1
|
Dey S, Dinakar YH, R S, Jain V, Jain R. Navigating the therapeutic landscape for breast cancer: targeting breast cancer stem cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2387-2406. [PMID: 39441235 DOI: 10.1007/s00210-024-03542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer is a common and deadly malignancy that affects women globally, and breast cancer stem cells (BCSCs) play an important role in tumorigenesis, development, metastasis, and recurrence. Traditional therapies often fail to eliminate BCSCs, leading to treatment resistance and relapse. This review explores the therapeutic strategies which are designed to target BCSCs, including inhibition of key signaling pathway and targeting receptor. This paper also explores the approaches to targeting BCSCs including chemotherapy, phytomedicines, and nanotechnology. Nanotechnology has gained a lot of importance in cancer therapy because of its ability to deliver therapeutic agents with more precision and minimal side effects. Various chemotherapeutic drugs, siRNAs, or gene editing tools are delivered efficiently with the use of nanocarriers which target pathways, receptors, and proteins associated with BCSCs. Over the past few years, stimuli-responsive and receptor-targeted nanocarriers have been explored for better therapeutic effects. In recent times, strategies such as chimeric antigen receptor (CAR) T-cell therapy, ablation therapy, and cell-free therapies are explored for targeting these stem cells. This review provides a recent developmental overview of strategies to attack BCSCs from conventional chemotherapeutic agents to nanotechnological platforms such as polymeric, lipidic, and metal-based nanoparticles and advanced technologies like CAR T cell therapies.
Collapse
Affiliation(s)
- Soudeep Dey
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Soundarya R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| |
Collapse
|
2
|
Sharma D, Dhobi M, Lather V, Pandita D. An insight into the therapeutic effects of isoliquiritigenin in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9503-9519. [PMID: 39007925 DOI: 10.1007/s00210-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Breast cancer ranks as the most widespread malignant condition in women, emerging as a primary contributor to mortality. The primary challenges in cancer treatments involve undesirable side effects. Therefore, exploring natural compounds as additional therapy could provide valuable insights. Isoliquiritigenin (ILN), an isoflavonoid featuring a chalcone moiety primarily sourced from Glycyrrhiza species, has garnered increasing interest in breast cancer research. This review aims to provide a comprehensive understanding of ILN's mechanisms of action in breast cancer, drawing from a range of in vitro and in vivo studies. ILN primarily acts by inhibiting angiogenesis, aromatase, inflammation, and cell proliferation, and preventing invasion and metastasis. Mechanistically, it downregulates miR-374a, phosphoinositide-3-kinase-protein kinase B/Akt, maternal embryonic leucine zipper kinase, vascular endothelial growth factor, and estrogen receptor protein levels, and causes enhancement of Wnt inhibitory factor-1, and Unc-51-like kinase 1 expression to treat breast cancer. ILN emerges as a promising natural option, offering therapeutic advantages with minimal side effects. However, it is important to note that current research on ILN is primarily limited to preclinical models, underscoring the need for further investigation to validate its potential efficacy.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India.
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India.
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research (DIPSAR) Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India.
- Centre for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India.
| |
Collapse
|
3
|
Deng Z, Yuan J, Ma B, Zhu J, Yan B, Wei J, Jin X, Li J, Zhang Q, Ma B. Ziyuglycoside II, a triterpene glycoside compound in Sanguisorbae officinalis l. extract, suppresses metastasis in osteosarcoma via CBX4-mediated Wnt/β-catenin signal pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155716. [PMID: 38924929 DOI: 10.1016/j.phymed.2024.155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Osteosarcoma (OS), the most prevalent primary bone malignancy, exhibits rapid growth and a high tendency for lung metastasis, posing significant treatment challenges. Ziyuglycoside II (ZGS II), a main active compound derived from Sanguisorba officinalis l., has shown potential in cancer treatment. However, the effects of ZGS II and its potential mechanism in OS remain elusive. PURPOSE This study aims to explore the anti-metastatic potential of ZGS II in OS, offering a novel therapeutic strategy for improved patient outcomes. METHODS Cell viability and proliferation was detected by cell counting kit-8 (CCK-8) and clone formation assay, respectively. Transwell and wound-healing assay were applied to evaluate the potential metastatic abilities of OS cells in vitro. More critically, the chromobox protein homolog 4 (CBX4) and Wnt/β-catenin signaling pathway was investigated utilizing Western blotting, immunohistochemistry, shRNA knockdown and immunofluorescence. An orthotopic metastasis mouse model was utilized to evaluate the efficacy of ZGS II in suppressing OS metastasis in vivo, with molecular docking studies conducted to elucidate the interaction between ZGS II and the CBX4 protein. RESULTS Our study demonstrated the potent inhibitory effects of ZGS II on OS cell proliferation and induced apoptosis in vitro, as evidenced by decreased cell viability, enhanced caspase-3 activation, and mitochondrial dysfunction. Furthermore, using an orthotopic metastasis mouse model, we illustrated that ZGS II effectively suppressed tumor growth and lung metastasis in vivo. Notably, our investigation revealed that the antitumor action of ZGS II is dependent on the reduction of CBX4 levels, leading to the attenuation of the Wnt/β-catenin signaling pathway activation. Molecular docking analyses supported this pathway's suppression, showing that ZGS II has the capability to directly bind and disrupt CBX4 function. To further confirm this mechanism, we utilized shRNA to silence CBX4 in OS cells, which significantly enhanced the inhibitory impact of ZGS II on cell migration. CONCLUSION Our study findings reveal that ZGS II efficiently suppresses both metastasis and tumor growth in OS by a novel mechanism that entails the inhibition of the CBX4-regulated Wnt/β-catenin pathway. These outcomes highlight the promising potential of ZGS II as a therapeutic agent for managing metastatic OS, thus justifying the need for additional clinical investigations.
Collapse
Affiliation(s)
- Zhewen Deng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jitong Yuan
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Beiting Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jie Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Bingrong Yan
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jingxun Wei
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Xin Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China.
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China.
| |
Collapse
|
4
|
Hu X, Hu C, Liao L, Zhang H, Xu X, Xiang J, Lu G, Jia X, Xu H, Gong W. Isoliquiritigenin limits inflammasome activation of macrophage via docking into Syk to alleviate murine non-alcoholic fatty liver disease. Scand J Immunol 2024; 100:e13371. [PMID: 38671579 DOI: 10.1111/sji.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
Isoliquiritigenin (ISL) is a chalcone-type flavonoid derived from the root of licorice with antioxidant, anti-inflammatory, anti-tumour and neuroprotective properties. ISL has been proven to downregulate the productions of IL-1β, TNF-α and IL-6 by macrophages. However, detailed molecular mechanisms of this modulation remain elusive. Here, ISL suppressed Syk phosphorylation and CD80, CD86, IL-1β, TNF-α and IL-6 expressions in lipopolysaccharide-stimulated macrophages ex vivo. ApoC3-transgenic (ApoC3TG) mice had more activated macrophages. ISL was also able to downregulate the inflammatory activities of macrophages from ApoC3TG mice. Administration of ISL inhibited Syk activation and inflammatory activities of macrophages in ApoC3TG mice in vivo. The treatment of ISL further alleviated MCD-induced non-alcoholic fatty liver disease (NAFLD) in wild-type and ApoC3TG mice, accompanied by less recruitment and activation of liver macrophages. Due to the inhibition of Syk phosphorylation, ISL-treated macrophages displayed less production of cytoplasmic ROS, NLRP3, cleaved-GSDMD and cleaved-IL-1β, suggesting less inflammasome activation. Finally, the molecular docking study demonstrated that ISL bound to Syk directly with the Kd of 1.273 × 10-8 M. When the Syk expression was knocked down by its shRNA, the inhibitory effects of ISL on activated macrophages disappeared, indicating that Syk was at least one of key docking-molecules of ISL. Collectively, ISL could alleviate MCD-induced NAFLD in mice involved with the inhibition of macrophage inflammatory activity by the blockade of Syk-induced inflammasome activation.
Collapse
Affiliation(s)
- Xiangyu Hu
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Chunmiao Hu
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Liting Liao
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Huimin Zhang
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Xingmeng Xu
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jie Xiang
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoqin Jia
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Hongwei Xu
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Weijuan Gong
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| |
Collapse
|
5
|
Zeng X, Gong G, Ganesan K, Wen Y, Liu Q, Zhuo J, Wu J, Chen J. Spatholobus suberectus inhibits lipogenesis and tumorigenesis in triple-negative breast cancer via activation of AMPK-ACC and K-Ras-ERK signaling pathway. J Tradit Complement Med 2023; 13:623-638. [PMID: 38020549 PMCID: PMC10658394 DOI: 10.1016/j.jtcme.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background and aim Triple-negative breast cancer (TNBC) is a highly invasive type of breast cancer with a poor prognosis. Currently, there are no effective management strategies for TNBC. Earlier, our lab reported the percolation of Spatholobus suberectus for the treatment of breast cancer. Lipid metabolic reprogramming is a hallmark of cancer. However, the anti-TNBC efficiency of S. suberectus extract and its causal mechanism for preventing lipogenesis have not been fully recognized. Hence, the present study aimed to investigate the inhibitory role of S. suberectus extract on lipogenesis and tumorigenesis in TNBC in vitro and in vivo by activating AMPK-ACC and K-Ras-ERK signaling pathways using lipidomic and metabolomic techniques. Experimental procedure Dried stems of S. suberectus extract inhibited lipogenesis and tumorigenesis and promoted fatty acid oxidation as demonstrated by the identification of the metabolites and fatty acid markers using proteomic and metabolomic analysis, qPCR, and Western blot. Results and conclusion The results indicated that S. suberectus extract promotes fatty acid oxidation and suppresses lipogenic metabolites and biomarkers, thereby preventing tumorigenesis via the AMPK-ACC and K-Ras-ERK signaling pathways. On the basis of this preclinical evidence, we suggest that this study represents a milestone and complements Chinese medicine. Further studies remain underway in our laboratory to elucidate the active principles of S. suberectus extract. This study suggests that S. suberectus extract could be a promising therapy for TNBC.
