1
|
de Zawadzki A, Leeming DJ, Sanyal AJ, Anstee QM, Schattenberg JM, Friedman SL, Schuppan D, Karsdal MA. Hot and cold fibrosis: The role of serum biomarkers to assess immune mechanisms and ECM-cell interactions in human fibrosis. J Hepatol 2025:S0168-8278(25)00148-5. [PMID: 40056933 DOI: 10.1016/j.jhep.2025.02.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 05/24/2025]
Abstract
Fibrosis is a pathological condition characterised by excessive accumulation of extracellular matrix (ECM) components, particularly collagens, leading to tissue scarring and organ dysfunction. In fibrosis, an imbalance between collagen synthesis (fibrogenesis) and degradation (fibrolysis) results in the deposition of fibrillar collagens disrupting the structural integrity of the ECM and, consequently, tissue architecture. Fibrosis is associated with a wide range of chronic diseases, including cirrhosis, kidney fibrosis, pulmonary fibrosis, and autoimmune diseases. Recently, the concept of "hot" and "cold" fibrosis has emerged, referring to the immune status within fibrotic tissues and the nature of fibrogenic signalling. Hot fibrosis is characterised by active immune cell infiltration and inflammation, while cold fibrosis is associated with auto- and paracrine myofibroblast activation, immune cell exclusion and quiescence. In this article, we explore the relationship between hot and cold fibrosis, the role of various types of collagens and their biologically active fragments in modulating the immune system, and how serological ECM biomarkers can help improve our understanding of the disease-relevant interactions between immune and mesenchymal cells in fibrotic tissues. Additionally, we draw lessons from immuno-oncology research in solid tumours to shed light on potential strategies for fibrosis treatment and highlight the advantage of having a "hot fibrotic environment" to treat fibrosis by enhancing collagen degradation through modulation of the immune system.
Collapse
Affiliation(s)
| | - Diana J Leeming
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Newcastle NIHR Biomedical Research Center, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Jörn M Schattenberg
- Department of Internal Medicine II, Saarland University Medical Centre, Homburg, Germany
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Harvard Medical School, MA, USA
| | | |
Collapse
|
2
|
Jia J, Niu L, Feng P, Liu S, Han H, Zhang B, Wang Y, Wang M. Identification of Novel Biomarkers for Ischemic Stroke Through Integrated Bioinformatics Analysis and Machine Learning. J Mol Neurosci 2025; 75:13. [PMID: 39862324 DOI: 10.1007/s12031-025-02309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Ischemic stroke leads to permanent damage to the affected brain tissue, with strict time constraints for effective treatment. Predictive biomarkers demonstrate great potential in the clinical diagnosis of ischemic stroke, significantly enhancing the accuracy of early identification, thereby enabling clinicians to intervene promptly and reduce patient disability and mortality rates. Furthermore, the application of predictive biomarkers facilitates the development of personalized treatment plans tailored to the specific conditions of individual patients, optimizing treatment outcomes and improving prognoses. Bioinformatics technologies based on high-throughput data provide a crucial foundation for comprehensively understanding the biological characteristics of ischemic stroke and discovering effective predictive targets. In this study, we evaluated gene expression data from ischemic stroke patients retrieved from the Gene Expression Omnibus (GEO) database, conducting differential expression analysis and functional analysis. Through weighted gene co-expression network analysis (WGCNA), we characterized gene modules associated with ischemic stroke. To screen candidate core genes, three machine learning algorithms were applied, including Least Absolute Shrinkage and Selection Operator (LASSO), random forest (RF), and support vector machine-recursive feature elimination (SVM-RFE), ultimately identifying five candidate core genes: MBOAT2, CKAP4, FAF1, CLEC4D, and VIM. Subsequent validation was performed using an external dataset. Additionally, the immune infiltration landscape of ischemic stroke was mapped using the CIBERSORT method, investigating the relationship between candidate core genes and immune cells in the pathogenesis of ischemic stroke, as well as the key pathways associated with the core genes. Finally, the key gene VIM was further identified and preliminarily validated through four machine learning algorithms, including generalized linear model (GLM), Extreme Gradient Boosting (XGBoost), RF, and SVM-RFE. This study contributes to advancing our understanding of biomarkers for ischemic stroke and provides a reference for the prediction and diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Juan Jia
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
- Department of Anesthesiology, Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Liang Niu
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Peng Feng
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
| | - Shangyu Liu
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
| | - Hongxi Han
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
| | - Bo Zhang
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
| | - Yingbin Wang
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
- Department of Anesthesiology, Second Hospital of Lanzhou University, Lanzhou, 730030, China.
