1
|
Della Porta MG, Bewersdorf JP, Wang YH, Hasserjian RP. Future directions in myelodysplastic syndromes/neoplasms and acute myeloid leukaemia classification: from blast counts to biology. Histopathology 2025; 86:158-170. [PMID: 39450427 DOI: 10.1111/his.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi-allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut-offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine-learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher-level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification.
Collapse
Affiliation(s)
- Matteo G Della Porta
- Comprehensive Cancer Center, IRCCS Humanitas Clinical and Research Center and Humanitas University, Milan, Italy
| | - Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Cancer Center, New Haven, CT, USA
| | - Yu-Hung Wang
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Division of Hematology, National Taiwan University Hospital, Taipei, Taiwan
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Loghavi S. SOHO State of the Art Updates and Next Questions-WHO Classification of Acute Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:752-758. [PMID: 38866644 DOI: 10.1016/j.clml.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/14/2024]
Abstract
The 5th edition of the World Health Organization (WHO) classification of Hematolymphoid tumors provides a hierarchically-driven catalog of hematologic neoplasms and introduces a series of changes to the classification of acute myeloid leukemia (AML). Emphasizing molecular genetic findings, it expands the category of "acute myeloid leukemias with defining genetic abnormalities" while retaining the morphologically defined category of AML for cases that do not harbor disease-defining genetic drivers. The updates to the classification of AML provide refined definitions and diagnostic criteria based on clinicopathologic parameters and molecular genetic findings, emphasizing therapeutically and/or prognostically actionable biomarkers. This review provides an overview of the WHO 5th classification for AML with practical considerations for applying this classification system.
Collapse
Affiliation(s)
- Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
4
|
Bedekovics J, Madarász K, Mokánszki A, Molnár S, Mester Á, Miltényi Z, Méhes G. Exploring p53 protein expression and its link to TP53 mutation in myelodysplasia-related malignancies-Interpretive challenges and potential field of applications. Histopathology 2024; 85:143-154. [PMID: 38571438 DOI: 10.1111/his.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
AIMS TP53 alterations have a significant prognostic effect in myeloid neoplasms. Our objective was to investigate the TP53 gene mutation status, p53 protein expression and their relationship in dysplasia-related myeloid neoplasms with varying levels of myeloblast counts. METHODS AND RESULTS A total of 76 bone marrow biopsy samples with different blast counts were analysed. Total and strong (3+) p53 expression was determined. Dual immunohistochemical staining was performed to determine the cell population associated with p53 expression. NGS analysis was performed using the Accel-Amplicon Comprehensive TP53 panel. Both p53 expression and TP53 VAF showed a significant correlation with the myeloblast ratio (P < 0.0001); however, p53 expression was also present in other cell lineages. The VAF value exhibited a significant correlation with p53 expression. A high specificity (0.9800) was observed for TP53 mutation using the ≥ 10% strong (3+) p53 cut-off value, although the sensitivity (0.4231) was low. CONCLUSIONS Strong (3+) p53 expression using a ≥ 10% cut-off value accurately predicts TP53 mutation but does not reveal the allelic state. The p53 expression is significantly influenced by myeloblast count, and histological interpretation should consider the presence of intermixed non-neoplastic marrow cells with varying physiological p53 expression.
Collapse
Affiliation(s)
- Judit Bedekovics
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kristóf Madarász
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Mokánszki
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sarolta Molnár
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Mester
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Miltényi
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Loghavi S, Kanagal-Shamanna R, Khoury JD, Medeiros LJ, Naresh KN, Nejati R, Patnaik MM. Fifth Edition of the World Health Classification of Tumors of the Hematopoietic and Lymphoid Tissue: Myeloid Neoplasms. Mod Pathol 2024; 37:100397. [PMID: 38043791 DOI: 10.1016/j.modpat.2023.100397] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
In this manuscript, we review myeloid neoplasms in the fifth edition of the World Health Organization classification of hematolymphoid tumors (WHO-HEM5), focusing on changes from the revised fourth edition (WHO-HEM4R). Disease types and subtypes have expanded compared with WHO-HEM4R, mainly because of the expansion in genomic knowledge of these diseases. The revised classification is based on a multidisciplinary approach including input from a large body of pathologists, clinicians, and geneticists. The revised classification follows a hierarchical structure allowing usage of family (class)-level definitions where the defining diagnostic criteria are partially met or a complete investigational workup has not been possible. Overall, the WHO-HEM5 revisions to the classification of myeloid neoplasms include major updates and revisions with increased emphasis on genetic and molecular drivers of disease. The most notable changes have been applied to the sections of acute myeloid leukemia and myelodysplastic neoplasms (previously referred to as myelodysplastic syndrome) with incorporation of novel, disease-defining genetic changes. In this review we focus on highlighting the updates in the classification of myeloid neoplasms, providing a comparison with WHO-HEM4R, and offering guidance on how the new classification can be applied to the diagnosis of myeloid neoplasms in routine practice.
Collapse
Affiliation(s)
- Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas.
| | | | - Joseph D Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska
| | - L Jeffrey Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, DC; Section of Pathology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, DC
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Minnesota
| |
Collapse
|
6
|
Sheikhi M, Rostami M, Ferns G, Ayatollahi H, Siyadat P, Ayatollahi Y, Khoshnegah Z. Prognostic significance of ASXL1 mutations in acute myeloid leukemia: A systematic review and meta-analysis. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:202-214. [PMID: 38807730 PMCID: PMC11129077 DOI: 10.22088/cjim.15.2.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/18/2023] [Accepted: 02/26/2023] [Indexed: 05/30/2024]
Abstract
Background Although genetic mutations in additional sex-combs-like 1 (ASXL1) are prevalent in acute myeloid leukemia (AML), their exact impact on the AML prognosis remains uncertain. Hence, the present article was carried out to explore the prognostic importance of ASXL1 mutations in AML. Methods We thoroughly searched electronic scientific databases to find eligible papers. Twenty-seven studies with an overall number of 8,953 participants were selected for the current systematic review. The hazard ratio (HR) and 95% confidence interval (CI) for overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS) were extracted from all studies with multivariate or univariate analysis. Pooled HRs and p-values were also calculated as a part of our work. Results The pooled HR for OS in multivariable analysis indicated that ASXL1 significantly diminished survival in AML patients (pooled HR: 1.67; 95% CI: 1.342-2.091). Conclusions ASXL1 mutations may confer a poor prognosis in AML. Hence, they may be regarded as potential prognostic factors. However, more detailed studies with different ASXL1 mutations are suggested to shed light on this issue.
Collapse
Affiliation(s)
- Maryam Sheikhi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rostami
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gordon Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Payam Siyadat
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Yasamin Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshnegah
- Department of Laboratory Hematology and Blood Banking, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Bewersdorf JP, Xie Z, Bejar R, Borate U, Boultwood J, Brunner AM, Buckstein R, Carraway HE, Churpek JE, Daver NG, Porta MGD, DeZern AE, Fenaux P, Figueroa ME, Gore SD, Griffiths EA, Halene S, Hasserjian RP, Hourigan CS, Kim TK, Komrokji R, Kuchroo VK, List AF, Loghavi S, Majeti R, Odenike O, Patnaik MM, Platzbecker U, Roboz GJ, Sallman DA, Santini V, Sanz G, Sekeres MA, Stahl M, Starczynowski DT, Steensma DP, Taylor J, Abdel-Wahab O, Xu ML, Savona MR, Wei AH, Zeidan AM. Current landscape of translational and clinical research in myelodysplastic syndromes/neoplasms (MDS): Proceedings from the 1 st International Workshop on MDS (iwMDS) Of the International Consortium for MDS (icMDS). Blood Rev 2023; 60:101072. [PMID: 36934059 DOI: 10.1016/j.blre.2023.101072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Biological events that contribute to the pathogenesis of myelodysplastic syndromes/neoplasms (MDS) are becoming increasingly characterized and are being translated into rationally designed therapeutic strategies. Herein, we provide updates from the first International Workshop on MDS (iwMDS) of the International Consortium for MDS (icMDS) detailing recent advances in understanding the genetic landscape of MDS, including germline predisposition, epigenetic and immune dysregulation, the complexities of clonal hematopoiesis progression to MDS, as well as novel animal models of the disease. Connected to this progress is the development of novel therapies targeting specific molecular alterations, the innate immune system, and immune checkpoint inhibitors. While some of these agents have entered clinical trials (e.g., splicing modulators, IRAK1/4 inhibitors, anti-CD47 and anti-TIM3 antibodies, and cellular therapies), none have been approved for MDS. Additional preclinical and clinical work is needed to develop a truly individualized approach to the care of MDS patients.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Uma Borate
- Ohio State University Comprehensive Cancer/ James Cancer Hospital, Ohio State University, Columbus, OH, USA
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew M Brunner
- Leukemia Program, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Rena Buckstein
- Department of Medical Oncology/Hematology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hetty E Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jane E Churpek
- Department of Hematology, Oncology, and Palliative Care, Carbone Cancer Center, The University of Wisconsin-Madison, Madison, WI, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matteo Giovanni Della Porta
- IRCCS Humanitas Clinical and Research Center & Humanitas University, Department of Biomedical Sciences, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Amy E DeZern
- Division of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Pierre Fenaux
- Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris and Paris Cité University, Paris, France
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven D Gore
- National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD, USA
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | | | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, and Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, USA
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Alan F List
- Precision BioSciences, Inc., Durham, NC, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Olatoyosi Odenike
- Leukemia Program, University of Chicago Medicine and University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gail J Roboz
- Weill Cornell Medical College, New York, NY, USA
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Guillermo Sanz
- Health Research Institute La Fe, Valencia, Spain; Hospital Universitario y Politécnico La Fe, Valencia, Spain; CIBERONC, IS Carlos III, Madrid, Spain
| | - Mikkael A Sekeres
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omar Abdel-Wahab
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mina L Xu
- Departments of Pathology & Laboratory Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Michael R Savona
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew H Wei
- Department of Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research and University of Melbourne, Victoria, Australia
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
8
|
Kurzer JH, Weinberg OK. Updates in molecular genetics of acute myeloid leukemia. Semin Diagn Pathol 2023; 40:140-151. [PMID: 37059636 DOI: 10.1053/j.semdp.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Acute myeloid leukemia (AML) is a type of cancer caused by aggressive neoplastic proliferations of immature myeloid cells that is fatal if untreated. AML accounts for 1.0% of all new cancer cases in the United States, with a 5-year relative survival rate of 30.5%. Once defined primarily morphologically, advances in next generational sequencing have expanded the role of molecular genetics in categorizing the disease. As such, both the World Health Organization Classification of Haematopoietic Neoplasms and The International Consensus Classification System now define a variety of AML subsets based on mutations in driver genes such as NPM1, CEBPA, TP53, ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and ZRSR2. This article provides an overview of some of the genetic mutations associated with AML and compares how the new classification systems incorporate molecular genetics into the definition of AML.