Collapse
Affiliation(s)
- Xiaohui Zeng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
- Guangdong Second Traditional Chinese Medicine Hospital, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Guowei Gong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
| | - Yi Wen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
- Zhongshan People's Hospital, 106, Zhongshan 2nd Road, Guangdong Province, 510080, China
| | - Qingqing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, 518000, China
| | - Juncheng Zhuo
- Guangdong Second Traditional Chinese Medicine Hospital, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
6
|
Yao H, Liang X, Dou Z, Zhao Z, Ma W, Hao Z, Yan H, Wang Y, Wu Z, Chen G, Yang J. Transcriptome analysis to identify candidate genes related to mammary gland development of Bactrian camel ( Camelus bactrianus). Front Vet Sci 2023; 10:1196950. [PMID: 37342620 PMCID: PMC10277799 DOI: 10.3389/fvets.2023.1196950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction The demand for camel milk, which has unique therapeutic properties, is increasing. The mammary gland is the organ in mammals responsible for the production and quality of milk. However, few studies have investigated the genes or pathways related to mammary gland growth and development in Bactrian camels. This study aimed to compare the morphological changes in mammary gland tissue and transcriptome expression profiles between young and adult female Bactrian camels and to explore the potential candidate genes and signaling pathways related to mammary gland development. Methods Three 2 years-old female camels and three 5 years-old adult female camels were maintained in the same environment. The parenchyma of the mammary gland tissue was sampled from the camels using percutaneous needle biopsy. Morphological changes were observed using hematoxylin-eosin staining. High-throughput RNA sequencing was performed using the Illumina HiSeq platform to analyze changes in the transcriptome between young and adult camels. Functional enrichment, pathway enrichment, and protein-protein interaction networks were also analyzed. Gene expression was verified using quantitative real-time polymerase chain reaction (qRT-PCR). Results Histomorphological analysis showed that the mammary ducts and mammary epithelial cells in adult female camels were greatly developed and differentiated from those in young camels. Transcriptome analysis showed that 2,851 differentially expressed genes were obtained in the adult camel group compared to the young camel group, of which 1,420 were upregulated, 1,431 were downregulated, and 2,419 encoded proteins. Functional enrichment analysis revealed that the upregulated genes were significantly enriched for 24 pathways, including the Hedgehog signaling pathway which is closely related to mammary gland development. The downregulated genes were significantly enriched for seven pathways, among these the Wnt signaling pathway was significantly related to mammary gland development. The protein-protein interaction network sorted the nodes according to the degree of gene interaction and identified nine candidate genes: PRKAB2, PRKAG3, PLCB4, BTRC, GLI1, WIF1, DKK2, FZD3, and WNT4. The expression of fifteen genes randomly detected by qRT-PCR showed results consistent with those of the transcriptome analysis. Discussion Preliminary findings indicate that the Hedgehog, Wnt, oxytocin, insulin, and steroid biosynthesis signaling pathways have important effects on mammary gland development in dairy camels. Given the importance of these pathways and the interconnections of the involved genes, the genes in these pathways should be considered potential candidate genes. This study provides a theoretical basis for elucidating the molecular mechanisms associated with mammary gland development and milk production in Bactrian camels.
Collapse
Affiliation(s)
- Huaibing Yao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Xiaorui Liang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Zhihua Dou
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Zhongkai Zhao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Zelin Hao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Hui Yan
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Yuzhuo Wang
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, China
| | - Zhuangyuan Wu
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, China
| | - Gangliang Chen
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
- Bactrian Camel Academy of Xinjiang, Wangyuan Camel Milk Limited Company, Altay, China
| | - Jie Yang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| |
Collapse
|
7
|
Russell AE, Gines BR. Chalcones: Potential Chemotherapeutic Compounds and Educational Tools for Closing the Loop in STEM. Acc Chem Res 2023. [PMID: 36696370 DOI: 10.1021/acs.accounts.2c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ConspectusThe study discussed herein describes the synthesis of halogenated chalcones as potential chemotherapeutics. The synthesis work was conducted by undergraduate students participating in an Organic Chemistry II laboratory course at Tuskegee University, while the biological assays were conducted by students enrolled in a Molecular Biology I laboratory course. Chalcones were synthesized via aldol condensation and purified from hot ethanol. The impetus for the work was the fact that Tuskegee University sits positioned within the Black Belt of Alabama which, in addition to being an area of fertile soil and excellent farmland, is also an area rife with health disparities that particularly affect African-Americans. Breast cancer, specifically triple-negative breast cancer, affects African-American women at a higher rate than any other ethnic group. The work described herein addresses a practical problem [teaching undergraduate students about the interface of synthetic techniques, synthesis of specific classes of compounds, functional groups, and their relation to biological activity], as well an existential problem [the prevalence of breast cancer among African-American women, and the need to develop targeted treatments]. One of the chief aims of this approach of integrating these ideas into our laboratory courses was to facilitate the understanding of translational science, i.e. taking chalcones from benchtop to potential therapies for breast cancer. Another aim of the current approach was to, in essence, create a research problem based course and concomitantly use the results of the experiments performed in the course as a way to address the dearth of research funding that HBCUs typically receive. The pharmacological activities of chalcones and their derivatives are well documented. They are an important class of natural products that occur in edible plant derivatives such as spices, teas, fruits and various vegetables. In vitro studies have shown that chalcones inhibit proliferation of breast cancer cells by inducing apoptosis and blocking cell progression. The synthesis of chalcones with aromatic substituents has been investigated, and electron rich chalcones, i.e., chalcones with donors attached to the aromatic rings, have been studied extensively. The effect that adding electron withdrawing groups to the chalcone structural motif has on the antiproliferation ability of chalcones had been only minimally investigated at the time that our studies were being conducted. We examined the introduction of chlorine to the aromatic system of the chalcone and how these electron withdrawing substituents affect the chalcone's antiproliferative ability. It was discovered that (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one inhibited MDA-MB-231 cell progression in a dose dependent manner and outperformed the unsubstituted (E)-1,3-diphenyl-2-propen-1-one (1) at concentrations ranging from 0 μg/mL to 20 μg/mL. Cell death was determined by MTT assay.
Collapse
Affiliation(s)
- Albert E Russell
- Department of Chemistry, Tuskegee University, 102 Armstrong Hall, Tuskegee, Alabama 36088, United States
| | - Brandon R Gines
- Department of Chemistry, Tuskegee University, 102 Armstrong Hall, Tuskegee, Alabama 36088, United States
| |
Collapse
|
8
|
Zhang L, Chen W, Liu S, Chen C. Targeting Breast Cancer Stem Cells. Int J Biol Sci 2023; 19:552-570. [PMID: 36632469 PMCID: PMC9830502 DOI: 10.7150/ijbs.76187] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
The potential roles of breast cancer stem cells (BCSCs) in tumor initiation and recurrence have been recognized for many decades. Due to their strong capacity for self-renewal and differentiation, BCSCs are the major reasons for poor clinical outcomes and low therapeutic response. Several hypotheses on the origin of cancer stem cells have been proposed, including critical gene mutations in stem cells, dedifferentiation of somatic cells, and cell plasticity remodeling by epithelial-mesenchymal transition (EMT) and the tumor microenvironment. Moreover, the tumor microenvironment, including cellular components and cytokines, modulates the self-renewal and therapeutic resistance of BCSCs. Small molecules, antibodies, and chimeric antigen receptor (CAR)-T cells targeting BCSCs have been developed, and their applications in combination with conventional therapies are undergoing clinical trials. In this review, we focus on the features of BCSCs, emphasize the major factors and tumor environment that regulate the stemness of BCSCs, and discuss potential BCSC-targeting therapies.
Collapse
Affiliation(s)
- Lu Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai paracrine Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China
| | - Wenmin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650201, China.,Kunming College of Life Sciences, the University of the Chinese Academy of Sciences, Kunming 650201, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai paracrine Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China.,✉ Corresponding authors: Ceshi Chen, E-mail: or Suling Liu, E-mail:
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650201, China.,Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China.,The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China.,✉ Corresponding authors: Ceshi Chen, E-mail: or Suling Liu, E-mail:
| |
Collapse
|
9
|
Zhang F, Ganesan K, Liu Q, Chen J. A Review of the Pharmacological Potential of Spatholobus suberectus Dunn on Cancer. Cells 2022; 11:cells11182885. [PMID: 36139460 PMCID: PMC9497142 DOI: 10.3390/cells11182885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Spatholobus suberectus Dunn (SSD) has been extensively employed in Traditional Chinese Medicine to treat several ailments. SSD and its active compounds are effective therapeutic agents for treating a variety of diseases with negligible side effects. Therefore, we aimed to investigate its phytochemistry, pharmacology, and potential therapeutic effects exclusively in cancer prevention and treatment. Phytochemical and pharmacological information was collected and arranged in a rational order. SSD has been frequently attributed to having antioxidant, anti-diabetic, anti-inflammatory, hematopoietic, neuroprotective, antimicrobial, and anticancer properties. Evidence has indicated that the bioactive constituents in SSD have attracted increasing scientific attention due to their preventive role in cancers. Further, the present review provides the current information on the health implications of SSD, thus allowing for future clinical trials to explore its restorative benefits. All data of in vitro and animal investigations of SSD, as well as its effect on human health, were obtained from an electronic search and library database. The diverse pharmacological potential of SSD provides an opportunity for preclinical drug discovery, and this comprehensive review strongly indicates that SSD is an excellent anti-tumorigenic agent that modulates or prevents breast cancer.
Collapse
Affiliation(s)
- Feng Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingqing Liu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
- Correspondence: ; Tel.: +852-3917-6479
| |
Collapse
|
10
|
Hussain A, Bourguet-Kondracki ML, Hussain F, Rauf A, Ibrahim M, Khalid M, Hussain H, Hussain J, Ali I, Khalil AA, Alhumaydhi FA, Khan M, Hussain R, Rengasamy KRR. The potential role of dietary plant ingredients against mammary cancer: a comprehensive review. Crit Rev Food Sci Nutr 2022; 62:2580-2605. [DOI: 10.1080/10408398.2020.1855413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amjad Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
| | - Farhad Hussain
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pukhtanuk (KP), Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Punjab, Pakistan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Salle), Germany
| | - Javid Hussain
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Khan
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Kannan R. R. Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
11
|
DNA Methylation Malleability and Dysregulation in Cancer Progression: Understanding the Role of PARP1. Biomolecules 2022; 12:biom12030417. [PMID: 35327610 PMCID: PMC8946700 DOI: 10.3390/biom12030417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Mammalian genomic DNA methylation represents a key epigenetic modification and its dynamic regulation that fine-tunes the gene expression of multiple pathways during development. It maintains the gene expression of one generation of cells; particularly, the mitotic inheritance of gene-expression patterns makes it the key governing mechanism of epigenetic change to the next generation of cells. Convincing evidence from recent discoveries suggests that the dynamic regulation of DNA methylation is accomplished by the enzymatic action of TET dioxygenase, which oxidizes the methyl group of cytosine and activates transcription. As a result of aberrant DNA modifications, genes are improperly activated or inhibited in the inappropriate cellular context, contributing to a plethora of inheritable diseases, including cancer. We outline recent advancements in understanding how DNA modifications contribute to tumor suppressor gene silencing or oncogenic-gene stimulation, as well as dysregulation of DNA methylation in cancer progression. In addition, we emphasize the function of PARP1 enzymatic activity or inhibition in the maintenance of DNA methylation dysregulation. In the context of cancer remediation, the impact of DNA methylation and PARP1 pharmacological inhibitors, and their relevance as a combination therapy are highlighted.