| | - Manxia Wang
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
- Department of Neurology, Second Hospital of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Lee HJ, Lee HY. Characterization of lung function impairment and pathological changes induced by chronic lead and cadmium inhalation: Insights from a mouse model study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116776. [PMID: 39059344 DOI: 10.1016/j.ecoenv.2024.116776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Exposure to environmental heavy metals such as lead (Pb) and cadmium (Cd) is a global concern due to their widespread presence. However, the specific pulmonary effects of inhaled exposure, especially related to long-term effects, remain poorly understood. In this study, we developed a novel mouse model of Pb and Cd inhalation to mimic real-world conditions and investigate pulmonary effects. Mice were exposed to Pb and Cd inhalation for 6 months using a whole-body exposure system, resulting in decreased lung compliance and progression from emphysematous changes to fibrosis. In addition, the blood Pb/Cd levels of mice exposed to Pb/Cd for 6 months are like those of humans occupationally exposed to heavy metals. Histology revealed inflammation and collagen deposition. Transcriptomic analysis highlighted immune responses and macrophage activity in developing fibrosis. These results confirm an association between Pb/Cd exposure and emphysema and fibrosis, reflecting clinical findings. The study highlights the importance of long-term exposure assessment and time-course analysis for understanding Pb/Cd-induced lung disease. The relevance of the mouse model in replicating human exposure scenarios underscores its value in studying fibrosis and emphysema simultaneously. These findings provide a basis for targeted therapeutic interventions against heavy metal-induced lung injury.
Collapse
Affiliation(s)
- Ho Jin Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Bager CL, Blair JPM, Tang MHE, Mortensen JH, Bay-Jensen AC, Frederiksen P, Leeming D, Christiansen C, Karsdal MA. Citrullinated and MMP-degraded vimentin is associated with chronic pulmonary diseases and genetic variants in PADI3/PADI4 and CFH in postmenopausal women. Sci Rep 2023; 13:23039. [PMID: 38155185 PMCID: PMC10754934 DOI: 10.1038/s41598-023-50313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Citrullinated vimentin has been linked to several chronic and autoimmune diseases, but how citrullinated vimentin is associated with disease prevalence and genetic variants in a clinical setting remains unknown. The aim of this study was to obtain a better understanding of the genetic variants and pathologies associated with citrullinated and MMP-degraded vimentin. Patient Registry data, serum samples and genotypes were collected for a total of 4369 Danish post-menopausal women enrolled in the Prospective Epidemiologic and Risk Factor study (PERF). Circulating citrullinated and MMP-degraded vimentin (VICM) was measured. Genome-wide association studies (GWAS) and phenome wide association studies (PheWAS) with levels of VICM were performed. High levels of VICM were significantly associated with the prevalence of chronic pulmonary diseases and death from respiratory and cardiovascular diseases (CVD). GWAS identified 33 single nucleotide polymorphisms (SNPs) with a significant association with VICM. These variants were in the peptidylarginine deiminase 3/4 (PADI3/PADI4) and Complement Factor H (CFH)/KCNT2 gene loci on chromosome 1. Serum levels of VICM, a marker of citrullinated and MMP-degraded vimentin, were associated with chronic pulmonary diseases and genetic variance in PADI3/PADI4 and CFH/ KCNT2. This points to the potential for VICM to be used as an activity marker of both citrullination and inflammation, identifying responders to targeted treatment and patients likely to experience disease progression.