Collapse
Affiliation(s)
- Jason H Kurzer
- Department of Pathology, Stanford University Medical School, Palo Alto, CA, United States.
| | - Olga K Weinberg
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
9
|
Sandoval C, Calle Y, Godoy K, Farías J. An Updated Overview of the Role of CYP450 during Xenobiotic Metabolization in Regulating the Acute Myeloid Leukemia Microenvironment. Int J Mol Sci 2023; 24:6031. [PMID: 37047003 PMCID: PMC10094375 DOI: 10.3390/ijms24076031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Oxidative stress is associated with several acute and chronic disorders, including hematological malignancies such as acute myeloid leukemia, the most prevalent acute leukemia in adults. Xenobiotics are usually harmless compounds that may be detrimental, such as pharmaceuticals, environmental pollutants, cosmetics, and even food additives. The storage of xenobiotics can serve as a defense mechanism or a means of bioaccumulation, leading to adverse effects. During the absorption, metabolism, and cellular excretion of xenobiotics, three steps may be distinguished: (i) inflow by transporter enzymes, (ii) phases I and II, and (iii) phase III. Phase I enzymes, such as those in the cytochrome P450 superfamily, catalyze the conversion of xenobiotics into more polar compounds, contributing to an elevated acute myeloid leukemia risk. Furthermore, genetic polymorphism influences the variability and susceptibility of related myeloid neoplasms, infant leukemias associated with mixed-lineage leukemia (MLL) gene rearrangements, and a subset of de novo acute myeloid leukemia. Recent research has shown a sustained interest in determining the regulators of cytochrome P450, family 2, subfamily E, member 1 (CYP2E1) expression and activity as an emerging field that requires further investigation in acute myeloid leukemia evolution. Therefore, this review suggests that CYP2E1 and its mutations can be a therapeutic or diagnostic target in acute myeloid leukemia.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Yolanda Calle
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - Karina Godoy
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
10
|
Weinberg OK, Porwit A, Orazi A, Hasserjian RP, Foucar K, Duncavage EJ, Arber DA. The International Consensus Classification of acute myeloid leukemia. Virchows Arch 2023; 482:27-37. [PMID: 36264379 DOI: 10.1007/s00428-022-03430-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 01/24/2023]
Abstract
Acute myeloid leukemias (AMLs) are overlapping hematological neoplasms associated with rapid onset, progressive, and frequently chemo-resistant disease. At diagnosis, classification and risk stratification are critical for treatment decisions. A group with expertise in the clinical, pathologic, and genetic aspects of these disorders developed the International Consensus Classification (ICC) of acute leukemias. One of the major changes includes elimination of AML with myelodysplasia-related changes group, while creating new categories of AML with myelodysplasia-related cytogenetic abnormalities, AML with myelodysplasia-related gene mutations, and AML with mutated TP53. Most of recurrent genetic abnormalities, including mutations in NPM1, that define specific subtypes of AML have a lower requirement of ≥ 10% blasts in the bone marrow or blood, and a new category of MDS/AML is created for other case types with 10-19% blasts. Prior therapy, antecedent myeloid neoplasms or underlying germline genetic disorders predisposing to the development of AML are now recommended as qualifiers to the initial diagnosis of AML. With these changes, classification of AML is updated to include evolving genetic, clinical, and morphologic findings.
Collapse
Affiliation(s)
- Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, BioCenter, 2230 Inwood Rd, Dallas, TX, EB03.220G75235, USA.
| | - Anna Porwit
- Division of Oncology and Pathology, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, El Paso, TX, USA
| | | | - Kathryn Foucar
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Al-Bulushi F, Al-Riyami R, Al-Housni Z, Al-Abri B, Al-Khabori M. Impact of mutations in epigenetic modifiers in acute myeloid leukemia: A systematic review and meta-analysis. Front Oncol 2022; 12:967657. [PMID: 36518313 PMCID: PMC9742486 DOI: 10.3389/fonc.2022.967657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/11/2022] [Indexed: 08/30/2023] Open
Abstract
This is a systematic review and meta-analysis evaluating the prognostic significance of epigenetic mutations on the overall survival (OS) in Acute Myeloid Leukemia (AML). We searched for studies evaluating epigenetic mutations in AML (up to November 2018) in PubMed, Trip database and Cochrane library. Hazard ratio (HR) of outcomes were extracted, and random-effects model was used to pool the results. A total of 10,002 citations were retrieved from the search strategy; 42 articles were identified for the meta-analysis (ASXL1 = 7, TET2 = 8, DNMT3A = 12, IDH =15), with fair to good-quality studies. The pooled HR was 1.88 (95% CI: 1.49-2.36) for ASXL1 mutation, 1.39 (95% CI: 1.18-1.63) for TET2 mutation, 1.35 (95% CI 1.16-1.56) for DNMT3a and 1.54 (95% CI: 1.15-2.06) for IDH mutation. However, there was a substantial heterogeneity in the DNMT3a and IDH studies. In conclusion epigenetic mutations in ASXL1, TET2, DNMT3a and IDH adversely impact OS in patients with AML albeit with considerable heterogeneity and possibly publication bias. Further studies are required to address these limitations.
Collapse
Affiliation(s)
- Fatma Al-Bulushi
- Hematopathology, Oman Medical Specialty Board, Muscat, Oman
- Hematology Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Rahma Al-Riyami
- Internal Medicine, Oman Medical Specialty Board, Muscat, Oman
| | - Zainab Al-Housni
- Hematology Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Bushra Al-Abri
- Hematopathology, Oman Medical Specialty Board, Muscat, Oman
| | - Murtadha Al-Khabori
- Hematology Department, Sultan Qaboos University Hospital, Muscat, Oman
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
12
|
How Genetics Can Drive Initial Therapy Choices for Older Patients with Acute Myeloid Leukemia. Curr Treat Options Oncol 2022; 23:1086-1103. [PMID: 35687257 PMCID: PMC9898635 DOI: 10.1007/s11864-022-00991-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Treatment of older adults with acute myeloid leukemia (AML) is challenging. Therapy decisions must be guided by multiple factors including aging-related conditions (e.g., comorbidities, functional impairment), therapy benefits and risks, patient preferences, and disease characteristics. Balancing these factors requires understanding the unique, and frequently higher-risk cytogenetic and molecular characteristics of AML in older adult populations, which should caution providers not to reduce therapy intensity on the basis of age alone. Instead, geriatric assessments should be employed to determine fitness for therapy. Treatment options in AML are increasingly targeted to specific mutations or recognized to have differential benefits on the basis of genomics, and representation of older adults and geriatric outcome reporting in clinical trials is improving. Additionally, newer studies have begun to explore personalized therapy strategies on the basis of initial genetic testing. Review and refinement of practice guidelines for older patients on the basis of these advances is needed and is anticipated to remain an important topic in ongoing hematology/oncology clinical education.
