1
|
Vahidi S, Zabeti Touchaei A. Telomerase-based vaccines: a promising frontier in cancer immunotherapy. Cancer Cell Int 2024; 24:421. [PMID: 39707351 DOI: 10.1186/s12935-024-03624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
Telomerase, an enzyme crucial for maintaining telomere length, plays a critical role in cellular immortality and is overexpressed in most cancers. This ubiquitous presence makes telomerase, and specifically its catalytic subunit, human telomerase reverse transcriptase (hTERT), an attractive target for cancer immunotherapy. This review explores the development and application of telomerase-based vaccines, focusing on DNA and peptide-based approaches. While DNA vaccines demonstrate promising immunogenicity, peptide vaccines, such as UV1, UCPVax, and Vx-001, have shown clinical efficacy in certain cancer types. Recent advancements in vaccine design, including multiple peptides and adjuvants, have enhanced immune responses. However, challenges remain in achieving consistent and durable anti-tumor immunity. Accordingly, we discuss the mechanisms of action, preclinical and clinical data, and the potential of these vaccines to elicit robust and durable anti-tumor immune responses. This review highlights the potential of telomerase-based vaccines as a promising strategy for cancer treatment and identifies areas for future research.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | |
Collapse
|
2
|
Von Rueden SK, Fan TM. Cancer-Immunity Cycle and Therapeutic Interventions- Opportunities for Including Pet Dogs With Cancer. Front Oncol 2021; 11:773420. [PMID: 34869014 PMCID: PMC8639699 DOI: 10.3389/fonc.2021.773420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The tumor-immune interplay represents a dynamic series of events executed by cellular and soluble participants that either promote or inhibit successful tumor formation and growth. Throughout a tumor’s development and progression, the host organism’s immune system reacts by generating anti-cancer defenses through various incremental and combinatorial mechanisms, and this reactive orchestration is termed the cancer-immunity cycle. Success or failure of the cancer-immunity cycle dictates the fate of both host and tumor as winner or loser. Insights into how the tumor and host immune system continuously adapt to each other throughout the lifecycle of the tumor is necessary to rationally develop new effective immunotherapies. Additionally, the evolving nature of the cancer-immunity cycle necessitates therapeutic agility, requiring real-time serial assessment of immunobiologic markers that permits tailoring of therapies to the everchanging tumor immune microenvironment. In order to accelerate advances in the field of immuno-oncology, this review summarizes the steps comprising the cancer-immunity cycle, and underscores key breakpoints in the cycle that either favor cancer regression or progression, as well as shaping of the tumor microenvironment and associated immune phenotypes. Furthermore, specific large animal models of spontaneous cancers that are deemed immunogenic will be reviewed and proposed as unique resources for validating investigational immunotherapeutic protocols that are informed by the cancer-immunity cycle. Collectively, this review will provide a progressive look into the dynamic interplay between tumor and host immune responses and raise awareness for how large animal models can be included for developing combinatorial and sequenced immunotherapies to maximizing favorable treatment outcomes.
Collapse
Affiliation(s)
- Samantha K Von Rueden
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
3
|
Abstract
PURPOSE Laboratory and clinical research are essential for advancing radiation research; however, there is a growing awareness that conventional laboratory animal models and early-phase clinical studies in patients have not improved the low success rates and late-stage failures in new cancer therapy efforts. There are considerable costs and inefficiencies in moving preclinical research into effective cancer therapies for patients. Canine translational models of radiation research can fill an important niche between rodent and human studies, ultimately providing valuable, predictive, translational biological and clinical results for human cancer patients. Companion dogs naturally and spontaneously develop cancers over the course of their lifetime. Many canine tumor types share important similarities to human disease, molecularly and biologically, with a comparable clinical course. Dogs receive state-of-the-art medical care, which can include radiotherapy, experimental therapeutics, and novel technologies, offering an important opportunity for radiobiology and radiation oncology research. Notably, the National Cancer Institute has developed the Comparative Oncology Program to promote this area of increased research interest. CONCLUSION In this review, the benefits and limitations of performing translational radiation research in companion dogs will be presented, and current research utilizing the canine model will be highlighted, including studies across research areas focusing on common canine tumor types treated with radiotherapy, comparative normal tissue effects, radiation and immunology research, and alternative radiation therapy approaches involving canine cancer patients.