Collapse
Affiliation(s)
- Cecilie Liv Bager
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark.
| | - Joseph P M Blair
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Man-Hung Eric Tang
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Joachim Høg Mortensen
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| | | | - Peder Frederiksen
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Diana Leeming
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Claus Christiansen
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Morten Asser Karsdal
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| |
Collapse
|
5
|
Parvanian S, Coelho-Rato LS, Patteson AE, Eriksson JE. Vimentin takes a hike - Emerging roles of extracellular vimentin in cancer and wound healing. Curr Opin Cell Biol 2023; 85:102246. [PMID: 37783033 PMCID: PMC11214764 DOI: 10.1016/j.ceb.2023.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023]
Abstract
Vimentin is a cytoskeletal protein important for many cellular processes, including proliferation, migration, invasion, stress resistance, signaling, and many more. The vimentin-deficient mouse has revealed many of these functions as it has numerous severe phenotypes, many of which are found only following a suitable challenge or stress. While these functions are usually related to vimentin as a major intracellular protein, vimentin is also emerging as an extracellular protein, exposed at the cell surface in an oligomeric form or secreted to the extracellular environment in soluble and vesicle-bound forms. Thus, this review explores the roles of the extracellular pool of vimentin (eVIM), identified in both normal and pathological states. It focuses specifically on the recent advances regarding the role of eVIM in wound healing and cancer. Finally, it discusses new technologies and future perspectives for the clinical application of eVIM.
Collapse
Affiliation(s)
- Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Euro-Bioimaging ERIC, 20520 Turku, Finland.
| |
Collapse
|
6
|
Pehrsson M, de Rooij WE, Bay-Jensen AC, Karsdal MA, Mortensen JH, Bredenoord AJ. Extracellular matrix remodeling proteins as biomarkers for clinical assessment and treatment outcomes in eosinophilic esophagitis. BMC Gastroenterol 2023; 23:357. [PMID: 37845632 PMCID: PMC10577915 DOI: 10.1186/s12876-023-02977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is a chronic progressive inflammatory disease of the esophagus, characterized by extracellular matrix remodeling and fibrotic stricture formation. Disease monitoring requires multiple re-endoscopies with esophageal biopsies. Hence non-invasive methods for determining tissue fibrosis and treatment efficacy are warranted. AIMS To investigate the ability of extracellular matrix proteins in serum as potential biomarkers of tissue remodeling and clinical, endoscopic, and histological disease outcomes in adult EoE patients. METHODS Protein-fingerprint assays were used to measure neo-epitope specific fragments of collagen remodeling, human-neutrophil elastase degraded calprotectin, and citrullinated or non-citrullinated vimentin in the serum of an adult EoE-cohort. Biomarker analysis, symptoms, endoscopic features and histological disease activity (eosinophils(eos) per high-power-field(hpf)) were evaluated at baseline and after six weeks of dietary intervention. RESULTS Patients with a baseline (Endoscopic Reference score) EREFS fibrosis subscore ≥ 2 presented with increased fibrolysis of cross-linked type III collagen (CTX-III) (p < 0.01), whereas low CTX-III levels were observed in patients achieving histological remission (< 15 eos/hpf) (vs. no histological remission (p < 0.05). Progression of endoscopic fibrosis after intervention was associated with increased levels of type-III (PRO-C3) and -VI collagen (PRO-C6) formation (all; p < 0.05). A baseline EREFS inflammatory subscore ≥ 2 correlated with higher neutrophilic activity (Cpa9-HNE) at week 6 (p < 0.05). Moreover, increased degradation of type-III (C3M) and -IV (C4M/PRO-C4) collagens were associated with remission of food impaction after intervention (all; p < 0.05). CONCLUSION Serum extracellular matrix remodeling proteins demonstrated potential as surrogate biomarkers for assessing histological disease remission, endoscopic fibrosis, and remission of symptoms of food impaction after diet intervention in adult EoE patients.