Collapse
|
12
|
Shi M, Ma Y, Xu P. Evaluation of the mechanism of Rujiling capsules in the treatment of hyperplasia of mammary glands based on network pharmacology and molecular docking. Indian J Pharmacol 2022; 54:110-117. [PMID: 35546462 PMCID: PMC9249152 DOI: 10.4103/ijp.ijp_374_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The present study aimed to elucidate the molecular network mechanism of the Rujiling capsule in the treatment of hyperplasia of mammary glands through network pharmacology and molecular docking. MATERIALS AND METHODS TCMSP and TCMID databases were screened for the active components and their action targets of the Rujiling capsule, whereas the disease targets of hyperplasia of mammary glands were searched in GeneCard and DisGeNET databases. Venny software was employed to identify the common targets of drugs and diseases. Cytoscape software was used to construct the network pharmacological diagram of "drug-active components-target" and the intersection targets were subjected to protein-protein interaction analysis by STRING platform and Cytoscape software. The DAVID database was exploited for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of the intersection target. After that, the key target genes with a degree value greater than the median were verified with the active components in molecular docking. RESULTS A total of 691 drug targets, 251 disease targets, and 108 intersection targets were obtained after retrieval and screening. Among the 686 items enriched by GO included 522 biological processes, 110 molecular functions, and 54 cellular components. At the same time, 114 signal pathways were enriched by KEGG. The results of molecular docking revealed that the docking energies of main active components and some core targets were all <-5 kcal/mol. CONCLUSION Henceforth, highlighted the role of the Rujiling capsule in the treatment of hyperplasia of mammary glands through multiple components, multiple targets, and multiple signal pathways.
Collapse
Affiliation(s)
- Mili Shi
- Department of Pharmacy, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China,Address for correspondence: Dr. Mili Shi, Sixth Affiliated Hospital of Kunming Medical University, Yuxi 653100, Yunnan, China. E-mail:
| | - Yue Ma
- Department of Pharmacy, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Pin Xu
- Department of Pharmacy, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| |
Collapse
|
13
|
Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. Int J Mol Sci 2021; 22:ijms222111669. [PMID: 34769099 PMCID: PMC8584029 DOI: 10.3390/ijms222111669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/β-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.
Collapse
|
14
|
El Omari N, Bakha M, Imtara H, Guaouguaoua FE, Balahbib A, Zengin G, Bouyahya A. Anticancer mechanisms of phytochemical compounds: focusing on epigenetic targets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47869-47903. [PMID: 34308524 DOI: 10.1007/s11356-021-15594-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
It has recently been proven that epigenetic dysregulation is importantly involved in cell transformation and therefore induces cancerous diseases. The development of molecules called epidrugs, which target specifically different epigenetic modifications to restore cellular memory and therefore the treatment, became a real challenge currently. Currently, bioactive compounds of medicinal plants as epidrugs have been can identified and explored in cancer therapy. Indeed, these molecules can target specifically different epigenetic modulators including DNMT, HDAC, HAT, and HMT. Moreover, some compounds exhibit stochastic epigenetic actions on different pathways regulating cell memory. In this work, pharmacodynamic actions of natural epidrugs belonging to cannabinoids, carotenoids, chalcones, fatty acids, lignans, polysaccharides, saponins, secoiridoids, steroids, tannins, tanshinones, and other chemical classes we reported and highlighted. In this review, the effects of several natural bioactive compounds of epigenetic medications on cancerous diseases were highlighted. Numerous active molecules belonging to different chemical classes such as cannabinoids, carotenoids, fatty acids, lignans, polysaccharides, saponins, secoiridoids, steroids, tannins, and tanshinones are discussed in this review.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Mohamed Bakha
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, BP2121, 93002, Tetouan, Morocco
| | - Hamada Imtara
- Faculty of Arts and Sciences, Arab American University, Jenin, 240, Palestine
| | | | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco.
| |
Collapse
|
15
|
Bhattacharya T, Dutta S, Akter R, Rahman MH, Karthika C, Nagaswarupa HP, Murthy HCA, Fratila O, Brata R, Bungau S. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules 2021; 11:1176. [PMID: 34439842 PMCID: PMC8394348 DOI: 10.3390/biom11081176] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is one of the most common type of cancer and an important contributor to female mortality. Several genes and epigenetic modifications are involved in the development and progression of BC. Research in phytochemistry, nutrigenomics, and nutrigenetics has provided strong evidence that certain phytonutrients are able to modulate gene expression at transcriptional and post-transcriptional levels. Such phytonutrients may also be beneficial to prevent and treat BC. In this review, we will focus on the nutrigenomic effects of various phytochemicals including polyphenols, phytosterols, terpenoids, alkaloids, and other compounds from different sources. Overall, these phytonutrients are found to inhibit BC cell proliferation, differentiation, invasion, metastasis, angiogenesis, and induce apoptotic cell death by targeting various molecular pathways. They also alter epigenetic mechanisms and enhance the chemosensitivity and radiosensitivity of cancer cells. Such phytochemicals may be used for the effective management of BC patients in the clinical setting in the future. The present article aims to summarize the specific molecular pathways involved in the genetic effects of phytochemicals in BC.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
- Techno India NJR Institute of Technology, Udaipur, Rajasthan 313003, India
| | - Soumam Dutta
- Food and Nutrition Division, University of Calcutta, Calcutta 700027, India;
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | | | - Hanabe Chowdappa Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
16
|
Erkisa M, Sariman M, Geyik OG, Geyik CG, Stanojkovic T, Ulukay E. Natural Products as a Promising Therapeutic Strategy to Target Cancer Stem Cells. Curr Med Chem 2021; 29:741-783. [PMID: 34182899 DOI: 10.2174/0929867328666210628131409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Cancer is still a deadly disease, and its treatment desperately needs to be managed in a very sophisticated way through fast-developing novel strategies. Most of the cancer cases eventually develop into recurrencies, for which cancer stem cells (CSCs) are thought to be responsible. They are considered as a subpopulation of all cancer cells of tumor tissue with aberrant regulation of self-renewal, unbalanced proliferation, and cell death properties. Moreover, CSCs show a serious degree of resistance to chemotherapy or radiotherapy and immune surveillance as well. Therefore, new classes of drugs are rushing into the market each year, which makes the cost of therapy increase dramatically. Natural products are also becoming a new research area as a diverse chemical library to suppress CSCs. Some of the products even show promise in this regard. So, the near future could witness the introduction of natural products as a source of new chemotherapy modalities, which may result in the development of novel anticancer drugs. They could also be a reasonably-priced alternative to highly expensive current treatments. Nowadays, considering the effects of natural compounds on targeting surface markers, signaling pathways, apoptosis, and escape from immunosurveillance have been a highly intriguing area in preclinical and clinical research. In this review, we present scientific advances regarding their potential use in the inhibition of CSCs and the mechanisms by which they kill the CSCs.
Collapse
Affiliation(s)
- Merve Erkisa
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Melda Sariman
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Oyku Gonul Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Caner Geyik Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Tatjana Stanojkovic
- Experimental Oncology Deparment, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Pasterova 14. Serbia
| | - Engin Ulukay
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| |
Collapse
|
17
|
Comparative Gene Signature of (-)-Oleocanthal Formulation Treatments in Heterogeneous Triple Negative Breast Tumor Models: Oncological Therapeutic Target Insights. Nutrients 2021; 13:nu13051706. [PMID: 34069906 PMCID: PMC8157589 DOI: 10.3390/nu13051706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Triple negative breast cancer (TNBC) heterogeneity and limited therapeutic options confer its phenotypic aggressiveness. The discovery of anti-TNBC natural products with valid molecular target(s) and defined pharmacodynamic profile would facilitate their therapeutic nutraceutical use by TNBC patients. The extra-virgin olive oil (EVOO) is a key Mediterranean diet ingredient. S-(−)-Oleocanthal (OC) leads the bioactive anti-tumor EVOO phenolic ingredients. A previous study reported the solid dispersion formulated OC with (+)-xylitol (OC-X) suppressed the in vivo progression and recurrence of the TNBC MDA-MB-231 cells. This study investigates the ability of OC-X formulation to suppress the in vivo heterogeneous BC initiation and progression utilizing advanced preclinical transgenic MMTV-PyVT and TNBC PDX mouse models. Furthermore, the clustering of the gene expression profiles in MMTV-PyVT and PDX mouse tumors treated with OC-X acquired by a Clariom S microarray analysis identified the distinctly affected genes. Several affected novel signature genes identified in response to OC-X treatments and proved overlapped in both mouse and human tumor models, shedding some lights toward understanding the OC anticancer molecular mechanism and assisting in predicting prospective clinical outcomes. This study provides molecular and preclinical evidences of OC-X potential as a nutraceutical suppressing heterogeneous TNBC model and offers preliminary gene-level therapeutic mechanistic insights.
Collapse
|
18
|
Manogaran P, Umapathy D, Karthikeyan M, Venkatachalam K, Singaravelu A. Dietary Phytochemicals as a Potential Source for Targeting Cancer Stem Cells. Cancer Invest 2021; 39:349-368. [PMID: 33688788 DOI: 10.1080/07357907.2021.1894569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tumor microenvironment is composed of various types of cells that lead to tumor heterogeneity. In the middle of these populations, cancer stem cells play a vital role in the initiation and progression of cancer cells and are capable of self-renewal and differentiation processes. These cancer stem cells are resistant to conventional therapy such as chemotherapy and radiotherapy. To eradicate the cancer stem cells in the tumor environment, various natural product has been found in recent years. In this review, we have selected some of the natural products based on anticancer potential including targeting cancer cells and cancer stem cells. Further, this review explains the molecular mechanism of action of these natural products in various cancer stem cells. Therefore, targeting a multi-drug resistant cancer stem cell by natural products is a novel method to reduce drug resistance and adverse effect during conventional therapy.