Collapse
Affiliation(s)
- Mary-Keara Boss
- Flint Animal Cancer Center, Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, Algarni A, Al-Wassiti H, Davis TP, Pouton CW, Kent SJ, Truong NP. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater 2021; 131:16-40. [PMID: 34153512 PMCID: PMC8272596 DOI: 10.1016/j.actbio.2021.06.023] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
Vaccination represents the best line of defense against infectious diseases and is crucial in curtailing pandemic spread of emerging pathogens to which a population has limited immunity. In recent years, mRNA vaccines have been proposed as the new frontier in vaccination, owing to their facile and rapid development while providing a safer alternative to traditional vaccine technologies such as live or attenuated viruses. Recent breakthroughs in mRNA vaccination have been through formulation with lipid nanoparticles (LNPs), which provide both protection and enhanced delivery of mRNA vaccines in vivo. In this review, current paradigms and state-of-the-art in mRNA-LNP vaccine development are explored through first highlighting advantages posed by mRNA vaccines, establishing LNPs as a biocompatible delivery system, and finally exploring the use of mRNA-LNP vaccines in vivo against infectious disease towards translation to the clinic. Furthermore, we highlight the progress of mRNA-LNP vaccine candidates against COVID-19 currently in clinical trials, with the current status and approval timelines, before discussing their future outlook and challenges that need to be overcome towards establishing mRNA-LNPs as next-generation vaccines. STATEMENT OF SIGNIFICANCE: With the recent success of mRNA vaccines developed by Moderna and BioNTech/Pfizer against COVID-19, mRNA technology and lipid nanoparticles (LNP) have never received more attention. This manuscript timely reviews the most advanced mRNA-LNP vaccines that have just been approved for emergency use and are in clinical trials, with a focus on the remarkable development of several COVID-19 vaccines, faster than any other vaccine in history. We aim to give a comprehensive introduction of mRNA and LNP technology to the field of biomaterials science and increase accessibility to readers with a new interest in mRNA-LNP vaccines. We also highlight current limitations and future outlook of the mRNA vaccine technology that need further efforts of biomaterials scientists to address.
Collapse
Affiliation(s)
- Emily H Pilkington
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Estelle J A Suys
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Natalie L Trevaskis
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Danijela Zukancic
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Azizah Algarni
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Hareth Al-Wassiti
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Colin W Pouton
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Nghia P Truong
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
5
|
Polla Ravi S, Shamiya Y, Chakraborty A, Elias C, Paul A. Biomaterials, biological molecules, and polymers in developing vaccines. Trends Pharmacol Sci 2021; 42:813-828. [PMID: 34454774 DOI: 10.1016/j.tips.2021.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Vaccines have been used to train the immune system to recognize pathogens, and prevent and treat diseases, such as cancer, for decades. However, there are continuing challenges in their manufacturing, large-scale production, and storage. Some of them also show suboptimal immunogenicity, requiring additional adjuvants and booster doses. As an alternate vaccination strategy, a new class of biomimetic materials with unique functionalities has emerged in recent years. Here, we explore the current bioengineering techniques that make use of hydrogels, modified polymers, cell membranes, self-assembled proteins, virus-like particles (VLPs), and nucleic acids to deliver and develop biomaterial-based vaccines. We also review design principles and key regulatory issues associated with their development. Finally, we critically assess their limitations, explore approaches to overcome these limitations, and discuss potential future applications for clinical translation.