Collapse
Affiliation(s)
- Martin Pehrsson
- Biomarkers and Research, Nordic Bioscience A/S, Herlev, Denmark
| | - Willemijn E de Rooij
- Department of Gastroenterology & Hepatology, Amsterdam University Medical Center, Amsterdam, Netherlands.
| | | | | | | | - Albert Jan Bredenoord
- Department of Gastroenterology & Hepatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
7
|
Thorlacius‐Ussing J, Kristensen SR, Karsdal MA, Willumsen N, Pedersen S. Preliminary investigation of elevated collagen and blood-clotting markers as potential noninvasive biomarkers for small cell lung cancer. Thorac Cancer 2023; 14:2830-2838. [PMID: 37596821 PMCID: PMC10542464 DOI: 10.1111/1759-7714.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is highly aggressive with limited therapeutic options and a poor prognosis. Moreover, noninvasive biomarker tools for detecting disease and monitoring treatment response are lacking. To address this, we evaluated serum biomarkers of extracellular matrix proteins not previously explored in SCLC. METHODS We measured biomarkers in the serum of 16 patients with SCLC before and after chemotherapy as well as in the serum of 11 healthy individuals. RESULTS Our findings demonstrated that SCLC serum had higher levels of collagen type I degradation, collagen type III formation, and collagen type XI formation than healthy controls. In addition, we observed higher levels of type XIX and XXII collagens, fibrinogen, and von Willebrand factor A formation in SCLC serum. The formation of type I collagen did not exhibit any discernible variation. However, we observed a decrease in the degradation of type I collagen following chemotherapy. CONCLUSION Overall, our findings revealed elevated levels of collagen and blood-clotting markers in the serum of SCLC patients, indicating the potential of ECM proteins as noninvasive biomarkers for SCLC.
Collapse
Affiliation(s)
| | - Søren Risom Kristensen
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
- Department of Clinical BiochemistryAalborg University HospitalAalborgDenmark
| | | | | | - Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, QU HealthQatar UniversityDohaQatar
| |
Collapse
|
8
|
Hasselbalch HC, Junker P, Skov V, Kjær L, Knudsen TA, Larsen MK, Holmström MO, Andersen MH, Jensen C, Karsdal MA, Willumsen N. Revisiting Circulating Extracellular Matrix Fragments as Disease Markers in Myelofibrosis and Related Neoplasms. Cancers (Basel) 2023; 15:4323. [PMID: 37686599 PMCID: PMC10486581 DOI: 10.3390/cancers15174323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPNs) arise due to acquired somatic driver mutations in stem cells and develop over 10-30 years from the earliest cancer stages (essential thrombocythemia, polycythemia vera) towards the advanced myelofibrosis stage with bone marrow failure. The JAK2V617F mutation is the most prevalent driver mutation. Chronic inflammation is considered to be a major pathogenetic player, both as a trigger of MPN development and as a driver of disease progression. Chronic inflammation in MPNs is characterized by persistent connective tissue remodeling, which leads to organ dysfunction and ultimately, organ failure, due to excessive accumulation of extracellular matrix (ECM). Considering that MPNs are acquired clonal stem cell diseases developing in an inflammatory microenvironment in which the hematopoietic cell populations are progressively replaced by stromal proliferation-"a wound that never heals"-we herein aim to provide a comprehensive review of previous promising research in the field of circulating ECM fragments in the diagnosis, treatment and monitoring of MPNs. We address the rationales and highlight new perspectives for the use of circulating ECM protein fragments as biologically plausible, noninvasive disease markers in the management of MPNs.
Collapse
Affiliation(s)
- Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Peter Junker
- Department of Rheumatology, Odense University Hospital, 5000 Odense, Denmark;
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Trine A. Knudsen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Morten Kranker Larsen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Herlev Hospital, 2730 Herlev, Denmark; (M.O.H.); (M.H.A.)
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Herlev Hospital, 2730 Herlev, Denmark; (M.O.H.); (M.H.A.)
| | - Christina Jensen
- Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (M.A.K.); (N.W.)
| | - Morten A. Karsdal
- Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (M.A.K.); (N.W.)