Collapse
|
13
|
Genetic Characteristics According to Subgroup of Acute Myeloid Leukemia with Myelodysplasia-Related Changes. J Clin Med 2022; 11:jcm11092378. [PMID: 35566503 PMCID: PMC9105081 DOI: 10.3390/jcm11092378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) includes heterogeneous conditions such as previous history and specific cytogenetic and morphological properties. In this study, we analyze genetic aberrations using an RNA-based next-generation sequencing (NGS) panel assay in 45 patients with AML-MRC and detect 4 gene fusions of KMT2A-SEPT9, KMT2A-ELL, NUP98-NSD1, and RUNX1-USP42 and 81 somatic mutations. Overall, all patients had genetic aberrations comprising of not only cytogenetic changes, but also gene fusions and mutations. We also demonstrated several characteristic genetic mutations according to the AML-MRC subgroup. TP53 was the most commonly mutated gene (n = 11, 24%) and all were found in the AML-MRC subgroup with myelodysplastic syndrome-defining cytogenetic abnormalities (AML-MRC-C) (p = 0.002). These patients showed extremely poor overall survival not only in AML-MRC, but also within the AML-MRC-C subgroup. The ASXL1 (n = 9, 20%) and SRSF2 (n = 7, 16%) mutations were associated with the AML-MRC subgroup with >50% dysplasia in at least two lineages (AML-MRC-M) and were frequently co-mutated (55%, 6/11, p < 0.001). Both mutations could be used as surrogate markers to diagnose AML-MRC, especially when the assessment of multilineage dysplasia was difficult. IDH1/IDH2 (n = 13, 29%) were most commonly mutated in AML-MRC, followed by CEBPA (n = 5, 11%), PTPN11 (n = 5, 11%), FLT3 (n = 4, 9%), IDH1 (n = 4, 9%), and RUNX1 (n = 4, 9%). These mutations were not limited in any AML-MRC subgroup and could have more significance as a risk factor or susceptibility marker for target therapy in not only AML-MRC, but also other AML categories.
Collapse
|
14
|
Tan YX, Luo J, Huang JX, Luo DM, Liang HY, Zhou X, Liu XL, Xu N. [Analysis of the effect of gene mutations on the efficacy of ruxolitinib in patients with myelofibrosis based on second-generation sequencing technology]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:323-329. [PMID: 35680632 PMCID: PMC9189480 DOI: 10.3760/cma.j.issn.0253-2727.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Indexed: 12/01/2022]
Abstract
Objective: To assess the effect of gene mutations on the efficacy of ruxolitinib for treating myelofibrosis (MF) . Methods: We retrospectively analyzed the clinical data of 56 patients with MF treated with ruxolitinib from July 2017 to December 2020 and applied second-generation sequencing (NGS) technology to detect 127 hematologic tumor-related gene mutations. Additionally, we analyzed the relationship between mutated genes and the efficacy of ruxolitinib. Results: ①Among the 56 patients, there were 36 cases of primary bone marrow fibrosis (PMF) , 9 cases of bone marrow fibrosis (ppv-mf) after polycythemia vera, and 11 cases of bone marrow fibrosis (PET-MF) after primary thrombocytosis (ET) . ②Fifty-six patients with MF taking ruxolitinib underwent NGS, among whom, 50 (89.29%) carried driver mutations, 22 (39.29%) carried ≥3 mutations, and 29 (51.79%) carried high-risk mutations (HMR) . ③ For patients with MF carrying ≥ 3 mutations, ruxolitinib still had a better effect of improving somatic symptoms and shrinking the spleen (P=0.001, P<0.001) , but TTF and PFS were significantly shorter in patients carrying ≥ 3 mutations (P=0.007, P=0.042) . ④For patients carrying ≥ 2 HMR mutations, ruxolitinib was less effective in shrinking the spleen than in those who did not carry HMR (t= 10.471, P=0.034) , and the TTF and PFS were significantly shorter in patients carrying ≥2 HMR mutations (P<0.001, P=0.001) . ⑤Ruxolitinib had poorer effects on spleen reduction, symptom improvement, and stabilization of myelofibrosis in patients carrying additional mutations in ASXL1, EZH2, and SRSF2. Moreover, patients carrying ASXL1 and EZH2 mutations had significantly shorter TTF [ASXL1: 360 (55-1270) d vs 440 (55-1268) d, z=-3.115, P=0.002; EZH2: 327 (55-975) d vs 404 (50-1270) d, z=-3.219, P=0.001], and significantly shorter PFS compared to non-carriers [ASXL1: 457 (50-1331) d vs 574 (55-1437) d, z=-3.219, P=0.001) ; 428 (55-1331) d vs 505 (55-1437) d, z=-2.576, P=0.008]. Conclusion: The type and number of mutations carried by patients with myelofibrosis and HMR impact the efficacy of ruxolitinib.
Collapse
Affiliation(s)
- Y X Tan
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - J Luo
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - J X Huang
- Department of Hematology, Yuebei People's Hospital, Shaoguan 512025, China
| | - D M Luo
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - H Y Liang
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - X Zhou
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - X L Liu
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - N Xu
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
TP53 Expression and Mutational Analysis in Hematological Malignancy in Jeddah, Saudi Arabia. Diagnostics (Basel) 2022; 12:diagnostics12030724. [PMID: 35328276 PMCID: PMC8946951 DOI: 10.3390/diagnostics12030724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Tumor protein 53 (TP53) is a tumor-suppressor gene and plays an essential role in apoptosis, cell cycle arrest, genomic stability, and DNA repair. Although it is the most often mutated gene in human cancer, it has respectively low frequency in hematological malignancy but is significantly linked with complex karyotype, poor prognosis, and chemotherapeutic response. Nevertheless, the prevalence and prognostic role of TP53 mutations in hematological malignancy in Saudi patients are not well reported. We, therefore, aim to assess the frequency of TP53 mutations in hematological malignancies in Saudi Arabia. Method: 20 different hematological malignancy samples were tested using fluorescence in situ hybridization (FISH) technique for TP53 deletion detection and next-generation sequencing (NGS) targeted panel was applied on 10 samples for mutations identification specifically TP53 mutation. Results: TP53 deletion was detected in 6 of 20 samples by FISH. Most of the 6 patients with TP53 deletion had acute lymphoblastic leukemia (ALL), and majority of them were child. NGS result revealed one heterozygous missense mutation in exon 5 of the TP53 gene (c. G9963A, p.H175R). Conclusion: To the best of our knowledge, the TP53 mutation is novel variant, and the first time we are reporting their association with myelodysplastic syndromic individual with complex karyotype. This study recommends further analysis of genomic mutations on bigger cohorts, utilizing high throughput technologies.
Collapse
|
16
|
Duchmann M, Wagner-Ballon O, Boyer T, Cheok M, Fournier E, Guerin E, Fenwarth L, Badaoui B, Freynet N, Benayoun E, Lusina D, Garcia I, Gardin C, Fenaux P, Pautas C, Quesnel B, Turlure P, Terré C, Thomas X, Lambert J, Renneville A, Preudhomme C, Dombret H, Itzykson R, Cluzeau T. Machine learning identifies the independent role of dysplasia in the prediction of response to chemotherapy in AML. Leukemia 2022; 36:656-663. [PMID: 34615986 DOI: 10.1038/s41375-021-01435-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022]
Abstract
The independent prognostic impact of specific dysplastic features in acute myeloid leukemia (AML) remains controversial and may vary between genomic subtypes. We apply a machine learning framework to dissect the relative contribution of centrally reviewed dysplastic features and oncogenetics in 190 patients with de novo AML treated in ALFA clinical trials. One hundred and thirty-five (71%) patients achieved complete response after the first induction course (CR). Dysgranulopoiesis, dyserythropoiesis and dysmegakaryopoiesis were assessable in 84%, 83% and 63% patients, respectively. Multi-lineage dysplasia was present in 27% of assessable patients. Micromegakaryocytes (q = 0.01), hypolobulated megakaryocytes (q = 0.08) and hyposegmented granulocytes (q = 0.08) were associated with higher ELN-2017 risk. Using a supervised learning algorithm, the relative importance of morphological variables (34%) for the prediction of CR was higher than demographic (5%), clinical (2%), cytogenetic (25%), molecular (29%), and treatment (5%) variables. Though dysplasias had limited predictive impact on survival, a multivariate logistic regression identified the presence of hypolobulated megakaryocytes (p = 0.014) and micromegakaryocytes (p = 0.035) as predicting lower CR rates, independently of monosomy 7 (p = 0.013), TP53 (p = 0.004), and NPM1 mutations (p = 0.025). Assessment of these specific dysmegakarypoiesis traits, for which we identify a transcriptomic signature, may thus guide treatment allocation in AML.