Collapse
Affiliation(s)
- Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Cynthia Elias
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada; Biologics Manufacturing Centre, The National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Arghya Paul
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada; Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B9, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada.
| |
Collapse
|
6
|
Ren S, Guo L, Wang C, Ru J, Yang Y, Wang Y, Sun C, Cui H, Zhao X, Guo H. Construction of an Effective Delivery System for DNA Vaccines Using Biodegradable Polylactic Acid Based Microspheres. J Biomed Nanotechnol 2021; 17:971-980. [PMID: 34082882 DOI: 10.1166/jbn.2021.3081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanotechnology represents a new impetus for biomedical research applications, especially using nanotechnology to formulate microspheres or nanospheres based delivery system for treatment of infectious diseases in animals. In this work, polylactic acid (PLA) microspheres with an average size of 156 nm were prepared by combining emulsion polymerization coupled with emulsion-solvent evaporation. Coating with polyethylenimine (PEI) polymers increased the surface charges of the resulting PLA/PEI microspheres, thus enabled plasmid DNA to adsorb tightly to the microspheres. As expected, the plasmid DNA was successfully transferred into the pig kidney-15 cells with high transfection efficiency. In addition, the protection rate of PLA/PEI microspheres loaded with DNA vaccine against foot-and-mouth disease in guinea pigs reached 87.5%, which was significantly higher than that of the pure DNA vaccine group. These results indicated that PLA/PEI microspheres were expected to be an effective delivery system for DNA vaccines.
Collapse
Affiliation(s)
- Shuaikai Ren
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Liang Guo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Jiaxi Ru
- Lanzhou Veterinary Research Institute, State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China
| | - Yunqi Yang
- Lanzhou Veterinary Research Institute, State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Huichen Guo
- Lanzhou Veterinary Research Institute, State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China
| |
Collapse
|
7
|
Reciprocal Inhibition of Immunogenic Performance in Mice of Two Potent DNA Immunogens Targeting HCV-Related Liver Cancer. Microorganisms 2021; 9:microorganisms9051073. [PMID: 34067686 PMCID: PMC8156932 DOI: 10.3390/microorganisms9051073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic HCV infection and associated liver cancer impose a heavy burden on the healthcare system. Direct acting antivirals eliminate HCV, unless it is drug resistant, and partially reverse liver disease, but they cannot cure HCV-related cancer. A possible remedy could be a multi-component immunotherapeutic vaccine targeting both HCV-infected and malignant cells, but also those not infected with HCV. To meet this need we developed a two-component DNA vaccine based on the highly conserved core protein of HCV to target HCV-infected cells, and a renowned tumor-associated antigen telomerase reverse transcriptase (TERT) based on the rat TERT, to target malignant cells. Their synthetic genes were expression-optimized, and HCV core was truncated after aa 152 (Core152opt) to delete the domain interfering with immunogenicity. Core152opt and TERT DNA were highly immunogenic in BALB/c mice, inducing IFN-γ/IL-2/TNF-α response of CD4+ and CD8+ T cells. Additionally, DNA-immunization with TERT enhanced cellular immune response against luciferase encoded by a co-delivered plasmid (Luc DNA). However, DNA-immunization with Core152opt and TERT mix resulted in abrogation of immune response against both components. A loss of bioluminescence signal after co-delivery of TERT and Luc DNA into mice indicated that TERT affects the in vivo expression of luciferase directed by the immediate early cytomegalovirus and interferon-β promoters. Panel of mutant TERT variants was created and tested for their expression effects. TERT with deleted N-terminal nucleoli localization signal and mutations abrogating telomerase activity still suppressed the IFN-β driven Luc expression, while the inactivated reverse transcriptase domain of TERT and its analogue, enzymatically active HIV-1 reverse transcriptase, exerted only weak suppressive effects, implying that suppression relied on the presence of the full-length/nearly full-length TERT, but not its enzymatic activity. The effect(s) could be due to interference of the ectopically expressed xenogeneic rat TERT with biogenesis of mRNA, ribosomes and protein translation in murine cells, affecting the expression of immunogens. HCV core can aggravate this effect, leading to early apoptosis of co-expressing cells, preventing the induction of immune response.
