV genomes by examining viruses in both tumor and non-tumor tissues. To these ends, we performed highly sensitive, single-molecule sequencing of whole KSHV genomes in paired KS tumors and oral swabs from 9 individuals with KS. We found that KSHV genomes were virtually identical within the 9 individuals, with no evidence of quasispecies formation or multi-strain infection. However, KSHV genome aberrations and gene-inactivating mutations were found to be common in KS tumors, often impacting the same genes and genomic regions across individuals. Whether theses mutations influence KS tumorigenesis or result from genomic instability commonly found in tumors warrants further study. Lastly, aberrant KSHV genomes were found to be shared by distinct tumors within individuals, suggesting the capacity of KS tumor cells to metastasize and seed new lesions.
Collapse
|
6
|
Tagawa T, Serquiña A, Kook I, Ziegelbauer J. Viral non-coding RNAs: Stealth strategies in the tug-of-war between humans and herpesviruses. Semin Cell Dev Biol 2020; 111:135-147. [PMID: 32631785 DOI: 10.1016/j.semcdb.2020.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Abstract
Oncogenic DNA viruses establish lifelong infections in humans, and they cause cancers, often in immunocompromised patients, despite anti-viral immune surveillance targeted against viral antigens. High-throughput sequencing techniques allowed the field to identify novel viral non-coding RNAs (ncRNAs). ncRNAs are ideal factors for DNA viruses to exploit; they are non-immunogenic to T cells, thus viral ncRNAs can manipulate host cells without evoking adaptive immune responses. Viral ncRNAs may still trigger the host innate immune response, but many viruses encode decoys/inhibitors to counter-act and evade recognition. In addition, ncRNAs can be secreted to the extracellular space and influence adjacent cells to create a pro-viral microenvironment. In this review, we present recent progress in understanding interactions between oncoviruses and ncRNAs including small and long ncRNAs, microRNAs, and recently identified viral circular RNAs. In addition, potential clinical applications for ncRNA will be discussed. Extracellular ncRNAs are suggested to be diagnostic and prognostic biomarkers and, with the realization of the importance of viral ncRNAs in tumorigenesis, approaches to target critical viral ncRNAs are emerging. Further understanding of viral utilization of ncRNAs will advance anti-viral therapeutics beyond conventional medication and vaccination.
Collapse
Affiliation(s)
- Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Anna Serquiña
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Insun Kook
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States.
| |
Collapse
|