Collapse
Affiliation(s)
- Matthieu Duchmann
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France.,Université de Paris, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, 75010, Paris, France
| | - Orianne Wagner-Ballon
- Département d'Hématologie et Immunologie biologiques, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France.,INSERM U955 IMRB, UPEC, Créteil, France
| | - Thomas Boyer
- Service d'Hématologie Biologique, CHU Lille, Lille, France.,Service d'Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
| | | | - Elise Fournier
- Service d'Hématologie Biologique, CHU Lille, Lille, France
| | - Estelle Guerin
- Service d'Hématologie biologique, Hôpital Dupuytren, Limoges, France.,UMR CNRS 7276/INSERM 1262, CHU Limoges, Limoges, France
| | - Laurène Fenwarth
- Université Lille, CNRS, INSERM, CHU Lille, IRCL, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Bouchra Badaoui
- Département d'Hématologie et Immunologie biologiques, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Nicolas Freynet
- Département d'Hématologie et Immunologie biologiques, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Emmanuel Benayoun
- Département d'Hématologie et Immunologie biologiques, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Daniel Lusina
- Laboratoire d'Hématologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Université Sorbonne Paris Cité, Bobigny, France
| | - Isabel Garcia
- Laboratoire d'Hématologie, Hôpital André Mignot, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Claude Gardin
- Département d'Hématologie Clinique, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Pierre Fenaux
- Département d'Hématologie Clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Cécile Pautas
- Département d'Hématologie clinique, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Bruno Quesnel
- CHU Lille, Service des Maladies du Sang, 59000, Lille, France
| | - Pascal Turlure
- Département d'Hématologie Clinique, CHU Limoges, Limoges, France
| | - Christine Terré
- Laboratoire de Cytogénétique, Hôpital André Mignot, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Xavier Thomas
- Département d'Hématologie Clinique, Hospices Civils de Lyon, Hôpital Lyon-Sud, Pierre Bénite, France
| | - Juliette Lambert
- Département d'Hématologie Clinique, Hôpital André Mignot, Centre Hospitalier de Versailles, Le Chesnay, France
| | | | - Claude Preudhomme
- Université Lille, CNRS, INSERM, CHU Lille, IRCL, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Hervé Dombret
- Département d'Hématologie Clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, EA-3518, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Raphael Itzykson
- Université de Paris, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, 75010, Paris, France. .,Département d'Hématologie Clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France.
| | - Thomas Cluzeau
- Département d'Hématologie, Université Côte d'Azur, CHU de Nice, Nice, France.
| |
Collapse
|
17
|
Zhang HX, Pang AM, Chen X, Zhang RL, Zhai WH, Ma QL, Yang DL, Wei JL, He Y, Feng SZ, Han MZ, Jiang EL. [Allo-HSCT for acute myeloid leukemia with myelodysplastic-related changes: a clinical analysis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:814-822. [PMID: 34788920 PMCID: PMC8607026 DOI: 10.3760/cma.j.issn.0253-2727.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 11/18/2022]
Abstract
Objective: To evaluate the outcomes and prognostic factors of adults with acute myeloid leukemia with myelodysplastic-related changes (AML-MRC) who received allogeneic hematopoietic stem cell transplantation (allo-HSCT) . The genetic mutation lineage of patients with AML-MRC and the molecular mutation affecting the transplantation prognosis was discussed. Methods: The clinical data of 75 patients with AML-MRC who underwent allo-HACT from 2006 to 2020 were retrospectively analyzed for clinical characteristics, survival, relapse-related indicators, and risk factors affecting transplantation prognosis. Additionally, the clinical characteristics and prognosis of multilineage dysplasia (M) group, history of myelodysplastic syndrome (MDS) or myelodysplastic syndrome/myelodysplastic proliferative tumor (MDS/MPN) (H) group, and MDS related cytogenetic abnormalities (C) group were compared. The bone marrow of 43 patients underwent targeting second-generation sequencing (137 genes) . Results: ①There were 41 males and 34 females with a median age of 41 (18-56) years, a median follow-up time of 35 (95%CI 30-49) months, and a median survival time (OS) of 78 (95%CI 23-) months. Three-year OS and event-free survival (EFS) were 57.1% (95%CI 45.6%-71.4%) and 52.0% (95%CI 40.8%-66.1%) . Also, the three-year cumulative recurrence rate (CIR) and transplant-related mortality rate (TRM) were 26.8% (95%CI 16.6%-30.0%) and 22.7% (95%CI 13.2%-33.8%) , respectively. Furthermore, multivariate analysis revealed that pre-transplant non-CR1 status was an independent risk factor for OS and EFS. Other independent risk factors for OS included abnormal karyotype of -5/5q- chromosome and the absence of chronic graft-versus-host disease (cGVHD) after transplantation. ②Among the 75 patients, 59 (78.7%) were in group H, 20 had received demethylation drugs before turning to AML and nine cases (12.0%) in group C and seven cases (9.3%) in group M. There was no significant difference in the three-year OS and EFS among the three groups[group M vs H vs C: OS: 71.4% (95%CI 44.7%-100.0%) vs 55.0% (95%CI 41.8%-72.5%) vs 55.6% (95%CI 31.0%-99.7%) , P=0.700; EFS: 71.4% (95%CI 44.7%-100.0%) vs 46.5% (95%CI 34.0%-63.8%) vs 55.6% (95%CI 31.0%-99.7%) , P=0.600]. Compared with primary and secondary AML-MRC, there was no statistically significant difference in the three-year OS and EFS[61.9% (95%CI 41.9%-91.4%) vs 55.0% (95%CI 41.8%-72.5%) , P=0.600; 61.9% (95%CI 41.9%-91.4%) vs 46.5% (95%CI 34.0%-63.8%) , P=0.400]. Furthermore, there was no significant difference in the time to AML between patients who received demethylation treatment before (20 cases) and those who did not (39 cases) [195 (16-937) d vs 162 (9-3167) d, P=0.804]. Moreover, there were no statistically significant differences in the three-year OS and EFS between the two groups (P=0.400, P=0.700) . ③ NGS test was performed on bone marrow samples of 43 patients (57.3%) , and 73 mutation types were found. Additionally, U2AF1 had the highest mutation incidence (11 cases, 25.6%) , and more than 10% were found: RUNX1 (ten cases, 23.3%) , NRAS (ten cases, 23.3%) , ASXL1 (six cases, 14.0%) , PTPN11 (five cases, 11.6%) , TET2 (five cases, 11.6%) . Univariate analysis showed U2AF1[P=0.875, HR=1.110 (95%CI 0.295-4.195) ], RUNX1[P=0.685, HR=0.728 (95%CI 0.157-3.375) ], NRAS[P=0.919, HR=0.923 (95%CI 0.196-4.334) ] mutation did not affect OS. Conclusion: Chromosome abnormality of -5/5q-, cGVHD, and non-CR1 status before transplantation were independent risk factors for OS in patients with allo-HSCT and AML-MRC. Additionally, the MHC subgroup classification was not a factor affecting the prognosis of transplantation. Treatment with demethylated drugs may not delay MDS turning to AML and prolong the OS after transplantation.
Collapse
Affiliation(s)
- H X Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - A M Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - X Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - R L Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - W H Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Q L Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - D L Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - J L Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - S Z Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - M Z Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - E L Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
18
|
Abstract
Acute myeloid leukemia (AML) is an uncommon but potentially catastrophic diagnosis with historically high mortality rates. The standard of care treatment remained unchanged for decades; however, recent discoveries of molecular drivers of leukemogenesis and disease progression have led to novel therapies for AML. Ongoing research and clinical trials are actively seeking to personalize therapy by identifying molecular targets, discovering patient specific and disease specific risk factors, and identifying effective combinations of modalities and drugs. This review focuses on important updates in diagnostic and disease classifications that reflect new understanding of the biology of AML, its mutational heterogeneity, some important genetic and environmental risk factors, and new treatment options including cytotoxic chemotherapy, novel targeted agents, and cellular therapies.