Collapse
|
8
|
Mestrinho LA, Santos RR. Translational oncotargets for immunotherapy: From pet dogs to humans. Adv Drug Deliv Rev 2021; 172:296-313. [PMID: 33705879 DOI: 10.1016/j.addr.2021.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Preclinical studies in rodent models have been a pivotal role in human clinical research, but many of them fail in the translational process. Spontaneous tumors in pet dogs have the potential to bridge the gap between preclinical models and human clinical trials. Their natural occurrence in an immunocompetent system overcome the limitations of preclinical rodent models. Due to its reasonable cellular, molecular, and genetic homology to humans, the pet dog represents a valuable model to accelerate the translation of preclinical studies to clinical trials in humans, actually with benefits for both species. Moreover, their unique genetic features of breeding and breed-related mutations have contributed to assess and optimize therapeutics in individuals with different genetic backgrounds. This review aims to outline four main immunotherapy approaches - cancer vaccines, adaptive T-cell transfer, antibodies, and cytokines -, under research in veterinary medicine and how they can serve the clinical application crosstalk with humans.
Collapse
|
9
|
Abstract
Delivery of genetic material to tissues in vivo is an important technique used in research settings and is the foundation upon which clinical gene therapy is built. The lung is a prime target for gene delivery due to a host of genetic, acquired, and infectious diseases that manifest themselves there, resulting in many pathologies. However, the in vivo delivery of genetic material to the lung remains a practical problem clinically and is considered the major obstacle needed to be overcome for gene therapy. Currently there are four main strategies for in vivo gene delivery to the lung: viral vectors, liposomes, nanoparticles, and electroporation. Viral delivery uses several different genetically modified viruses that enter the cell and express desired genes that have been inserted to the viral genome. Liposomes use combinations of charged and neutral lipids that can encapsulate genetic cargo and enter cells through endogenous mechanisms, thereby delivering their cargoes. Nanoparticles are defined by their size (typically less than 100 nm) and are made up of many different classes of building blocks, including biological and synthetic polymers, cell penetrant and other peptides, and dendrimers, that also enter cells through endogenous mechanisms. Electroporation uses mild to moderate electrical pulses to create pores in the cell membrane through which delivered genetic material can enter a cell. An emerging fifth category, exosomes and extracellular vesicles, may have advantages of both viral and non-viral approaches. These extracellular vesicles bud from cellular membranes containing receptors and ligands that may aid cell targeting and which can be loaded with genetic material for efficient transfer. Each of these vectors can be used for different gene delivery applications based on mechanisms of action, side-effects, and other factors, and their use in the lung and possible clinical considerations is the primary focus of this review.
Collapse
Affiliation(s)
- Uday K Baliga
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - David A Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
10
|
Rai N, Shihan M, Seeger W, Schermuly RT, Novoyatleva T. Genetic Delivery and Gene Therapy in Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms22031179. [PMID: 33503992 PMCID: PMC7865388 DOI: 10.3390/ijms22031179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive complex fatal disease of multiple etiologies. Hyperproliferation and resistance to apoptosis of vascular cells of intimal, medial, and adventitial layers of pulmonary vessels trigger excessive pulmonary vascular remodeling and vasoconstriction in the course of pulmonary arterial hypertension (PAH), a subgroup of PH. Multiple gene mutation/s or dysregulated gene expression contribute to the pathogenesis of PAH by endorsing the proliferation and promoting the resistance to apoptosis of pulmonary vascular cells. Given the vital role of these cells in PAH progression, the development of safe and efficient-gene therapeutic approaches that lead to restoration or down-regulation of gene expression, generally involved in the etiology of the disease is the need of the hour. Currently, none of the FDA-approved drugs provides a cure against PH, hence innovative tools may offer a novel treatment paradigm for this progressive and lethal disorder by silencing pathological genes, expressing therapeutic proteins, or through gene-editing applications. Here, we review the effectiveness and limitations of the presently available gene therapy approaches for PH. We provide a brief survey of commonly existing and currently applicable gene transfer methods for pulmonary vascular cells in vitro and describe some more recent developments for gene delivery existing in the field of PH in vivo.