Collapse
Affiliation(s)
- Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Devan Umapathy
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | | | - Karthikkumar Venkatachalam
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anbu Singaravelu
- Department of PG and Research Department of Biochemistry, Sacred Heart College (Autonomous), Tirupattur, Tamilnadu, India
| |
Collapse
|
19
|
Shailesh H, Siveen KS, Sif S. Protein arginine methyltransferase 5 (PRMT5) activates WNT/β-catenin signalling in breast cancer cells via epigenetic silencing of DKK1 and DKK3. J Cell Mol Med 2021; 25:1583-1600. [PMID: 33462997 PMCID: PMC7875925 DOI: 10.1111/jcmm.16260] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/17/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) activity is dysregulated in many aggressive cancers and its enhanced levels are associated with increased tumour growth and survival. However, the role of PRMT5 in breast cancer remains underexplored. In this study, we show that PRMT5 is overexpressed in breast cancer cell lines, and that it promotes WNT/β-CATENIN proliferative signalling through epigenetic silencing of pathway antagonists, DKK1 and DKK3, leading to enhanced expression of c-MYC, CYCLIN D1 and SURVIVIN. Through chromatin immunoprecipitation (ChIP) studies, we found that PRMT5 binds to the promoter region of WNT antagonists, DKK1 and DKK3, and induces symmetric methylation of H3R8 and H4R3 histones. Our findings also show that PRMT5 inhibition using a specific small molecule inhibitor, compound 5 (CMP5), reduces PRMT5 recruitment as well as methylation of H3R8 and H4R3 histones in the promoter regions of DKK1 and DKK3, which consequently results in reduced expression CYCLIN D1 and SURVIVIN. Furthermore, CMP5 treatment either alone or in combination with 5-Azacytidine and Trichostatin A restored expression of DKK1 and DKK3 in TNBCs. PRMT5 inhibition also altered the growth characteristics of breast cancer cells and induced their death. Collectively, these results show that PRMT5 controls breast cancer cell growth through epigenetic silencing of WNT/β-CATENIN pathway antagonists, DKK1 and DKK3, resulting in up-regulation of WNT/β-CATENIN proliferative signalling.
Collapse
Affiliation(s)
- Harshita Shailesh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Kodappully S Siveen
- Flow Cytometry Core Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Saïd Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
20
|
Wang KL, Yu YC, Hsia SM. Perspectives on the Role of Isoliquiritigenin in Cancer. Cancers (Basel) 2021; 13:E115. [PMID: 33401375 PMCID: PMC7795842 DOI: 10.3390/cancers13010115] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/20/2022] Open
Abstract
Isoliquiritigenin (2',4',4-trihydroxychalcone, ISL), one of the most important bioactive compounds with a chalcone structure, is derived from licorice root. Licorice is commonly known as Glycyrrhiza, including Glycyrrhiza uralensis, Glycyrrhiza radix, and Glycyrrhiza glabra, which are generally available in common foods and Chinese herbal medicines based on a wide variety of biological functions and pharmacological effects, and its derivative (ISL) is utilized as a food additive and adjunct disease treatment. In this review, we summarized the progress over the last 10 years in the targeted pathways and molecular mechanisms of ISL that are involved in the regulation of the onset and progression of different types of cancers.
Collapse
Affiliation(s)
- Kai-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 20301, Taiwan;
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ying-Chun Yu
- Sex Hormonal Research Center, China Medical University Hospital, Taichung 40403, Taiwan;
- Department of Obstetrics and Gynecology, School of Medicine, China Medical University, Taichung 40403, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
21
|
Kaleem M, Alhosin M, Khan K, Ahmad W, Hosawi S, Nur SM, Choudhry H, Zamzami MA, Al-Abbasi FA, Javed MDN. Epigenetic Basis of Polyphenols in Cancer Prevention and Therapy. POLYPHENOLS-BASED NANOTHERAPEUTICS FOR CANCER MANAGEMENT 2021:189-238. [DOI: 10.1007/978-981-16-4935-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
22
|
Das PK, Zahan T, Abdur Rakib M, Khanam JA, Pillai S, Islam F. Natural Compounds Targeting Cancer Stem Cells: A Promising Resource for Chemotherapy. Anticancer Agents Med Chem 2020; 19:1796-1808. [PMID: 31272363 DOI: 10.2174/1871520619666190704111714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/04/2019] [Accepted: 05/20/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cancer Stem Cells (CSCs) are the subpopulation of cancer cells which are directly involved in drug resistance, metastases to distant organ and cancer recurrence. METHODS A systematic literature search was conducted through various electronic databases including, Pubmed, Scopus, Google scholar using the keywords "cancer stem cells" and "natural compounds" in the present study. Articles published between 1999 and 2019 were reviewed. All the expositions concerning CSCs associated cancer pathogenesis and therapy resistance, as well as targeting these properties of CSCs by natural compounds were selected for the current study. RESULTS Natural compounds have always been thought as a rich source of biologically active principles, which target aberrantly activated signaling pathways and other modalities of CSCs, while tethering painful side effects commonly involved in the first-line and second-line chemo-radiotherapies. In this review, we have described the key signaling pathways activated in CSCs to maintain their survival and highlighted how natural compounds interrupt these signaling pathways to minimize therapy resistance, pathogenesis and cancer recurrence properties of CSCs, thereby providing useful strategies to treat cancer or aid in cancer therapy improvement. Like normal stem cells, CSCs rely on different signaling pathways and other properties for their maintenance. Therefore, the success of cancer treatment depends on the development of proper anti-neoplastic drugs capable of intercepting those signaling pathways as well as other properties of CSCs in order to eradicate this evasive subpopulation of cancer cells. CONCLUSION Compounds of natural origin might act as an outstanding source to design novel therapies against cancer stem cells.
Collapse
Affiliation(s)
- Plabon K Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Tasnim Zahan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Abdur Rakib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Jahan A Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh.,School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
23
|
Wang Z, Zhang J. FOXP3 promotes colorectal carcinoma liver metastases by evaluating MMP9 expression via regulating S-adenosylmethionine metabolism. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:592. [PMID: 32566619 PMCID: PMC7290543 DOI: 10.21037/atm-20-3287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Growing evidence has proved that Forkhead box protein 3 (FOXP3), which is a master regulatory gene in the development and function of regulatory T-cells, is expressed in human cancer cells. This expression indicates the crucial role FOXP3 takes up as the disease progresses. However, its role in colorectal cancer (CRC) liver metastasis is still mostly unknown. This study set out to explore the molecular characteristics of FOXP3 in driving the liver metastasis within CRC. Methods We downloaded the RNA-seq data from the GSE50760. Weighted gene co-expression network analysis (WGCNA)WGCNA and RNA-Seq analysis were applied to find the key gene network associated with colorectal cancer liver metastasis. Then we performed pathway enrichment analysis on liver metastasis-associated gene set. Immunohistochemistry, in vitro and in vivo studies were conducted to test expression and function of FOXP3 in CRC tissues and liver metastasis tissues. Non-targeted metabolomics analysis was performed to identify the alteration of FOXP3 expression in metabolites of colorectal cancer liver metastasis. Western blot was performed to confirm changes of matrix metalloproteinase 9MMP9 expression were downstream events of S-adenosyl-methionine (SAM). Results We found that FOXP3 and MMP9 exhibited co-expression relationships and affected liver metastasis in CRC. Upregulation of FOXP3 promotes cell migration and invasion in CRC, which suggests a pro-cancer effect. Moreover, metabolomics analysis showed that knockdown of FOXP3 significantly reduced SAM levels, and changes of MMP9 expression were downstream events of SAM, which is concentration-dependent. Besides, The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Western blot analysis confirmed that overexpression of FOXP3 activates the Wnt pathway to promote colon cancer metastasis. Conclusions Our results altogether suggested that FOXP3 expression inhibited the SAM cycle to reduce SAMe levels, resulting in altered MMP9 expression and helped CRC liver metastasis.
Collapse
Affiliation(s)
- Zhe Wang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang 110042, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang 110042, China
| |
Collapse
|
24
|
Zhao TT, Xu YQ, Hu HM, Gong HB, Zhu HL. Isoliquiritigenin (ISL) and its Formulations: Potential Antitumor Agents. Curr Med Chem 2019; 26:6786-6796. [DOI: 10.2174/0929867325666181112091700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 01/09/2023]
Abstract
Isoliquiritigenin (2’,4’,4-trihydroxychalcone, ISL) is one of the most important
chalcone compounds which is mainly derived from licorice root and many other plants. It exhibits
a remarkable range of potent biological and pharmacological activities such as antioxidative,
antitumor, antiaging, anti-inflammatory, anti-diabetic activities, etc. Numerous research
teams have demonstrated that ISL posseses the ability to carry out antigrowth and proliferation
in various cancer cells in vitro and in vivo. Meanwhile, the underlying mechanisms
of ISL that inhibit cancer cell proliferation have not been well explored. However, the poor
bioavailability and low water-soluble limit its clinical application. This review aims at providing
a comprehensive overview of the pharmacology antitumor activity of ISL and its mechanisms
in different malignancy especially in breast cancer cell line and summarize developments
of formulation utilized to overcome the barrier between its delivery characteristics and
application in clinics over the past 20 years.
Collapse
Affiliation(s)
- Ting-Ting Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yu-Qing Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hui-Min Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hai-Bin Gong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Cao ZX, Wen Y, He JL, Huang SZ, Gao F, Guo CJ, Liu QQ, Zheng SW, Gong DY, Li YZ, Zhang RQ, Chen JP, Peng C. Isoliquiritigenin, an Orally Available Natural FLT3 Inhibitor from Licorice, Exhibits Selective Anti-Acute Myeloid Leukemia Efficacy In Vitro and In Vivo. Mol Pharmacol 2019; 96:589-599. [PMID: 31462456 DOI: 10.1124/mol.119.116129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
Licorice is a medicinal herb widely used to treat inflammation-related diseases in China. Isoliquiritigenin (ISL) is an important constituent of licorice and possesses multiple bioactivities. In this study, we examined the selective anti-AML (acute myeloid leukemia) property of ISL via targeting FMS-like tyrosine kinase-3 (FLT3), a certified valid target for treating AML. In vitro, ISL potently inhibited FLT3 kinase, with an IC50 value of 115.1 ± 4.2 nM, and selectively inhibited the proliferation of FLT3-internal tandem duplication (FLT3-ITD) or FLT3-ITD/F691L mutant AML cells. Moreover, it showed very weak activity toward other tested cell lines or kinases. Western blot immunoassay revealed that ISL significantly inhibited the activation of FLT3/Erk1/2/signal transducer and activator of transcription 5 (STAT5) signal in AML cells. Meanwhile, a molecular docking study indicated that ISL could stably form aromatic interactions and hydrogen bonds within the kinase domain of FLT3. In vivo, oral administration of ISL significantly inhibited the MV4-11 flank tumor growth and prolonged survival in the bone marrow transplant model via decreasing the expression of Ki67 and inducing apoptosis. Taken together, the present study identified a novel function of ISL as a selective FLT3 inhibitor. ISL could also be a potential natural bioactive compound for treating AML with FLT3-ITD or FLT3-ITD/F691L mutations. Thus, ISL and licorice might possess potential therapeutic effects for treating AML, providing a new strategy for anti-AML.