Collapse
Affiliation(s)
- Laura F Newell
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Rachel J Cook
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
19
|
Liu M, Wang F, Zhang Y, Chen X, Cao P, Nie D, Fang J, Wang M, Liu M, Liu H. Gene mutation spectrum of patients with myelodysplastic syndrome and progression to acute myeloid leukemia. Int J Hematol Oncol 2021; 10:IJH34. [PMID: 34540199 PMCID: PMC8446821 DOI: 10.2217/ijh-2021-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Aim: This study aimed to investigate the regularity of gene mutations in patients with myelodysplastic syndrome (MDS) and in those that progressed to acute myeloid leukemia (MDS/AML). Patients & methods: High-throughput sequencing technology was used to detect gene mutations in 99 newly diagnosed patients with MDS or MDS/AML. Results: Gene mutations were detected in 88 patients. The mutation incidence in the MDS/AML group was significantly higher than that in the MDS group. Statistically significant differences were observed between the MDS with refractory anemia (MDS-RA) and MDS-RA with excess blasts groups and between the MDS/AML and MDS-RA groups. Conclusion: Our data demonstrate that there is a cumulative accumulation of gene mutations, especially in transcription factor genes, during disease progression in MDS and MDS/AML. This study investigated the regularity of gene mutations in patients with myelodysplastic syndrome (MDS) and in those that have progressed to acute myeloid leukemia (MDS/AML). High-throughput sequencing was used to detect mutations in 58 genes with known clinical significance in 99 patients who were newly diagnosed with MDS or MDS/AML. A total of 28 mutated genes and 214 mutations were detected in 88 (88.9%) patients. The most frequently mutated gene was U2AF1 (13.55%; 29/214), followed by ASXL1 (10.28%; 22/214), TP53 (7.09%; 15/214), and RUNX1 (7.09%; 15/214). The mutation rate in the MDS/AML group was significantly higher than in the MDS group (100 vs 84.51%; p = 0.031). The average number of mutations per patient was 1.40, 2.20 and 2.64 in the MDS-refractory anemia (RA), MDS-RA with excess blast (RAEB) and MDS/AML groups, respectively. Statistically significant differences were observed between the MDS-RA and MDS-RAEB groups (p = 0.031) and between the MDS/AML and MDS-RA groups (p = 0.003). Signal transduction gene mutations were more frequent in the MDS/AML than in the MDS group (50% vs 22.54%; p = 0.014), especially in the FLT3 (14.29% vs 0; p = 0.005) and PTPN11 (17.86 vs 2.82%; p = 0.018) genes. Statistically significant (p < 0.05) correlations were found in 12 mutated gene combinations. TP53 mutations were mutually exclusive with RNA splicing factor gene mutations (p = 0.001). U2AF1 S34 mutations were associated with trisomy 8 (22.22 vs 5.97%; p = 0.03), and TP53 mutations were associated with complex karyotypes. Our data demonstrate that there is cumulative accumulation of gene mutations, especially in transcription factor genes, during disease progression in MDS and MDS/AML. The data also indicate there are synergistic pathogenicity and mutually exclusive effects among gene mutations and chromosomal abnormalities.
Collapse
Affiliation(s)
- Ming Liu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Yang Zhang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Xue Chen
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Panxiang Cao
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Daijing Nie
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Jiancheng Fang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Mingyu Wang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Mingyue Liu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Hongxing Liu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China.,Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing 100176, China.,Beijing Lu Daopei Institute of Hematology, Beijing 100176, China
| |
Collapse
|
20
|
Older adults with newly diagnosed high-risk/secondary AML who achieved remission with CPX-351: phase 3 post hoc analyses. Blood Adv 2021; 5:1719-1728. [PMID: 33724305 DOI: 10.1182/bloodadvances.2020003510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023] Open
Abstract
CPX-351, a dual-drug liposomal encapsulation of daunorubicin/cytarabine in a synergistic 1:5 molar ratio, is approved for the treatment of adults with newly diagnosed, therapy-related acute myeloid leukemia (t-AML) or AML with myelodysplasia-related changes (AML-MRC). In a pivotal phase 3 study, patients aged 60 to 75 years with newly diagnosed, high-risk/secondary AML were randomized to receive CPX-351 or conventional 7+3 chemotherapy. In the primary endpoint analysis, CPX-351 demonstrated significantly prolonged median overall survival (OS) vs 7+3. These exploratory post hoc subgroup analyses evaluated the impact of achieving complete remission (CR) or CR with incomplete neutrophil or platelet recovery (CRi) with CPX-351 (73/153 [48%]) vs conventional 7+3 (52/56 [33%]) on outcomes. CPX-351 improved median OS vs 7+3 in patients who achieved CR or CRi (25.43 vs 10.41 months; hazard ratio = 0.49; 95% confidence interval, 0.31, 0.77). Improved median OS was seen across AML subtypes (t-AML, AML-MRC), age subgroups (60 to 69 vs 70 to 75 years), patients with prior hypomethylating agent exposure, and patients who did not undergo transplantation. Patients who achieved CR or CRi with CPX-351 also had a higher rate of transplantation, a longer median OS landmarked from the date of transplantation (not reached vs 11.65 months; hazard ratio = 0.43; 95% confidence interval, 0.21, 0.89), and a safety profile that was consistent with the known safety profile of 7+3. These results suggest deeper remissions may be achieved with CPX-351, leading to improved OS. This study was registered at www.clinicaltrials.gov as #NCT01696084.
Collapse
|
21
|
Descriptive and Functional Genomics in Acute Myeloid Leukemia (AML): Paving the Road for a Cure. Cancers (Basel) 2021; 13:cancers13040748. [PMID: 33670178 PMCID: PMC7916915 DOI: 10.3390/cancers13040748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Over the past decades, genetic advances have allowed a more precise molecular characterization of AML with the identification of novel oncogenes and tumor suppressors as part of a comprehensive AML molecular landscape. Recent advances in genetic sequencing tools also enabled a better understanding of AML leukemogenesis from the preleukemic state to posttherapy relapse. These advances resulted in direct clinical implications with the definition of molecular prognosis classifications, the development of treatment recommendations based on minimal residual disease (MRD) measurement and the discovery of novel targeted therapies, ultimately improving AML patients' overall survival. The more recent development of functional genomic studies, pushed by novel molecular biology technologies (short hairpin RNA (shRNA) and CRISPR-Cas9) and bioinformatics tools design on one hand, along with the engineering of humanized physiologically relevant animal models on the other hand, have opened a new genomics era resulting in a greater knowledge of AML physiopathology. Combining descriptive and functional genomics will undoubtedly open the road for an AML cure within the next decades.
Collapse
|
22
|
Controversies in the recent (2016) World Health Organization classification of acute myeloid leukemia. Best Pract Res Clin Haematol 2021; 34:101249. [PMID: 33762104 DOI: 10.1016/j.beha.2021.101249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current World Health Organization (WHO) Classification of acute myeloid leukemia (AML), developed in 2016 and published in 2017, codifies the defining features of AML and recognizes several subtypes based on clinical, morphologic, and genetic features. This classification is widely used for the purposes of assigning patients to specific therapeutic approaches and entry into clinical trials. Although the WHO Classification ultimately has its origins in the original 1976 French-American-British Classification, it has been periodically updated by the incorporation of a large body of evidence and input from both diagnosticians and clinicians who study and treat AML. Nevertheless, the recent accumulation of genetic data on the molecular underpinnings of myeloid neoplasms as well as numerous recently approved novel therapies have highlighted areas of controversy in how we currently define and classify AML; the 2016 WHO Classification will continually be revised and updated in future versions based on these advances. The purpose of this review is to explore areas of potential refinement in the current WHO Classification of AML, both in terms of its criteria defining the disease as well as the specific disease subtypes.
Collapse
|
23
|
Patel BJ, Barot SV, Xie Y, Cook JR, Carraway HE, Hsi ED. Impact of next generation sequencing results on clinical management in patients with hematological disorders. Leuk Lymphoma 2021; 62:1702-1710. [PMID: 33533694 DOI: 10.1080/10428194.2021.1876860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Application of next generation sequencing (NGS) has shed light on the molecular heterogeneity of hematological malignancies. NGS panels targeting recurrent mutations have become common in many large centers and commercial laboratories. However, its impact in clinical practice is unclear. We sought to characterize the use of NGS at a tertiary care center in an observational study of 343 patients with suspected hematological malignancies. We found that NGS changed or refined the clinical and pathologic diagnosis in 9% of patients and affected management decisions in 65% (including clinical trial eligibility, targeted therapy selection, and consideration for stem cell transplantation). This study emphasizes early incorporation of NGS in clinical practice while also highlighting the present limitations. As our understanding of these disorders increases and more clinically relevant genetic targets emerge, it will be important to refine the molecular testing strategy to deliver personalized medicine given the high cost associated with this technology.
Collapse
Affiliation(s)
- Bhumika J Patel
- Leukemia and Myeloid Disorders Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Shimoli V Barot
- Leukemia and Myeloid Disorders Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Yan Xie
- Department of Laboratory Medicine, Robert J. Tomsich Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - James R Cook
- Department of Laboratory Medicine, Robert J. Tomsich Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Hetty E Carraway
- Leukemia and Myeloid Disorders Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Eric D Hsi
- Department of Laboratory Medicine, Robert J. Tomsich Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
24
|
Arber DA, Erba HP. Diagnosis and Treatment of Patients With Acute Myeloid Leukemia With Myelodysplasia-Related Changes (AML-MRC). Am J Clin Pathol 2020; 154:731-741. [PMID: 32864703 PMCID: PMC7610263 DOI: 10.1093/ajcp/aqaa107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objectives Acute myeloid leukemia (AML) with myelodysplasia-related changes (AML-MRC) represents a high-risk and somewhat diverse subtype of AML, and substantial confusion exists about the pathologic evaluation needed for diagnosis, which can include the patient’s clinical history, cytogenetic analysis, mutational analysis, and/or morphologic evaluation. Treatment decisions based on incomplete or untimely pathology reports may result in the suboptimal treatment of patients with AML-MRC. Methods Using a PubMed search, diagnosis of and treatment options for AML-MRC were investigated. Results This article reviews the current diagnostic criteria for AML-MRC, provides guidance on assessments necessary for an AML-MRC diagnosis, summarizes clinical and prognostic features of AML-MRC, and discusses potential therapies for patients with AML-MRC. In addition to conventional chemotherapy, treatment options include CPX-351, a liposomal encapsulation of daunorubicin/cytarabine approved for treatment of adults with AML-MRC; targeted agents for patients with certain mutations/disease characteristics; and lower-intensity therapies for less fit patients. Conclusions Given the evolving and complex treatment landscape and the high-risk nature of the AML-MRC population, a clear understanding of the pathology information necessary for AML-MRC diagnosis has become increasingly important to help guide treatment decisions and thereby improve patient outcomes.