Collapse
Affiliation(s)
- Nabham Rai
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Mazen Shihan
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ralph T. Schermuly
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Tatyana Novoyatleva
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Correspondence:
| |
Collapse
|
11
|
Altamura G, Degli Uberti B, Galiero G, De Luca G, Power K, Licenziato L, Maiolino P, Borzacchiello G. The Small Molecule BIBR1532 Exerts Potential Anti-cancer Activities in Preclinical Models of Feline Oral Squamous Cell Carcinoma Through Inhibition of Telomerase Activity and Down-Regulation of TERT. Front Vet Sci 2021; 7:620776. [PMID: 33553285 PMCID: PMC7855307 DOI: 10.3389/fvets.2020.620776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/07/2020] [Indexed: 11/26/2022] Open
Abstract
Expression of telomerase reverse transcriptase (TERT) and telomerase activity (TA) is a main feature of cancer, contributing to cell immortalization by causing telomeres dysfunction. BIBR1532 is a potent telomerase inhibitor that showed potential anti-tumor activities in several types of cancer, by triggering replicative senescence and apoptosis. In a previous work, we detected, for the first time, TERT expression and TA in preclinical models of feline oral squamous cell carcinoma (FOSCC); therefore, we aimed at extending our investigation by testing the effects of treatment with BIBR1532, in order to explore the role of telomerase in this tumor and foreshadow the possibility of it being considered as a future therapeutic target. In the present study, treatment of FOSCC cell lines SCCF1, SCCF2, and SCCF3 with BIBR1532 resulted in successful inhibition of TA, with subsequent cell growth stoppage and decrease in cell viability. Molecular data showed that up-regulation of cell cycle inhibitor p21, unbalancing of Bax/Bcl-2 ratio, and down-regulation of survival gene Survivin were mostly involved in the observed cellular events. Moreover, BIBR1532 diminished the expression of TERT and its transcriptional activator cMyc, resulting in the down-regulation of epidermal growth factor receptor (EGFR), phospho-ERK/ERK ratio, and matrix metalloproteinases (MMPs)-1/-2 and−9, likely as a consequence of an impairment of TERT extra-telomeric functions. Taken together, our data suggest that BIBR1532 exerts multiple anti-cancer activities in FOSCC by inhibiting telomerase pathway and interfering with signaling routes involved in cell proliferation, cell survival, and invasion, paving the way for future translational studies aimed at evaluating its possible employment in the treatment of this severe tumor of cats.
Collapse
Affiliation(s)
- Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | | | - Giorgio Galiero
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Giovanna De Luca
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Karen Power
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luca Licenziato
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Silva EVDS, Nascente EDP, Miguel MP, Alves CEF, Moura VMBDD. Elucidating tumor immunosurveillance and immunoediting: a comprehensive review. CIÊNCIA ANIMAL BRASILEIRA 2021; 22. [DOI: 10.1590/1809-6891v22e-68544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract The action of the immune system against neoplastic diseases has become one of the main sources of research. The biological pathways of this system are known to contribute in limiting the progression and elimination of the tumor, and are delineated by concepts and mechanisms of immunosurveillance and immunoediting. Immunosurveillance is considered the process by which the immune system recognizes and inhibits the neoplastic process. The concept of immunoediting arises in the sense that immune system is able to shape the antigenic profile of the tumor due to selective pressure, based on the stages of tumor elimination, balance and evasion. The immune response occurs against tumor antigens and changes in the tumor microenvironment, involving different components of the innate immune system, such as T cells, natural Killer cells, B lymphocytes and macrophages. In this sense, knowing these concepts and understanding their respective mechanisms becomes essential in the investigation of new strategies for cancer prevention and cure. Thus, this review presents historical aspects and definitions of immunosurveillance and tumor immunoediting, with emphasis on its importance and applicability, such as on the different methods used in immunotherapy.