Collapse
Affiliation(s)
- Zhi-Xing Cao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Yi Wen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Jun-Lin He
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Shen-Zhen Huang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Fei Gao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Chuan-Jie Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Qing-Qing Liu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Shu-Wen Zheng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Dao-Yin Gong
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Yu-Zhi Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Ruo-Qi Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Jian-Ping Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Cheng Peng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| |
Collapse
|
26
|
DNA Methylation Status in Cancer Disease: Modulations by Plant-Derived Natural Compounds and Dietary Interventions. Biomolecules 2019; 9:biom9070289. [PMID: 31323834 PMCID: PMC6680848 DOI: 10.3390/biom9070289] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
The modulation of the activity of DNA methyltransferases (DNMTs) represents a crucial epigenetic mechanism affecting gene expressions or DNA repair mechanisms in the cells. Aberrant modifications in the function of DNMTs are a fundamental event and part of the pathogenesis of human cancer. Phytochemicals, which are biosynthesized in plants in the form of secondary metabolites, represent an important source of biomolecules with pleiotropic effects and thus provide a wide range of possible clinical applications. It is well documented that phytochemicals demonstrate significant anticancer properties, and in this regard, rapid development within preclinical research is encouraging. Phytochemicals affect several epigenetic molecular mechanisms, including DNA methylation patterns such as the hypermethylation of tumor-suppressor genes and the global hypomethylation of oncogenes, that are specific cellular signs of cancer development and progression. This review will focus on the latest achievements in using plant-derived compounds and plant-based diets targeting epigenetic regulators and modulators of gene transcription in preclinical and clinical research in order to generate novel anticancer drugs as sensitizers for conventional therapy or compounds suitable for the chemoprevention clinical setting in at-risk individuals. In conclusion, indisputable anticancer activities of dietary phytochemicals linked with proper regulation of DNA methylation status have been described. However, precisely designed and well-controlled clinical studies are needed to confirm their beneficial epigenetic effects after long-term consumption in humans.
Collapse
|
27
|
The effect of medicinal plants on multiple drug resistance through autophagy: A review of in vitro studies. Eur J Pharmacol 2019; 852:244-253. [PMID: 30965056 DOI: 10.1016/j.ejphar.2019.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
Multiple drug resistance (MDR) often occurs after prolonged chemotherapy, leading to refractory tumor and cancer recurrence. Autophagy as a primarily process during starvation or stress has a bipolar nature in cancer. It can cause MDR to become more difficult or make resistant cancer cells more susceptible to chemotherapeutic agents. A number of natural products have been introduced to drug discovery for many years. Some of these compounds have been shown to reverse drug resistance by different regulatory mechanisms. In this review, the focus is on the role of medicinal plants in the MDR phenomenon, primarily through the autophagy process.
Collapse
|
28
|
Abstract
Breast cancer is a common malignancy with poor prognosis. Cancer cells are heterogeneous and cancer stem cells (CSCs) are primarily responsible for tumor relapse, treatment-resistance and metastasis, so for breast cancer stem cells (BCSCs). Diets are known to be associated with carcinogenesis. Food-derived polyphenols are able to attenuate the formation and virulence of BCSCs, implying that these compounds and their analogs might be promising agents for preventing breast cancer. In the present review, we summarized the origin and surface markers of BCSCs and possible mechanisms responsible for the inhibitory effects of polyphenols on BCSCs. The suppressive effects of common dietary polyphenols against BCSCs, such as curcumin, epigallocatechin gallate (EGCG) and related polyphenolic compounds were further discussed.
Collapse
Affiliation(s)
- Hao-Feng Gu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xue-Ying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
29
|
Cruz-Lozano M, González-González A, Marchal JA, Muñoz-Muela E, Molina MP, Cara FE, Brown AM, García-Rivas G, Hernández-Brenes C, Lorente JA, Sanchez-Rovira P, Chang JC, Granados-Principal S. Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/β-catenin and TGFβ signaling pathways. Eur J Nutr 2018; 58:3207-3219. [DOI: 10.1007/s00394-018-1864-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
|
30
|
Uramova S, Kubatka P, Dankova Z, Kapinova A, Zolakova B, Samec M, Zubor P, Zulli A, Valentova V, Kwon TK, Solar P, Kello M, Kajo K, Busselberg D, Pec M, Danko J. Plant natural modulators in breast cancer prevention: status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J 2018; 9:403-419. [PMID: 30538792 DOI: 10.1007/s13167-018-0154-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
In contrast to the genetic component in mammary carcinogenesis, epigenetic alterations are particularly important for the development of sporadic breast cancer (BC) comprising over 90% of all BC cases worldwide. Most of the DNA methylation processes are physiological and essential for human cellular and tissue homeostasis, playing an important role in a number of key mechanisms. However, if dysregulated, DNA methylation contributes to pathological processes such as cancer development and progression. A global hypomethylation of oncogenes and hypermethylation of tumor-suppressor genes are characteristic of most cancer types. Moreover, histone chemical modifications and non-coding RNA-associated multi-gene controls are considered as the key epigenetic mechanisms governing the cellular homeostasis and differentiation states. A number of studies demonstrate dietary plant products as actively affecting the development and progression of cancer. "Nutri-epigenetics" focuses on the influence of dietary agents on epigenetic mechanisms. This approach has gained considerable attention; since in contrast to genetic alterations, epigenetic modifications are reversible affect early carcinogenesis. Currently, there is an evident lack of papers dedicated to the phytochemicals/plant extracts as complex epigenetic modulators, specifically in BC. Our paper highlights the role of plant natural compounds in targeting epigenetic alterations associated with BC development, progression, as well as its potential chemoprevention in the context of preventive medicine. Comprehensive measures are stated with a great potential to advance the overall BC management in favor of predictive, preventive, and personalized medical services and can be considered as "proof-of principle" model, for their potential application to other multifactorial diseases.
Collapse
Affiliation(s)
- Sona Uramova
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- 2Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia.,3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Dankova
- 3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Kapinova
- 3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Barbora Zolakova
- 3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Anthony Zulli
- 4Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | | | - Taeg Kyu Kwon
- 6Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Peter Solar
- 7Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia
| | - Martin Kello
- 8Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Dietrich Busselberg
- 10Qatar Foundation, Weill Cornell Medical College in Qatar, Education City, Doha Qatar
| | - Martin Pec
- 2Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Jan Danko
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
31
|
Yushan R, Ying Y, Yujun T, Jingchun Y, Dongguang L, Lihong P, Pingping W, Lili Z, Fanhui Z, Zhong L, Guimin Z, Jie L. Isoliquiritigenin inhibits mouse S180 tumors with a new mechanism that regulates autophagy by GSK-3β/TNF-α pathway. Eur J Pharmacol 2018; 838:11-22. [DOI: 10.1016/j.ejphar.2018.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 11/26/2022]
|
32
|
Hermawan A, Putri H. Current report of natural product development against breast cancer stem cells. Int J Biochem Cell Biol 2018; 104:114-132. [DOI: 10.1016/j.biocel.2018.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
|
33
|
Wang N, Yang B, Zhang X, Wang S, Zheng Y, Li X, Liu S, Pan H, Li Y, Huang Z, Zhang F, Wang Z. Network Pharmacology-Based Validation of Caveolin-1 as a Key Mediator of Ai Du Qing Inhibition of Drug Resistance in Breast Cancer. Front Pharmacol 2018; 9:1106. [PMID: 30333750 PMCID: PMC6176282 DOI: 10.3389/fphar.2018.01106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Chinese formulas have been paid increasing attention in cancer multidisciplinary therapy due to their multi-targets and multi-substances property. Here, we aim to investigate the anti-breast cancer and chemosensitizing function of Ai Du Qing (ADQ) formula made up of Hedyotis diffusa, Curcuma zedoaria (Christm.) Rosc., Astragalus membranaceus (Fisch.) Bunge, and Glycyrrhiza uralensis Fisch. Our findings revealed that ADQ significantly inhibited cell proliferation in both parental and chemo-resistant breast cancer cells, but with little cytotoxcity effects on the normal cells. Besides, ADQ was found to facilitate the G2/M arresting and apoptosis induction effects of paclitaxel. Network pharmacology and bioinformatics analysis further demonstrated that ADQ yielded 132 candidate compounds and 297 potential targets, and shared 22 putative targets associating with breast cancer chemoresponse. Enrichment analysis and experimental validation demonstrated that ADQ might improve breast cancer chemosensitivity via inhibiting caveolin-1, which further triggered expression changes of cell cycle-related proteins p21/cyclinB1 and apoptosis-associated proteins PARP1, BAX and Bcl-2. Besides, ADQ enhanced in vivo paclitaxel chemosensitivity on breast cancer. Our study not only uncovers the novel function and mechanisms of ADQ in chemosensitizing breast cancer at least partly via targeting caveolin-1, but also sheds novel light in utilizing network pharmacology in Chinese Medicine research.