Collapse
Affiliation(s)
- Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL
| | - Harry P Erba
- Department of Medicine, Duke University School of Medicine, Durham, NC
| |
Collapse
|
25
|
Tan YX, Xu N, Huang JX, Wu WE, Liu L, Zhou LL, Liu XL, Yin CX, Xu D, Zhou X. [Analysis of gene mutations and clinic features in 108 patients with myeloproliferative neoplasm]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:576-582. [PMID: 32810965 PMCID: PMC7449771 DOI: 10.3760/cma.j.issn.0253-2727.2020.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 01/14/2023]
Abstract
Objective: To analyze the genetic mutations and clinical features of the subtypes of classical BCR-ABL-negative myeloproliferative neoplasm (MPN) . Methods: Mutations of 108 newly diagnosed BCR-ABL-negative MPN patients [including 55 patients with essential thrombocytopenia (ET) , 24 with polycythemia vera (PV) , and 29 with primary myelofibrosis (PMF) ] were identified using next-generation sequencing with 127-gene panel, and the relationship between gene mutations and clinical features were analyzed. Results: Total 211 mutations in 32 genes were detected in 100 MPN patients (92.59% ) , per capita carried (1.96±1.32) mutations. 85.19% (92/108) patients carried the driver gene (JAK2, CALR, MPL) mutations, 69.56% (64/92) of these patients carried at least 1 additional gene mutation. In descending order of mutation frequency, the highest frequency was for activation signaling pathway genes (42.2% , 89/211) , methylation genes (17.6% , 36/211) , and chromatin-modified genes (16.1% , 34/211) . There was a significant difference in the number of mutations in the activation signaling pathway genes, epigenetic regulatory genes, spliceosomes, and RNA metabolism genes among the three MPN subgroups. The average number of additional mutations in PMF patients was higher than that in ET and PV patients (1.69±1.39, 0.67±0.70, 0.87±1.22, χ(2)=13.445, P=0.001) . MPN-SAF-TSS (MPN 10 score) (P=0.006) and myelofibrosis level (P=0.015) in patients with ≥ 3 mutant genes were higher and the HGB level (P=0.002) was lower than in those with<3 mutations. Twenty-six patients (24.1% ) carried high-risk mutation (HMR) , and patients with HMR had lower PLT (P=0.017) , HGB levels (P<0.001) , and higher myelofibrosis level (P=0.010) and MPN10 score (P<0.001) . The frequency of ASXL1 mutations was higher in PMF than in PV patients (34.5% vs. 4.2% , P=0.005) . PMF patients with ASXL1 had lower levels of PLT and HGB (P=0.029 and 0.019) . Conclusion: 69.56% of MPN patients carry at least one additional mutation, and 24.1% patients had HMR. Each subgroup had different mutation patterns. PMF patients had a higher average number of additional gene mutations, especially a higher frequency of ASXL1 mutation; PLT and HGB levels were lower in ASXL1 mutation PMF patients.
Collapse
Affiliation(s)
- Y X Tan
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - N Xu
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - J X Huang
- Department of Hematology, Yuebei People's Hospital, Shaoguan 512025, China
| | - W E Wu
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - L Liu
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - L L Zhou
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - X L Liu
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - C X Yin
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - D Xu
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - X Zhou
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The field of acute myeloid leukemia (AML) has been revolutionized in recent years by the advent of high-throughput techniques, such as next-generation sequencing. In this review, we will discuss some of the recently identified mutations that have defined a new molecular landscape in this disease, as well as their prognostic, predictive, and therapeutic implications. RECENT FINDINGS Recent studies have shown how many cases of AML evolve from a premalignant period of latency characterized by the accumulation of several mutations and the emergence of one or multiple dominant clones. The pattern of co-occurring mutations and cytogenetic abnormalities at diagnosis defines risk and can determine therapeutic approaches to induce remission. Besides the genetic landscape at diagnosis, the continued presence of particular gene mutations during or after treatment carries prognostic information that should further influence strategies to maintain remission in the long term. The recent progress made in AML research is a seminal example of how basic science can translate into improving clinical practice. Our ability to characterize the genomic landscape of individual patients has not only improved our ability to diagnose and prognosticate but is also bringing the promise of precision medicine to fruition in the field.
Collapse
Affiliation(s)
- Ludovica Marando
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
27
|
Prats-Martín C, Burillo-Sanz S, Morales-Camacho RM, Pérez-López O, Suito M, Vargas MT, Caballero-Velázquez T, Carrillo-Cruz E, González J, Bernal R, Pérez-Simón JA. ASXL1 mutation as a surrogate marker in acute myeloid leukemia with myelodysplasia-related changes and normal karyotype. Cancer Med 2020; 9:3637-3646. [PMID: 32216059 PMCID: PMC7286456 DOI: 10.1002/cam4.2947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/21/2020] [Accepted: 02/12/2020] [Indexed: 11/06/2022] Open
Abstract
Acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) are poor outcome leukemias. Its diagnosis is based on clinical, cytogenetic, and cytomorphologic criteria, last criterion being sometimes difficult to assess. A high frequency of ASXL1 mutations have been described in this leukemia. We sequenced ASXL1 gene mutations in 61 patients with AML-MRC and 46 controls with acute myeloid leukemia without other specifications (AML-NOS) to identify clinical, cytomorphologic, and cytogenetic characteristics associated with ASXL1 mutational status. Mutated ASXL1 (ASXL1+) was observed in 31% of patients with AML-MRC compared to 4.3% in AML-NOS. Its presence in AML-MRC was associated with older age, a previous history of myelodysplastic syndrome (MDS) or myelodysplastic/myeloproliferative neoplasms (MDS/MPN), leukocytosis, presence of micromegakaryocytes in bone marrow, lower number of blasts in bone marrow, myelomonocytic/monocytic morphological features and normal karyotype. ASXL1 mutation was not observed in patients with myelodysplastic syndrome-related cytogenetic abnormalities or TP53 mutations. Differences in terms of overall survival were found only in AML-MRC patients without prior MDS or MDS/MPN and with intermediate-risk karyotype, having ASXL1+ patients a worst outcome than ASXL1-. We conclude that the ASXL1 mutation frequency is high in AML-MRC patients being its presence associated with specific characteristics including morphological signs of dysplasia. This association raises the possible role of ASXL1 as a surrogate marker in AML-MRC, which could facilitate the diagnosis of patients within this group when the karyotype is normal, and especially when the assessment of multilineage dysplasia morphologically is difficult. This mutation could be used as a worst outcome marker in de novo AML-MRC with intermediate-risk karyotype.
Collapse
Affiliation(s)
- Concepción Prats-Martín
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Sergio Burillo-Sanz
- Department of Immunology, Hospital Universitario Virgen del Rocío. Sevilla, Sevilla, Spain
| | - Rosario M Morales-Camacho
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Olga Pérez-López
- Department of Hematology, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Sevilla, Spain
| | - Milagros Suito
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Maria T Vargas
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Teresa Caballero-Velázquez
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Estrella Carrillo-Cruz
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - José González
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Ricardo Bernal
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - José A Pérez-Simón
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
28
|
Winer ES. Secondary Acute Myeloid Leukemia: A Primary Challenge of Diagnosis and Treatment. Hematol Oncol Clin North Am 2020; 34:449-463. [PMID: 32089222 DOI: 10.1016/j.hoc.2019.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secondary acute myeloid leukemia (sAML) is a complex diagnosis that includes AML caused by either an antecedent hematologic disease (AML-AHD) or from previous treatment with chemotherapy or radiation. This disease carries a poor prognosis and is historically chemorefractory; additionally, often patients are ineligible for standard chemotherapy because of advanced age and other comorbidities. The advances of molecular diagnostics and reclassification of World Health Organization criteria have aided in the categorization of this disease. This article describes the etiology and pathophysiology of sAML, and delves into past successful treatments as well as promising new treatments.