Collapse
|
13
|
Jansons J, Bayurova E, Skrastina D, Kurlanda A, Fridrihsone I, Kostyushev D, Kostyusheva A, Artyuhov A, Dashinimaev E, Avdoshina D, Kondrashova A, Valuev-Elliston V, Latyshev O, Eliseeva O, Petkov S, Abakumov M, Hippe L, Kholodnyuk I, Starodubova E, Gorodnicheva T, Ivanov A, Gordeychuk I, Isaguliants M. Expression of the Reverse Transcriptase Domain of Telomerase Reverse Transcriptase Induces Lytic Cellular Response in DNA-Immunized Mice and Limits Tumorigenic and Metastatic Potential of Murine Adenocarcinoma 4T1 Cells. Vaccines (Basel) 2020; 8:318. [PMID: 32570805 PMCID: PMC7350266 DOI: 10.3390/vaccines8020318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) is a classic tumor-associated antigen overexpressed in majority of tumors. Several TERT-based cancer vaccines are currently in clinical trials, but immune correlates of their antitumor activity remain largely unknown. Here, we characterized fine specificity and lytic potential of immune response against rat TERT in mice. BALB/c mice were primed with plasmids encoding expression-optimized hemagglutinin-tagged or nontagged TERT or empty vector and boosted with same DNA mixed with plasmid encoding firefly luciferase (Luc DNA). Injections were followed by electroporation. Photon emission from booster sites was assessed by in vivo bioluminescent imaging. Two weeks post boost, mice were sacrificed and assessed for IFN-γ, interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α) production by T-cells upon their stimulation with TERT peptides and for anti-TERT antibodies. All TERT DNA-immunized mice developed cellular and antibody response against epitopes at the N-terminus and reverse transcriptase domain (rtTERT) of TERT. Photon emission from mice boosted with TERT/TERT-HA+Luc DNA was 100 times lower than from vector+Luc DNA-boosted controls. Bioluminescence loss correlated with percent of IFN-γ/IL-2/TNF-α producing CD8+ and CD4+ T-cells specific to rtTERT, indicating immune clearance of TERT/Luc-coexpressing cells. We made murine adenocarcinoma 4T1luc2 cells to express rtTERT by lentiviral transduction. Expression of rtTERT significantly reduced the capacity of 4T1luc2 to form tumors and metastasize in mice, while not affecting in vitro growth. Mice which rejected the tumors developed T-cell response against rtTERT and low/no response to the autoepitope of TERT. This advances rtTERT as key component of TERT-based therapeutic vaccines against cancer.
Collapse
Affiliation(s)
- Juris Jansons
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia;
| | - Ekaterina Bayurova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia;
| | - Alisa Kurlanda
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Ilze Fridrihsone
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (D.K.); (A.K.)
| | - Anastasia Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (D.K.); (A.K.)
| | - Alexander Artyuhov
- Center for Precision Genome Editing and Genetic Technologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia; (A.A.); (E.D.)
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia; (A.A.); (E.D.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 127994, Russia
| | - Darya Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Vladimir Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | - Oleg Latyshev
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
| | - Olesja Eliseeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Maxim Abakumov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISIS, Moscow 127994, Russia
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia
| | - Laura Hippe
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Irina Kholodnyuk
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | | | - Alexander Ivanov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | - Ilya Gordeychuk
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Maria Isaguliants
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| |
Collapse
|
14
|
Dow S. A Role for Dogs in Advancing Cancer Immunotherapy Research. Front Immunol 2020; 10:2935. [PMID: 32010120 PMCID: PMC6979257 DOI: 10.3389/fimmu.2019.02935] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/29/2019] [Indexed: 12/27/2022] Open
Abstract
While rodent cancer models are essential for early proof-of-concept and mechanistic studies for immune therapies, these models have limitations with regards to predicting the ultimate effectiveness of new immunotherapies in humans. As a unique spontaneous, large animal model of cancer, the value of conducting studies in pet dogs with cancer has been increasingly recognized by the research community. This review will therefore summarize key aspects of the dog cancer immunotherapy model and the role that these studies may play in the overall immunotherapy drug research effort. We will focus on cancer types and settings in which the dog model is most likely to impact clinical immuno-oncology research and drug development. Immunological reagent availability is discussed, along with some unique opportunities and challenges associated with the dog immunotherapy model. Overall it is hoped that this review will increase awareness of the dog cancer immunotherapy model and stimulate additional collaborative studies to benefit both man and man's best friend.
Collapse
Affiliation(s)
- Steven Dow
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|