Collapse
Affiliation(s)
- Neng Wang
- The Research Center of Basic Integrative Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bowen Yang
- The Research Center of Basic Integrative Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaotong Zhang
- The Research Center of Basic Integrative Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqi Wang
- The Research Center of Basic Integrative Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifeng Zheng
- The Research Center of Basic Integrative Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiong Li
- The Research Center of Basic Integrative Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shan Liu
- The Research Center of Basic Integrative Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Pan
- The Research Center of Basic Integrative Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingwei Li
- The Research Center of Basic Integrative Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhujuan Huang
- The Research Center of Basic Integrative Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- The Research Center of Basic Integrative Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyu Wang
- The Research Center of Basic Integrative Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
34
|
Younas M, Hano C, Giglioli-Guivarc'h N, Abbasi BH. Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future perspectives. RSC Adv 2018; 8:29714-29744. [PMID: 35547279 PMCID: PMC9085387 DOI: 10.1039/c8ra04879g] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/15/2018] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancers around the globe and accounts for a large proportion of fatalities in women. Despite the advancement in therapeutic and diagnostic procedures, breast cancer still represents a major challenge. Current anti-breast cancer approaches include surgical removal, radiotherapy, hormonal therapy and the use of various chemotherapeutic drugs. However, drug resistance, associated serious adverse effects, metastasis and recurrence complications still need to be resolved which demand safe and alternative strategies. In this scenario, phytochemicals have recently gained huge attention due to their safety profile and cost-effectiveness. These phytochemicals modulate various genes, gene products and signalling pathways, thereby inhibiting breast cancer cell proliferation, invasion, angiogenesis and metastasis and inducing apoptosis. Moreover, they also target breast cancer stem cells and overcome drug resistance problems in breast carcinomas. Phytochemicals as adjuvants with chemotherapeutic drugs have greatly enhanced their therapeutic efficacy. This review focuses on the recently recognized molecular mechanisms underlying breast cancer chemoprevention with the use of phytochemicals such as curcumin, resveratrol, silibinin, genistein, epigallocatechin gallate, secoisolariciresinol, thymoquinone, kaempferol, quercetin, parthenolide, sulforaphane, ginsenosides, naringenin, isoliquiritigenin, luteolin, benzyl isothiocyanate, α-mangostin, 3,3'-diindolylmethane, pterostilbene, vinca alkaloids and apigenin.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90644121 +92-51-90644121 +33-767-97-0619
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans F 28000 Chartres France
| | | | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90644121 +92-51-90644121 +33-767-97-0619
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans F 28000 Chartres France
- EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours Tours France
| |
Collapse
|
35
|
Xiang S, Chen H, Luo X, An B, Wu W, Cao S, Ruan S, Wang Z, Weng L, Zhu H, Liu Q. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:184. [PMID: 30081934 PMCID: PMC6091185 DOI: 10.1186/s13046-018-0844-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Isoliquiritigenin (ISL), a natural flavonoid isolated from the root of licorice (Glycyrrhiza uralensis), has shown various pharmacological properties including anti-oxidant, anti-inflammatory and anti-cancer activities. MicroRNAs (miRNAs), a class of small non-coding RNAs, have been reported as post-transcriptional regulators with altered expression levels in melanoma. This study aims to investigate the anti-melanoma effect of ISL and its potential mechanism. METHODS We investigated the effect of ISL on the proliferation and apoptosis of melanoma cell lines with functional assays, such as CCK-8 assay, colony formation assay and flow cytometry. The protein level of apoptosis related genes were measured by western blotting. High-throughput genome sequencing was used for screening differentially expressed miRNAs of melanoma cell lines after the treatment of ISL. We performed functional assays to determine the oncogenic role of miR-301b, the most differentially expressed miRNA, and its target gene leucine rich repeats and immunoglobulin like domains 1 (LRIG1), confirmed by bioinformatic analysis, luciferase reporter assay, western blotting and immunohistochemical assay in melanoma. Immunocompromised mouse models were used to determine the role of miR-301b and its target gene in melanoma tumorigenesis in vivo. The relationship between miR-301b and LRIG1 was further verified in GEO data set and tissue specimens. RESULTS Functional assays indicated that ISL exerted significant growth inhibition and apoptosis induction on melanoma cells. MiR-301b is the most differentially expressed miRNA after the treatment of ISL and significantly downregulated. The suppressive effect of ISL on cell growth is reversed by ectopic expression of miR-301b. Intratumorally administration of miR-301b angomir enhances the inhibitory effect of ISL on tumor growth in vivo. Bioinformatic analysis showed that miR-301b may target LRIG1, miR-301b suppresses the luciferase activity of reporter constructs containing 3'UTR of LRIG1 as well as the expression level of LRIG1. And the anti-cancer effect of ISL is mitigated when LRIG1 is silenced in vivo and in vitro. Analysis of the melanoma samples obtained from patients shows that LRIG1 is negatively correlated with miR-301b. CONCLUSIONS ISL may inhibit the proliferation of melanoma cells by suppressing miR-301b and inducing its target LRIG1.
Collapse
Affiliation(s)
- Shijian Xiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Huoji Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojun Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Baichao An
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wenfeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Siwei Cao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shifa Ruan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lidong Weng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
36
|
Liu X, Zhu Q, Zhang M, Yin T, Xu R, Xiao W, Wu J, Deng B, Gao X, Gong W, Lu G, Ding Y. Isoliquiritigenin Ameliorates Acute Pancreatitis in Mice via Inhibition of Oxidative Stress and Modulation of the Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7161592. [PMID: 29854090 PMCID: PMC5944199 DOI: 10.1155/2018/7161592] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/17/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays a crucial role in the pathogenesis of acute pancreatitis (AP). Isoliquiritigenin (ISL) is a flavonoid monomer with confirmed antioxidant activity. However, the specific effects of ISL on AP have not been determined. In this study, we aimed to investigate the protective effect of ISL on AP using two mouse models. In the caerulein-induced mild acute pancreatitis (MAP) model, dynamic changes in oxidative stress injury of the pancreatic tissue were observed after AP onset. We found that ISL administration reduced serum amylase and lipase levels and alleviated the histopathological manifestations of pancreatic tissue in a dose-dependent manner. Meanwhile, ISL decreased the oxidative stress injury and increased the protein expression of the Nrf2/HO-1 pathway. In addition, after administering a Nrf2 inhibitor (ML385) or HO-1 inhibitor (zinc protoporphyrin) to block the Nrf2/HO-1 pathway, we failed to observe the protective effects of ISL on AP in mice. Furthermore, we found that ISL mitigated the severity of pancreatic tissue injury and pancreatitis-associated lung injury in a severe acute pancreatitis model induced by L-arginine. Taken together, our data for the first time confirmed the protective effects of ISL on AP in mice via inhibition of oxidative stress and modulation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Xinnong Liu
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qingtian Zhu
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Min Zhang
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Tao Yin
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Rong Xu
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jian Wu
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Bin Deng
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xuefeng Gao
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yanbing Ding
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
37
|
Isoliquiritigenin induces apoptosis and autophagy and inhibits endometrial cancer growth in mice. Oncotarget 2018; 7:73432-73447. [PMID: 27708238 PMCID: PMC5341989 DOI: 10.18632/oncotarget.12369] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/25/2016] [Indexed: 12/17/2022] Open
Abstract
Endometrial cancer is the most common cancer in women, typically with onset after menopause. Isoliquiritigenin (ISL), a licorice flavonoid, was previously shown to have anti-oxidant, anti-inflammatory, and tumor suppression effects. In this study, we investigated the anti-tumor effect of ISL on human endometrial cancer both in vitro and in vivo. We used telomerase-immortalized human endometrial stromal cells (T-HESCs) and human endometrial cancer cell lines (Ishikawa, HEC-1A, and RL95-2 cells) as targets. The effects of ISL on cell proliferation, cell cycle regulation, and apoptosis or autophagy-related protein expression were examined. In addition, we conducted in vivo experiments to confirm the inhibitory effects of ISL on cancer cells. ISL significantly inhibited the viability of cancer cells in a dose- and time-dependent manner but with little toxicity on normal cells. In addition, flow cytometry analysis indicated that ISL induced sub-G1 or G2/M phase arrest. ISL treatment activated the extracellular signal regulated kinase signaling pathway to enhance the protein expression of caspase-7/LC3BII associated with apoptosis/autophagy. Furthermore, ISL suppressed xenograft tumor growth in vivo. Taken together, these findings suggest that ISL may induce apoptosis, autophagy, and cell growth inhibition, indicating its potential as a therapeutic agent for human endometrial cancer.
Collapse
|
38
|
Exploring the Pharmacological Mechanism of Danzhi Xiaoyao Powder on ER-Positive Breast Cancer by a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5059743. [PMID: 29692855 PMCID: PMC5859839 DOI: 10.1155/2018/5059743] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Background Breast cancer is the most common malignancy among women worldwide, but the long-term endocrine therapy is frequently associated with adverse side effects. Danzhi Xiaoyao powder (DXP) is a herbal formula that has an effect on breast cancer, especially ER-positive breast cancer. However, the active compounds, potential targets, and pharmacological and molecular mechanism of its action against cancer remain unclear. Methods A network pharmacology approach comprising drug-likeness evaluation, oral bioavailability prediction, Caco-2 permeability prediction, multiple compound target prediction, multiple known target collection, breast cancer genes collection, and network analysis has been used in this study. Results Four networks are set up—namely, ER-positive breast cancer network, compound-compound target network of DXP, DXP-ER-positive breast cancer network, and compound-known target-ER-positive breast cancer network. Some ER-positive breast cancer and DXP related targets, clusters, biological processes, and pathways, and several potential anticancer compounds are found. Conclusion This network analysis successfully predicted, illuminated, and confirmed the molecular synergy of DXP for ER-positive breast cancer, got potential anticancer active compounds, and found the potential ER-positive breast cancer associated targets, cluster, biological processes, and pathways. This work also provides clues to the researcher who explores ethnopharmacological or/and herbal medicine's or even multidrugs' various synergies.
Collapse
|
39
|
Zhang Y, Chen S, Wei C, Rankin GO, Ye X, Chen YC. Dietary compound proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves attenuate chemotherapy-resistant ovarian cancer stem cell traits via targeting the Wnt/β-catenin signaling pathway and inducing G1 cell cycle arrest. Food Funct 2018; 9:525-533. [PMID: 29256569 PMCID: PMC5962270 DOI: 10.1039/c7fo01453h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) represent a small population of cancer cells characterized by self-renewal ability, tumorigenesis and drug resistance. Ovarian cancer is one of the leading causes of death related to the female reproductive system in Western countries and has been evaluated as a type of CSC-related cancer in recent years. Natural products have attracted great attention in cancer treatment in recent years due to drug resistance and a high relapse rate of ovarian cancer. Chinese bayberry leaf proanthocyanidins (BLPs) contain epigallocatechin-3-O-gallate as their terminal and major extension units, which is quite unusual in the plant kingdom. BLPs showed strong antioxidant and antiproliferative abilities in previous studies. In the present study, chemotherapy-resistant OVCAR-3 spheroid (SP) cells were obtained by sphere culturing and exhibited CSC-like properties by showing a higher ALDH+ population and higher expression of stemness-related proteins. BLPs exhibited inhibitory effects on the growth and CSC characteristics of OVCAR-3 SP cells by showing decreased cell viability, sphere and colony formation ability, ALDH+ population and expression of stemness-related proteins. BLPs also targeted the Wnt/β-catenin pathway by reducing the expression of β-catenin, cyclin D1 and c-Myc and thus inhibited the self-renewal ability of OVCAR-3 SP cells. Furthermore, BLPs also induced G1 cell cycle arrest in OVCAR-3 SP cells. Taken together, these findings suggested that BLPs may be an important agent in the development of therapeutics for ovarian cancer patients.