| | | |
Collapse
|
9
|
Drobinski PJ, Nissen NI, Sinkeviciute D, Willumsen N, Karsdal MA, Bay-Jensen AC. In Contrast to Anti-CCP, MMP-Degraded and Citrullinated Vimentin (VICM) Is Both a Diagnostic and a Treatment Response Biomarker. Int J Mol Sci 2022; 24:ijms24010321. [PMID: 36613765 PMCID: PMC9820189 DOI: 10.3390/ijms24010321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Protein citrullination and degradation by matrix metalloproteinases (MMP) plays a central role in the pathology of rheumatoid arthritis (RA). Autoantibodies are known to target citrullinated vimentin. The aim of this study was to investigate the relationship between the blood levels of MMP-degraded and citrullinated vimentin (VICM), as compared with the levels of MMP-degraded and non-citrullinated vimentin (VIM), and the standard anti-CCP biomarker in RA patients undergoing treatment. Thus, VIM, VICM and anti-CCP were quantified by ELISA in serum samples from baseline and week 8 of patients (n = 257) with RA, treated with either tocilizumab (8 mg/kg), methotrexate (7.5−15 mg/kg) or a placebo and compared with a reference cohort (n = 64). The three biomarkers were elevated in RA serum compared with the reference cohort: medians were 1.7 vs. 0.8 ng/mL (p < 0.05) for VIM; 7.5 vs. 0.7 ng/mL (p < 0.0001) for VICM; 57 vs. 4 RU/mL (p < 0.001) for anti-CCP. VICM was decreased in response to tocilizumab (2.9-fold, p < 0.0001) and to methotrexate (1.5-fold, p < 0.05) compared with the placebo, while anti-CCP was not. Serum VIM was also modulated by both drugs, although to a lesser degree. A high baseline level of VICM was predictive of a low disease activity response at week 8. In conclusion, VICM can differentiate between RA and healthy donors in a similar manner to anti-CCP; furthermore, VICM is also a pharmacodynamic marker.
Collapse
Affiliation(s)
- Patryk J. Drobinski
- ImmunoScience, Nordic Bioscience, Herlev Hovedgade 207, 2730 Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Neel I. Nissen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Oncology, Nordic Bioscience, Herlev Hovedgade 207, 2730 Herlev, Denmark
| | - Dovile Sinkeviciute
- ImmunoScience, Nordic Bioscience, Herlev Hovedgade 207, 2730 Herlev, Denmark
| | | | - Morten A. Karsdal
- ImmunoScience, Nordic Bioscience, Herlev Hovedgade 207, 2730 Herlev, Denmark
- Oncology, Nordic Bioscience, Herlev Hovedgade 207, 2730 Herlev, Denmark
| | - Anne C. Bay-Jensen
- ImmunoScience, Nordic Bioscience, Herlev Hovedgade 207, 2730 Herlev, Denmark
- Correspondence:
| |
Collapse
|
10
|
Surolia R, Antony VB. Pathophysiological Role of Vimentin Intermediate Filaments in Lung Diseases. Front Cell Dev Biol 2022; 10:872759. [PMID: 35573702 PMCID: PMC9096236 DOI: 10.3389/fcell.2022.872759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Vimentin intermediate filaments, a type III intermediate filament, are among the most widely studied IFs and are found abundantly in mesenchymal cells. Vimentin intermediate filaments localize primarily in the cytoplasm but can also be found on the cell surface and extracellular space. The cytoplasmic vimentin is well-recognized for its role in providing mechanical strength and regulating cell migration, adhesion, and division. The post-translationally modified forms of Vimentin intermediate filaments have several implications in host-pathogen interactions, cancers, and non-malignant lung diseases. This review will analyze the role of vimentin beyond just the epithelial to mesenchymal transition (EMT) marker highlighting its role as a regulator of host-pathogen interactions and signaling pathways for the pathophysiology of various lung diseases. In addition, we will also examine the clinically relevant anti-vimentin compounds and antibodies that could potentially interfere with the pathogenic role of Vimentin intermediate filaments in lung disease.