Collapse
Affiliation(s)
- Eric S Winer
- Adult Leukemia Program, Department of Medical Oncology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Acute Myeloid Neoplasms. Genomic Med 2020. [DOI: 10.1007/978-3-030-22922-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
30
|
Liu F, Wang H, Liu J, Zhou Z, Zheng D, Huang B, Su C, Zou W, Xu D, Tong X, Li J. A favorable inductive remission rate for decitabine combined with chemotherapy as a first course in <60-year-old acute myeloid leukemia patients with myelodysplasia syndrome features. Cancer Med 2019; 8:5108-5115. [PMID: 31322840 PMCID: PMC6718585 DOI: 10.1002/cam4.2418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/01/2019] [Accepted: 06/29/2019] [Indexed: 12/24/2022] Open
Abstract
In acute myeloid leukemia (AML), myelodysplasia-related changes contribute to a poor prognosis. This retrospective, propensity score-matched study analyzed 108 newly diagnosed AML patients with features of myelodysplasia syndrome (MDS) (aged 14-60 years) from 2014 to 2018, who received either idarubicin and cytarabine (IA) or decitabine, idarubicin and cytarabine (DAC+IA), and compared efficacy and toxicity between the two regimens. After propensity score matching, there were 54 patients in each group. The rate of complete remission (CR) was higher in the DAC+IA group than in the IA group (85.2% vs 68.5%, P = .040) after the first course, and toxicities were comparable in both groups. Multivariate analysis indicated that the combination with DAC was independent factor for CR rate after the first induction therapy (OR = 2.978, 95% CI:1.090-8.137, P = .033). Subgroup analysis showed a CR advantage for DAC+IA (vs IA) for patients of intermediate-high risk status according to National Comprehensive Cancer Network prognostic stratification. In conclusion, DAC+IA is therefore offered as a new induction choice for newly diagnosed AML patients with features of MDS, aged <60 years old, especially in intermediate-high risk status.
Collapse
Affiliation(s)
- Fengqi Liu
- Department of Hematology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hehua Wang
- Department of Hematology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Junru Liu
- Department of Hematology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhenhai Zhou
- Department of Hematology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Dong Zheng
- Department of Hematology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Beihui Huang
- Department of Hematology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Chang Su
- Department of Hematology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Waiyi Zou
- Department of Hematology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Duorong Xu
- Department of Hematology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xiuzhen Tong
- Department of Hematology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Juan Li
- Department of Hematology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
31
|
Li M, Le Wei, Zhang XM, Zhang YJ, Jiang J, Liu PY. The M476W/Q482H mutation of procaspase-8 restored caspase-8-mediated apoptosis. Biochem Biophys Res Commun 2019; 514:653-658. [DOI: 10.1016/j.bbrc.2019.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 02/02/2023]
|
32
|
Ossenkoppele G, Montesinos P. Challenges in the diagnosis and treatment of secondary acute myeloid leukemia. Crit Rev Oncol Hematol 2019; 138:6-13. [DOI: 10.1016/j.critrevonc.2019.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
|
33
|
Hunter AM, Sallman DA. Current status and new treatment approaches in TP53 mutated AML. Best Pract Res Clin Haematol 2019; 32:134-144. [PMID: 31203995 DOI: 10.1016/j.beha.2019.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
Mutations in the essential tumor suppressor gene, TP53, are observed in only 5-10% of acute myeloid leukemia (AML) cases, but are highly associated with therapy-related AML and cases with complex karyotype. The mutational status of TP53 is a critical prognostic indicator, with dismal outcomes consistently observed across studies. Response rates to traditional cytotoxic chemotherapy are poor and long-term survival after allogeneic hematopoietic stem cell transplant is rare. Therapy with hypomethylating agents has resulted in a modest improvement in outcomes over intensive chemotherapy, but durable responses are seldom observed. In view of the intrinsic resistance to standard chemotherapies conferred by mutations in TP53, novel treatment approaches are required. In this review, we examine the current treatment landscape in TP53 mutated AML and discuss emerging therapeutic approaches currently under clinical investigation.
Collapse
Affiliation(s)
- Anthony M Hunter
- Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - David A Sallman
- Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
34
|
Harada K, Konuma T, Machida S, Mori J, Aoki J, Uchida N, Ohashi K, Fukuda T, Tanaka M, Ikegame K, Ozawa Y, Iwato K, Eto T, Onizuka M, Ichinohe T, Atsuta Y, Yano S. Risk Stratification and Prognosticators of Acute Myeloid Leukemia with Myelodysplasia-Related Changes in Patients Undergoing Allogeneic Stem Cell Transplantation: A Retrospective Study of the Adult Acute Myeloid Leukemia Working Group of the Japan Society for Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:1730-1743. [PMID: 31054982 DOI: 10.1016/j.bbmt.2019.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 11/28/2022]
Abstract
Although the prognosis of acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) is worse than that of AML not otherwise specified (AML-NOS), transplantation outcomes and prognosticators of AML-MRC patients undergoing allogeneic stem cell transplantation (allo-SCT) remain unclear. Transplantation outcomes of AML-MRC (n = 4091) were compared with those of AML-NOS (n = 3964) in patients who underwent allo-SCT between 2003 and 2016 using a nationwide registration database. The 3-year overall survival (OS; 35.5% versus 50.6%) was lower and the relapse (42.3% versus 32.1%) and nonrelapse mortality (26.3% versus 22.0%) rates were higher in the AML-MRC group than in the AML-NOS group. Based on the hierarchical AML-MRC classification, myelodysplasia as the sole criterion was associated with better OS compared with AML-NOS, whereas monosomal or complex karyotype and -5/del(5q) were associated with poor OS. A history of myelodysplastic syndrome and -7/del(7q) did not affect OS. Accordingly, AML-MRC with complex karyotype or -5/del(5q) and that with monosomal karyotype were classified as intermediate and high risks, respectively, whereas the remaining cases were classified as low risk. The 3-year OS rates were 50.7%, 36.9%, and 13.8% in the low-, intermediate-, and high-risk groups, respectively (P < .001). Risk classification, older age, and low performance status score were significant risk factors for survival in AML-MRC, independently of the disease status. Grades I to II acute graft-versus-host disease significantly reduced the 3-year relapse (24.7% versus 31.6%), leading to better survival (hazard ratio, .64). Our prognostic risk stratification can potentially aid in elucidating the diverse transplantation outcomes in patients with AML-MRC.
Collapse
Affiliation(s)
- Kaito Harada
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan.
| | - Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinichiro Machida
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Jinichi Mori
- Department of Hematology, Jyoban Hospital, Tokiwakai, Fukushima, Japan
| | - Jun Aoki
- Department of Hematology, Yokohama City University Medical Center, Yokohama, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon hospital, Tokyo, Japan
| | - Kazuteru Ohashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Koji Iwato
- Department of Hematology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya Japan; Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Yano
- Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Tiong IS, Wei AH. New drugs creating new challenges in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 58:903-914. [PMID: 30861214 DOI: 10.1002/gcc.22750] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/31/2022] Open
Abstract
The therapeutic landscape is rapidly changing, with eight new drugs approved by the Food and Drug Administration within the last 2 years, including midostaurin and gilteritinib for FLT3 mutant newly diagnosed and relapsed/refractory (R/R) acute myeloid leukemia (AML), respectively; CPX-351 (liposomal cytarabine and daunorubicin) for therapy-related AML and AML with myelodysplasia-related changes; gemtuzumab ozogamicin (anti-CD33 monoclonal antibody conjugated with calicheamicin) for newly diagnosed and R/R CD33-positive AML; enasidenib and ivosidenib for IDH2 and IDH1 mutant R/R AML, respectively. Novel therapies have also emerged for newly diagnosed AML in adults who are age 75 years or older, or who have comorbidities that preclude the use of intensive induction chemotherapy. These include venetoclax (BCL-2 inhibitor) in combination with hypomethylating agents (azacitidine or decitabine) or low-dose cytarabine (LDAC), and glasdegib (sonic hedgehog pathway inhibitor) in combination with LDAC. This flurry of new drug approvals has markedly altered the treatment landscape in AML and provided new opportunities, as well as new challenges for treating clinicians. This review will focus on how these drugs might shape clinical practice and the hurdles likely to be faced by new therapies seeking entry into this dynamic and rapidly changing therapeutic landscape.
Collapse
Affiliation(s)
- Ing S Tiong
- Department of Haematology, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Andrew H Wei
- Department of Haematology, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Pollyea DA, Tallman MS, de Botton S, Kantarjian HM, Collins R, Stein AS, Frattini MG, Xu Q, Tosolini A, See WL, MacBeth KJ, Agresta SV, Attar EC, DiNardo CD, Stein EM. Enasidenib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia. Leukemia 2019; 33:2575-2584. [DOI: 10.1038/s41375-019-0472-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
|
37
|
Chung J, Sallman DA, Padron E. TP53 and therapy-related myeloid neoplasms. Best Pract Res Clin Haematol 2019; 32:98-103. [PMID: 30927980 DOI: 10.1016/j.beha.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 01/15/2023]
Abstract
Therapy-related myeloid neoplasms (t-MNs) are the most serious late complications in patients treated with traditional cytotoxic chemotherapy and/or radiation. T-MNs are aggressive and chemorefractory hematologic malignancies, with a median survival of less than 6 months. TP53 mutations are highly enriched in t-MN patients, though the mechanism for this selective enrichment has only come to light over the past several years. In this review, we discuss the history and function of p53, and the role of TP53 mutations in the origin and progression of t-MNs. Emerging data has begun to elucidate who may be at highest risk of developing t-MNs, which ideally will enable us to develop preventative strategies for this devastating disease. As t-MNs may not be avoidable, novel therapies are urgently needed for this patient group and are underway as exemplified by recent investigation in restoring wild-type p53 function as well as directly targeting TP53 mutant variants. With better prevention and treatment, outcomes will hopefully begin to improve in the near future.