Collapse
Affiliation(s)
- Yu Zhang
- Zhejiang University, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China.
| | | | | | | | | | | |
Collapse
|
40
|
Hu H, Li B, Zhou C, Ying X, Chen M, Huang T, Chen Y, Ji H, Pan R, Wang T, Jiang D, Chen Y, Yang Y, Duan S. Diagnostic value of WIF1 methylation for colorectal cancer: a meta-analysis. Oncotarget 2018; 9:5378-5386. [PMID: 29435185 PMCID: PMC5797056 DOI: 10.18632/oncotarget.23870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/23/2017] [Indexed: 01/05/2023] Open
Abstract
As a common antagonist of Wnt/β-catenin signaling, Wnt inhibitory factor 1 (WIF1) plays an important role in the tumor progression. The aim of our meta-analysis was to summarize the diagnostic value of WIF1 methylation in colorectal cancer (CRC). Eligible studies were retrieved by a systemic search among PubMed, Embase, CNKI, and Wanfang literature databases. The diagnostic value of WIF1 methylation for CRC was assessed by the summary receiver operating characteristics (SROC) test. Our meta-analysis of 12 studies between 1420 CRC samples and 946 control samples showed that WIF1 hypermethylation was significantly associated with CRC (P < 0.001, OR = 30.10, 95% CI = 19.48-46.50). WIF1 hypermethylation, as a diagnostic biomarker for CRC, has a pooled sensitivity of 0.40 (95% CI: 0.37-0.42), a pooled specificity of 0.95 (95% CI: 0.93-0.96), a pooled positive-likelihood ratio (PLR) of 8.65 (95% CI, 4.47-16.73), and a pooled negative-likelihood ratio (NLR) of 0.41 (95% CI, 0.30-0.55), a diagnostic odds ratio (DOR) of 26.86 (95% CI: 15.73-45.89), and an area under the curve (AUC) of 0.9115. In conclusion, our study established that WIF1 hypermethylation might be a promising diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Min Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Tianyi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yuehong Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Huihui Ji
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Tiangong Wang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Danjie Jiang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yanfei Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yong Yang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
41
|
Di Martile M, Desideri M, De Luca T, Gabellini C, Buglioni S, Eramo A, Sette G, Milella M, Rotili D, Mai A, Carradori S, Secci D, De Maria R, Del Bufalo D, Trisciuoglio D. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells. Oncotarget 2017; 7:11332-48. [PMID: 26870991 PMCID: PMC4905477 DOI: 10.18632/oncotarget.7238] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/23/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) play an important role in tumor initiation, progression, therapeutic failure and tumor relapse. In this study, we evaluated the efficacy of the thiazole derivative 3-methylcyclopentylidene-[4-(4′-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6), a novel pCAF and Gcn5 histone acetyltransferase inhibitor, as a small molecule that preferentially targets lung cancer stem-like cells (LCSCs) derived from non-small cell lung cancer (NSCLC) patients. Notably, although CPTH6 inhibits the growth of both LCSC and NSCLC cell lines, LCSCs exhibit greater growth inhibition than established NSCLC cells. Growth inhibitory effect of CPTH6 in LCSC lines is primarily due to apoptosis induction. Of note, differentiated progeny of LCSC lines is more resistant to CPTH6 in terms of loss of cell viability and reduction of protein acetylation, when compared to their undifferentiated counterparts. Interestingly, in LCSC lines CPTH6 treatment is also associated with a reduction of stemness markers. By using different HAT inhibitors we provide clear evidence that inhibition of HAT confers a strong preferential inhibitory effect on cell viability of undifferentiated LCSC lines when compared to their differentiated progeny. In vivo, CPTH6 is able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors, as evidenced by marked reduction of tumor-initiating capacity in limiting dilution assays. Strikingly, the ability of CPTH6 to inhibit tubulin acetylation is also confirmed in vivo. Overall, our studies propose histone acetyltransferase inhibition as an attractive target for cancer therapy of NSCLC.
Collapse
Affiliation(s)
- Marta Di Martile
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Marianna Desideri
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Teresa De Luca
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Gabellini
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Adriana Eramo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Sette
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Milella
- Clinical and Experimental Oncology Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, 'Sapienza' University, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, 'Sapienza' University, Rome, Italy.,Pasteur Institute, Cenci Bolognetti Foundation, 'Sapienza' University, Rome, Italy
| | - Simone Carradori
- Department of Drug Chemistry and Technologies, 'Sapienza' University, Rome, Italy
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, 'Sapienza' University, Rome, Italy
| | - Ruggero De Maria
- Scientific Director, Regina Elena National Cancer Institute, Rome, Italy
| | - Donatella Del Bufalo
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Trisciuoglio
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
42
|
Network-pharmacology-based validation of TAMS/CXCL-1 as key mediator of XIAOPI formula preventing breast cancer development and metastasis. Sci Rep 2017; 7:14513. [PMID: 29109519 PMCID: PMC5674025 DOI: 10.1038/s41598-017-15030-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022] Open
Abstract
Network pharmacology has become a powerful means of understanding the mechanisms underlying the action of Chinese herbs in cancer treatment. This study aims to validate the preventive effects and molecular mechanisms of a clinical prescription XIAOPI formula against breast cancer. In vivo breast cancer xenograft data showed that XIAOPI delayed breast cancer development and efficiently inhibited lung metastasis, accompanied by prolonged survival benefits and decreased cancer stem cell subpopulations. However, similar phenomenon were not observed in a cell model. The herb-ingredient-target network analysis further identified a total of 81 genes closely correlated with the breast cancer chemoprevention effects of XIAOPI. Cytokine array analysis further validated CXCL-1 as the key target of XIAOPI both in vitro and in vivo. Evaluation of the mechanism demonstrated that CXCL-1 administration significantly abrogated the metastatic inhibition effects of XIAOPI on breast cancer migration, invasion, stem cells subpopulations, epithelial-mesenchymal transition(EMT), or mammosphere formation abilities. Overall, our study provides experimental evidence and molecular mechanisms that may facilitate the safe and effective use of herbal medicine for the prevention of breast cancer growth or metastasis, and may lead to CXCL-1-based therapeutic strategies for mammary malignancies.
Collapse
|
43
|
Hu FW, Yu CC, Hsieh PL, Liao YW, Lu MY, Chu PM. Targeting oral cancer stemness and chemoresistance by isoliquiritigenin-mediated GRP78 regulation. Oncotarget 2017; 8:93912-93923. [PMID: 29212198 PMCID: PMC5706844 DOI: 10.18632/oncotarget.21338] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer stem cells (CSCs) are cells that drive tumorigenesis, contributing to metastasis and cancer recurrence as well as resistance to chemotherapy of oral squamous cell carcinomas (OSCC). Therefore, approaches to target CSCs become the subject of intense research for cancer therapy. In this study, we demonstrated that isoliquiritigenin, a chalcone-type flavonoid isolated from licorice root, exhibited more toxicity in oral cancer stem cells (OSCC-CSCs) compared to normal cells. Treatment of isoliquiritigenin not only inhibited the self-renewal ability but also reduced the expression of CSC markers, including the ALDH1 and CD44. In addition, the capacities of OSCC-CSCs to invade, metastasize and grow into a colony were suppressed by isoliquiritigenin. Most importantly, we showed that isoliquiritigenin potentiated chemotherapy along with downregulated expression of an ABC transporter that is associated with drug resistance, ABCG2. Moreover, a combination of isoliquiritigenin and Cisplatin significantly repressed the invasion and colony formation abilities of OSCC-CSCs. Our results suggested that administration of isoliquiritigenin reduced the protein expression of mRNA and membrane GRP78, a critical mediator of tumor biology. Overexpression of GRP78 reversed the inhibitory effect of isoliquiritigenin on OSCC-CSCs. Furthermore, isoliquiritigenin retarded the tumor growth in nude mice bearing OSCC xenografts. Taken together, these findings showed that isoliquiritigenin is an effective natural compound that can serve as an adjunct to chemotherapy for OSCC.
Collapse
Affiliation(s)
- Fang-Wei Hu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy and Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
44
|
Chen HY, Huang TC, Shieh TM, Wu CH, Lin LC, Hsia SM. Isoliquiritigenin Induces Autophagy and Inhibits Ovarian Cancer Cell Growth. Int J Mol Sci 2017; 18:ijms18102025. [PMID: 28934130 PMCID: PMC5666707 DOI: 10.3390/ijms18102025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/02/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is one of the commonest gynecologic malignancies, which has a poor prognosis for patients at the advanced stage. Isoliquiritigenin (ISL), an active flavonoid component of the licorice plant, previously demonstrated antioxidant, anti-inflammatory, and tumor suppressive effects. In this study, we investigated the antitumor effect of ISL on human ovarian cancer in vitro using the human ovarian cancer cell lines, OVCAR5 and ES-2, as model systems. Our results show that ISL significantly inhibited the viability of cancer cells in a concentration- and time-dependent manner. Flow cytometry analysis indicated that ISL induced G2/M phase arrest. Furthermore, the expression of cleaved PARP, cleaved caspase-3, Bax/Bcl-2 ratio, LC3B-II, and Beclin-1 levels were increased in western blot analysis. To clarify the role of autophagy and apoptosis in the effect of ISL, we used the autophagy inhibitor-3-methyladenine (3-MA) to attenuate the punctate fluorescence staining pattern of the p62/sequestosome 1 (SQSTM1, red fluorescence) and LC3 (green fluorescence) proteins after ISL treatment, and 3-MA inhibited the cytotoxicity of ISL. These findings provide new information about the link between ISL-induced autophagy and apoptosis and suggest that ISL is a candidate agent for the treatment of human ovarian cancer.