Collapse
Affiliation(s)
| | - Veena B. Antony
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Karsdal MA, Genovese F, Rasmussen DGK, Bay-Jensen AC, Mortensen JH, Holm Nielsen S, Willumsen N, Jensen C, Manon-Jensen T, Jennings L, Reese-Petersen AL, Henriksen K, Sand JM, Bager C, Leeming DJ. Considerations for understanding protein measurements: Identification of formation, degradation and more pathological relevant epitopes. Clin Biochem 2021; 97:11-24. [PMID: 34453894 DOI: 10.1016/j.clinbiochem.2021.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES There is a need for precision medicine and an unspoken promise of an optimal approach for identification of the right patients for value-based medicine based on big data. However, there may be a misconception that measurement of proteins is more valuable than measurement of fewer selected biomarkers. In population-based research, variation may be somewhat eliminated by quantity. However, this fascination of numbers may limit the attention to and understanding of the single. This review highlights that protein measurements (with collagens as examples) may mean different things depending on the targeted epitope - formation or degradation of tissues, and even signaling potential of proteins. DESIGN AND METHODS PubMed was searched for collagen, neo-epitope, biomarkers. RESULTS Ample examples of assays with specific epitopes, either pathological such as HbA1c, or domain specific such as pro-peptides, which total protein arrays would not have identified were evident. CONCLUSIONS We suggest that big data may be considered as the funnel of data points, in which most important parameters will be selected. If the technical precision is low or the biological accuracy is limited, and we include suboptimal quality of biomarkers, disguised as big data, we may not be able to fulfill the promise of helping patients searching for the optimal treatment. Alternatively, if the technical precision of the total protein quantification is high, but we miss the functional domains with the most considerable biological meaning, we miss the most important and valuable information of a given protein. This review highlights that measurements of the same protein in different ways may provide completely different meanings. We need to understand the pathological importance of each epitope quantified to maximize protein measurements.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark.
| | - F Genovese
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - D G K Rasmussen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - A C Bay-Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - J H Mortensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - S Holm Nielsen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - N Willumsen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - C Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - T Manon-Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | | | | | - K Henriksen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - J M Sand
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - C Bager
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - D J Leeming
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| |
Collapse
|
12
|
Nissen NI, Kehlet S, Johansen AZ, Chen IM, Karsdal M, Johansen JS, Diab HMH, Jørgensen LN, Sun S, Manon-Jensen T, He Y, Langholm L, Willumsen N. Noninvasive prognostic biomarker potential of quantifying the propeptides of Type XI collagen alpha-1 chain (PRO-C11) in patients with pancreatic ductal adenocarcinoma. Int J Cancer 2021; 149:228-238. [PMID: 33687786 DOI: 10.1002/ijc.33551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023]
Abstract
Type XI collagen has been associated with tumor fibrosis and aggressiveness in patients with pancreatic ductal adenocarcinoma (PDAC). The propeptide on Type XI collagen is released into the circulation after proteolytic processing at either amino acid 253 or 511. This allows for a noninvasive biomarker approach to quantify Type XI collagen production. We developed two ELISA-based biomarkers, targeting the two enzymatic cleavage sites (PRO-C11-253 and PRO-C11-511). In a discovery cohort including serum from patients with PDAC (n = 39, Stages 1-4), chronic pancreatitis (CP, n = 12) and healthy controls (n = 20), PRO-C11-511, but not PRO-C11-253, was significantly upregulated in patients with PDAC and CP compared to healthy controls. Furthermore, PRO-C11-511 levels >75th percentile were associated with poor overall survival (OS) (HR, 95% CI: 3.40, 1.48-7.83). The PRO-C11-511 biomarker potential was validated in serum from 686 patients with PDAC. Again, high levels of PRO-C11-511 (>75th percentile) were associated with poor OS (HR, 95% CI: 1.68, 1.40-2.02). Furthermore, PRO-C11-511 remained significant after adjusting for clinical risk factors (HR, 95% CI: 1.50, 1.22-1.86). In conclusion, quantifying serum levels of Type XI collagen with PRO-C11-511 predicts poor OS in patients with PDAC. This supports that Type XI collagen is important for PDAC biology and that PRO-C11-511 has prognostic noninvasive biomarker potential for patients with PDAC.