Collapse
Affiliation(s)
- Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Tsui-Chin Huang
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung 40402, Taiwan.
| | - Chi-Hao Wu
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| | - Li-Chun Lin
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
45
|
Peng F, Tang H, Liu P, Shen J, Guan X, Xie X, Gao J, Xiong L, Jia L, Chen J, Peng C. Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis. Sci Rep 2017; 7:9022. [PMID: 28827662 PMCID: PMC5567123 DOI: 10.1038/s41598-017-08422-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/10/2017] [Indexed: 01/15/2023] Open
Abstract
Breast cancer is one of the most frightful causes of death among females worldwide. Accumulating evidence attached the importance of microRNAs negative regulation to tumorigenesis in breast cancer, suggesting novel cancer therapies targeting microRNAs modulation. Recent studies demonstrated that isoliquiritigenin could inhibit breast cancer cells proliferation and migration, but the underlying mechanism is still limited. In this study, the anti-cancer effects as well as the detailed mechanisms of isoliquiritigenin were explored. The results proved that isoliquiritigenin could negatively regulate breast cancer growth through the induction of apoptosis. We also verified the anti-cancer effect of isoliquiritigenin on migration and invasion, and identified highly expressed miR-374a as one of the main microRNAs down-regulated by isoliquiritigenin treatment in breast cancer. Further study displayed that isoliquiritigenin increased PTEN expression through the decrease of miR-374a expression to inhibit the aberrant Akt signaling. Our findings suggest isoliquiritigenin as a novel anti-cancer candidate significantly regulating miR-374a/PTEN/Akt axis in microRNA-based breast cancer therapies.
Collapse
Affiliation(s)
- Fu Peng
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, Chengdu, China
| | - Hailin Tang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Peng Liu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xinyuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaofang Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, Chengdu, China
| | - Jihai Gao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, Chengdu, China
| | - Liang Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, Chengdu, China
| | - Lei Jia
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong. .,Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, Chengdu, China.
| |
Collapse
|
46
|
Gao F, Zhang J, Fu C, Xie X, Peng F, You J, Tang H, Wang Z, Li P, Chen J. iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int J Nanomedicine 2017; 12:4147-4162. [PMID: 28615942 PMCID: PMC5459978 DOI: 10.2147/ijn.s134148] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Isoliquiritigenin (ISL), a natural anti-breast cancer dietary compound, has poor delivery characteristics and low bioavailability. In order to promote the therapeutic outcome of ISL, a tumor-targeting lipid–polymer hybrid nanoparticle (NP) system modified by tumor-homing iRGD peptides has been developed. The hybrid NPs were prepared by a modified single-step nanoprecipitation method to encapsulate ISL. iRGD peptides were anchored on the surface by a postinsertion method (ISL-iRGD NPs). The stable lipid–polymer structure of ISL-iRGD NPs, with high encapsulation and loading efficiency, was confirmed. Compared to free ISL and non-iRGD-modified counterparts, ISL-iRGD NPs showed higher cytotoxicity and cell apoptosis against the different type of breast cancer cells. This was attributable to higher cellular accumulation mediated by the iRGD-integrin recognition and the nanoscale effect. More importantly, based on the active tumor-tissue accumulation by iRGD peptides and the prolonged in vivo circulation by the stealth nanostructure, ISL-iRGD NPs displayed higher tumor-growth inhibition efficiency in 4T1-bearing breast-tumor mouse models. Therefore, the constructed iRGD modified lipid–polymer hybrid NPs would provide a promising drug-delivery strategy to improve ISL in anti-breast cancer efficacy.
Collapse
Affiliation(s)
- Fei Gao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen.,College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
| | - Fu Peng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen.,College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu
| | - Jieshu You
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen
| | - Hailin Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen.,Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
| | - Zhiyu Wang
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen.,College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu
| |
Collapse
|
47
|
The licorice dietary component isoliquiritigenin chemosensitizes human uterine sarcoma cells to doxorubicin and inhibits cell growth by inducing apoptosis and autophagy via inhibition of m-TOR signaling. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
48
|
Wnt inhibitory factor 1 (WIF1) methylation and its association with clinical prognosis in patients with chondrosarcoma. Sci Rep 2017; 7:1580. [PMID: 28484252 PMCID: PMC5431504 DOI: 10.1038/s41598-017-01763-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/11/2017] [Indexed: 01/11/2023] Open
Abstract
Chondrosarcoma (CS) is a rare cancer, but it is the second most common primary malignant bone tumor and highly resistant to conventional chemotherapy and radiotherapy. Aberrant DNA methylation in the promoter CpG island of Wnt inhibitory factor 1 (WIF1) has been observed in different cancers. However, no studies have shown the relationship between WIF1 methylation and CS. In this study, we found promoter methylated WIF1 in both CS cell lines (CS-1 and SW1353) and tumor tissues. Western blot analysis confirmed loss WIF1 expression and activation of Wnt pathway proteins (Wnt5a/b, LRP6, and Dvl2). We subsequently examined the correlation between levels of WIF1 methylation and overall survival (OS) and progression-free survival (PFS) in CS patient samples with a follow-up spanning 234 months (mean: 57.6 months). Kaplan-Meier survival curves and log-rank tests revealed that high levels of WIF1 methylation were associated with lower OS and PFS rates (p < 0.05). Multivariate Cox hazard analysis suggested that detection of high level methylation of WIF1 could be an independent prognostic factor in OS and PFS. In conclusion, we found that WIF1 is epigenetically silenced via promoter DNA methylation in CS and propose that WIF1 methylation may serve as a potential prognostic marker for patients with CS.
Collapse
|
49
|
Nwabo Kamdje AH, Takam Kamga P, Tagne Simo R, Vecchio L, Seke Etet PF, Muller JM, Bassi G, Lukong E, Kumar Goel R, Mbo Amvene J, Krampera M. Developmental pathways associated with cancer metastasis: Notch, Wnt, and Hedgehog. Cancer Biol Med 2017; 14:109-120. [PMID: 28607802 PMCID: PMC5444923 DOI: 10.20892/j.issn.2095-3941.2016.0032] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Master developmental pathways, such as Notch, Wnt, and Hedgehog, are signaling systems that control proliferation, cell death, motility, migration, and stemness. These systems are not only commonly activated in many solid tumors, where they drive or contribute to cancer initiation, but also in primary and metastatic tumor development. The reactivation of developmental pathways in cancer stroma favors the development of cancer stem cells and allows their maintenance, indicating these signaling pathways as particularly attractive targets for efficient anticancer therapies, especially in advanced primary tumors and metastatic cancers. Metastasis is the worst feature of cancer development. This feature results from a cascade of events emerging from the hijacking of epithelial-mesenchymal transition, angiogenesis, migration, and invasion by transforming cells and is associated with poor survival, drug resistance, and tumor relapse. In the present review, we summarize and discuss experimental data suggesting pivotal roles for developmental pathways in cancer development and metastasis, considering the therapeutic potential. Emerging targeted antimetastatic therapies based on Notch, Wnt, and Hedgehog pathways are also discussed.
Collapse
Affiliation(s)
| | - Paul Takam Kamga
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | | | - Jean Marc Muller
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Giulio Bassi
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Erique Lukong
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Raghuveera Kumar Goel
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Jeremie Mbo Amvene
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Mauro Krampera
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| |
Collapse
|
50
|
Cordone I, Masi S, Summa V, Carosi M, Vidiri A, Fabi A, Pasquale A, Conti L, Rosito I, Carapella CM, Villani V, Pace A. Overexpression of syndecan-1, MUC-1, and putative stem cell markers in breast cancer leptomeningeal metastasis: a cerebrospinal fluid flow cytometry study. Breast Cancer Res 2017; 19:46. [PMID: 28399903 PMCID: PMC5387324 DOI: 10.1186/s13058-017-0827-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 03/03/2017] [Indexed: 01/09/2023] Open
Abstract
Background Cancer is a mosaic of tumor cell subpopulations, where only a minority is responsible for disease recurrence and cancer invasiveness. We focused on one of the most aggressive circulating tumor cells (CTCs) which, from the primitive tumor, spreads to the central nervous system (CNS), evaluating the expression of prognostic and putative cancer stem cell markers in breast cancer (BC) leptomeningeal metastasis (LM). Methods Flow cytometry immunophenotypic analysis of cerebrospinal fluid (CSF) samples (4.5 ml) was performed in 13 consecutive cases of BCLM. Syndecan-1 (CD138), MUC-1 (CD227) CD45, CD34, and the putative cancer stem cell markers CD15, CD24, CD44, and CD133 surface expression were evaluated on CSF floating tumor cells. The tumor-associated leukocyte population was also characterized. Results Despite a low absolute cell number (8 cell/μl, range 1–86), the flow cytometry characterization was successfully conducted in all the samples. Syndecan-1 and MUC-1 overexpression was documented on BC cells in all the samples analyzed; CD44, CD24, CD15, and CD133 in 77%, 75%, 70%, and 45% of cases, respectively. A strong syndecan-1 and MUC-1 expression was also documented by immunohistochemistry on primary breast cancer tissues, performed in four patients. The CSF tumor population was flanked by T lymphocytes, with a different immunophenotype between the CSF and peripheral blood samples (P ≤ 0.02). Conclusions Flow cytometry can be successfully employed for solid tumor LM characterization even in CSF samples with low cell count. This in vivo study documents that CSF floating BC cells overexpress prognostic and putative cancer stem cell biomarkers related to tumor invasiveness, potentially representing a molecular target for circulating tumor cell detection and LM treatment monitoring, as well as a primary target for innovative treatment strategies. The T lymphocyte infiltration, documented in all CSF samples, suggests a possible involvement of the CNS lymphatic system in both lymphoid and cancer cell migration into and out of the meninges, supporting the extension of a new form of cellular immunotherapy to LM. Due to the small number of cases, validation on large cohorts of patients are warranted to confirm these findings and to evaluate the impact and value of these results for diagnosis and management of LM. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0827-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iole Cordone
- Regina Elena National Cancer Institute, Clinical Pathology Division, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Serena Masi
- Regina Elena National Cancer Institute, Clinical Pathology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Valentina Summa
- Regina Elena National Cancer Institute, Clinical Pathology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Mariantonia Carosi
- Regina Elena National Cancer Institute, Histopathology Department, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Antonello Vidiri
- Regina Elena National Cancer Institute, Radiology Department, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Alessandra Fabi
- Regina Elena National Cancer Institute, Medical Oncology Department, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Alessia Pasquale
- Regina Elena National Cancer Institute, Clinical Pathology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Laura Conti
- Regina Elena National Cancer Institute, Clinical Pathology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Immacolata Rosito
- Regina Elena National Cancer Institute, Clinical Pathology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Carmine Maria Carapella
- Regina Elena National Cancer Institute, Neuro-Surgery Department, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Veronica Villani
- Regina Elena National Cancer Institute, Neuro-Oncology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Andrea Pace
- Regina Elena National Cancer Institute, Neuro-Oncology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|