Collapse
Affiliation(s)
- Neel Ingemann Nissen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | | - Astrid Z Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Inna M Chen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Karsdal
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hadi M H Diab
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars N Jørgensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Shu Sun
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | | - Yi He
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | - Lasse Langholm
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | |
Collapse
|
13
|
Xiao J, Chen L, Melander O, Orho-Melander M, Nilsson J, Borné Y, Engström G. Circulating Vimentin Is Associated With Future Incidence of Stroke in a Population-Based Cohort Study. Stroke 2021; 52:937-944. [PMID: 33535783 DOI: 10.1161/strokeaha.120.032111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE VIM (vimentin) is a cytoskeletal intermediate filament protein, which has been linked to atherosclerosis and thrombosis; both are important causes of stroke. We examined the relationship between circulating VIM and incidence of stroke, and if carotid plaque could modify the association in a prospective population-based cohort. METHODS This prospective study was based on the Malmö Diet and Cancer Cohort. A total of 4688 participants (39.7% men; mean age, 57.6 years) were examined and blood samples were collected between 1991 and 1994. Incidence of stroke was followed up to 2018. Cox' proportional hazards regression was used to assess the relationship between VIM and stroke. RESULTS During a mean follow-up of 22.0 years, a total of 528 subjects were diagnosed with stroke, among which 434 were ischemic stroke. Participants in the highest quartile (vs 1st quartile) had 1.34× higher risk of total stroke (95% CI, 1.03-1.74) and 1.47× higher of ischemic stroke (95% CI, 1.10-1.98) after adjustment for potential confounders. A significant interaction was found between carotid plaque and VIM with respect to incidence of both total stroke and ischemic stroke (P=0.041 and 0.011, respectively). After stratifying by carotid plaque, high VIM had stronger association with stroke in participants with carotid plaque, especially for the risk of ischemic stroke (adjusted hazard ratio,1.66 [95% CI, 1.23-2.25] for quartile 4 versus quartile 1 to 3). CONCLUSIONS VIM is positively associated with the incidence of stroke, especially in individuals with carotid plaque. Further studies are needed to confirm the observed associations.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China (J.X., L.C.).,Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden (J.X., O.M., M.O.-M., J.N., Y.B., G.E.)
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China (J.X., L.C.)
| | - Olle Melander
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden (J.X., O.M., M.O.-M., J.N., Y.B., G.E.)
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden (J.X., O.M., M.O.-M., J.N., Y.B., G.E.)
| | - Jan Nilsson
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden (J.X., O.M., M.O.-M., J.N., Y.B., G.E.)
| | - Yan Borné
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden (J.X., O.M., M.O.-M., J.N., Y.B., G.E.)
| | - Gunnar Engström
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden (J.X., O.M., M.O.-M., J.N., Y.B., G.E.)
| |
Collapse
|
14
|
Serum Type XIX Collagen is Significantly Elevated in Non-Small Cell Lung Cancer: A Preliminary Study on Biomarker Potential. Cancers (Basel) 2020; 12:cancers12061510. [PMID: 32527017 PMCID: PMC7352985 DOI: 10.3390/cancers12061510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Type XIX collagen is a poorly characterized collagen associated with the basement membrane. It is abnormally regulated during breast cancer progression and the NC1 (XIX) domain has anti-tumorigenic signaling properties. However, little is known about the biomarker potential of collagen XIX in cancer. In this study, we describe a competitive ELISA, named PRO-C19, targeting the C-terminus of collagen XIX using a monoclonal antibody. PRO-C19 was measured in serum of patients with a range of cancer types and was elevated in non-small cell lung cancer (NSCLC) (p < 0.0001), small cell lung cancer (p = 0.0081), breast (p = 0.0005) and ovarian cancer (p < 0.0001) compared to healthy controls. In a separate NSCLC cohort, PRO-C19 was elevated compared to controls when evaluating adenocarcinoma (AD) (p = 0.0003) and squamous cell carcinoma (SCC) (p < 0.0001) patients but was not elevated in chronic obstructive pulmonary disease patients. SCC also had higher PRO-C19 levels than AD (p = 0.0457). PRO-C19 could discriminate between NSCLC and healthy controls (AUROC:0.749 and 0.826 for AD and SCC, respectively) and maintained discriminatory performance in patients of tumor stages I+II (AUROC:0.733 and 0.818 for AD and SCC, respectively). Lastly, we confirmed the elevated type XIX collagen levels using gene expression data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) initiatives. In conclusion, type XIX collagen is released into circulation and is significantly elevated in the serum of cancer patients and PRO-C19 shows promise as a cancer biomarker.
Collapse
|