Collapse
Affiliation(s)
- Jae Chung
- Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - David A Sallman
- Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric Padron
- Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
38
|
Gu R, Yang X, Wei H. Molecular landscape and targeted therapy of acute myeloid leukemia. Biomark Res 2018; 6:32. [PMID: 30455953 PMCID: PMC6225571 DOI: 10.1186/s40364-018-0146-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022] Open
Abstract
For decades, genetic aberrations including chromosome and molecular abnormalities are important diagnostic and prognostic factors in acute myeloid leukemia (AML). ATRA and imatinib have been successfully used in AML and chronic myelogenous leukemia, which proved that targeted therapy by identifying molecular lesions could improve leukemia outcomes. Recent advances in next generation sequencing have revealed molecular landscape of AML, presenting us with many molecular abnormalities. The individual prognostic information derived from a specific mutation could be modified by other molecular lesions. Therefore, the genomic complexity in AML poses a huge challenge to successful translation into more accurate risk stratification and targeted therapy. Herein, a summary of these mutations and targeted therapies are described. We focus on the prognostic information of recent identified molecular lesions and emerging targeted therapy.
Collapse
Affiliation(s)
- Runxia Gu
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 People’s Republic of China
| | - Xue Yang
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 People’s Republic of China
| | - Hui Wei
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 People’s Republic of China
| |
Collapse
|
39
|
Cytogenetics and gene mutations influence survival in older patients with acute myeloid leukemia treated with azacitidine or conventional care. Leukemia 2018; 32:2546-2557. [PMID: 30275526 PMCID: PMC6286388 DOI: 10.1038/s41375-018-0257-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022]
Abstract
Older patients with newly diagnosed acute myeloid leukemia (AML) in the phase 3 AZA-AML-001 study were evaluated at entry for cytogenetic abnormalities, and a subgroup of patients was assessed for gene mutations. Patients received azacitidine 75 mg/m2/day x7 days (n = 240) or conventional care regimens (CCR; n = 245): intensive chemotherapy, low-dose cytarabine, or best supportive care only. Overall survival (OS) was assessed for patients with common (occurring in ≥10% of patients) cytogenetic abnormalities and karyotypes, and for patients with recurring gene mutations. There was a significant OS improvement with azacitidine vs CCR for patients with European LeukemiaNet-defined Adverse karyotype (HR 0.71 [95%CI 0.51–0.99]; P = 0.046). Azacitidine-treated patients with -5/5q-, -7/7q-, or 17p abnormalities, or with monosomal or complex karyotypes, had a 31–46% reduced risk of death vs CCR. The most frequent gene mutations were DNMT3A (27%), TET2 (25%), IDH2 (23% [R140, 15%; R172, 8%]), and TP53 (21%). Compared with wild-type, OS was significantly reduced among CCR-treated patients with TP53 or NRAS mutations and azacitidine-treated patients with FLT3 or TET2 mutations. Azacitidine may be a preferred treatment for older patients with AML with Adverse-risk cytogenetics, particularly those with chromosome 5, 7, and/or 17 abnormalities and complex or monosomal karyotypes. The influence of gene mutations in azacitidine-treated patients warrants further study.
Collapse
|
40
|
Abstract
The introduction and advances on next-generation sequencing have led to novel ways to integrate simultaneous assessment of multiple target genes in routine laboratory analysis. Assessment of myeloid neoplasms with targeted next-generation sequencing panels shows evidence to improve diagnosis, assist therapeutic decisions, provide better information about prognosis, and better detection of minimal residual disease. Herein, we provide information for application and utilization of next-generation sequencing studies with a focus on the most important mutations in acute myeloid leukemia, myelodysplastic syndrome, myeloproliferative neoplasms, and other myelodysplastic / myeloproliferative neoplasms in order to integrate them into the daily clinical practice.
Collapse
Affiliation(s)
- Fulya Öz Puyan
- Department of Pathology, Trakya University School of Medicine, Edirne, Turkey
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, California, USA
| |
Collapse
|
41
|
Alvarez Argote J, Dasanu CA. ASXL1 mutations in myeloid neoplasms: pathogenetic considerations, impact on clinical outcomes and survival. Curr Med Res Opin 2018; 34:757-763. [PMID: 28027687 DOI: 10.1080/03007995.2016.1276896] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND ASXL1 gene mutations include nonsense, missense, and frameshift mutations. Although their clinical significance is still debated, they may play an important role in the pathogenesis of several hematologic malignancies. METHODS Herein, we offer a comprehensive review on ASXL1 mutations, and link them with survival and clinical outcomes in patients with various myeloid neoplasms. Most relevant publications were identified through searching the PubMed/Medline database for articles published from inception to February 2016. FINDINGS In acute myeloid leukemia (AML), ASXL1 mutations tend to correlate with older age and male gender, and affect predominantly patients with secondary AML. De novo AML patients with ASXL1 mutations had significantly lower complete remission rates after standard high-dose chemotherapy and shorter survival. In chronic myelomonocytic leukemia and low- or intermediate-risk myelodysplastic syndromes, frameshift and nonsense mutations correlated with shorter survival and a higher risk of leukemic transformation. Overall survival was also shorter in primary myelofibrosis in the presence of ASXL1 mutations. CONCLUSIONS Further research on the role of ASXL1 mutations and therapeutic implications in neoplastic myeloid disorders is stringently needed. Given the relatively high prevalence of ASXL1 mutations, larger studies involving patients affected by these mutations will be feasible in the near future.
Collapse
Affiliation(s)
| | - Constantin A Dasanu
- b Lucy Curci Cancer Center, Eisenhower Medical Center, Hematology Oncology , Rancho Mirage , CA , USA
| |
Collapse
|
42
|
Weinberg OK, Gibson CJ, Blonquist TM, Neuberg D, Pozdnyakova O, Kuo F, Ebert BL, Hasserjian RP. Association of mutations with morphological dysplasia in de novo acute myeloid leukemia without 2016 WHO Classification-defined cytogenetic abnormalities. Haematologica 2018; 103:626-633. [PMID: 29326119 PMCID: PMC5865424 DOI: 10.3324/haematol.2017.181842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022] Open
Abstract
Despite improvements in our understanding of the molecular basis of acute myeloid leukemia (AML), the association between genetic mutations with morphological dysplasia remains unclear. In this study, we evaluated and scored dysplasia in bone marrow (BM) specimens from 168 patients with de novo AML; none of these patients had cytogenetic abnormalities according to the 2016 World Health Organization Classification. We then performed targeted sequencing of diagnostic BM aspirates for recurrent mutations associated with myeloid malignancies. We found that cohesin pathway mutations [q (FDR-adjusted P)=0.046] were associated with a higher degree of megakaryocytic dysplasia and STAG2 mutations were marginally associated with greater myeloid lineage dysplasia (q=0.052). Frequent megakaryocytes with separated nuclear lobes were more commonly seen among cases with cohesin pathway mutations (q=0.010) and specifically in those with STAG2 mutations (q=0.010), as well as NPM1 mutations (q=0.022 when considering the presence of any vs no megakaryocytes with separated nuclear lobes). RAS pathway mutations (q=0.006) and FLT3-ITD (q=0.006) were significantly more frequent in cases without evaluable erythroid cells. In univariate analysis of the 153 patients treated with induction chemotherapy, NPM1 mutations were associated with longer event-free survival (EFS) (P=0.042), while RUNX1 (P=0.042), NF1 (P=0.040), frequent micromegakaryocytes (P=0.018) and presence of a subclone (P=0.002) were associated with shorter EFS. In multivariable modeling, NPM1 was associated with longer EFS, while presence of a subclone and frequent micromegakaryocytes remained significantly associated with shorter EFS.
Collapse
Affiliation(s)
- Olga K Weinberg
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Christopher J Gibson
- Division of Hematology, Brigham and Women's Hospital, Dana Farber Cancer Institute, Boston, MA, USA
| | - Traci M Blonquist
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Frank Kuo
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
43
|
Seiter K, Htun K, Baskind P, Liu Z. Acute myeloid leukemia in a father and son with a germline mutation of ASXL1. Biomark Res 2018; 6:7. [PMID: 29456859 PMCID: PMC5809979 DOI: 10.1186/s40364-018-0121-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/02/2018] [Indexed: 12/27/2022] Open
Abstract
Background Myelodysplastic syndromes and acute myeloid leukemia usually occur sporadically in older adults. More recently cases of familial acute myeloid leukemia and/or myelodysplastic syndrome have been reported. Case presentation Currently we report a father and son who both developed myelodysplastic syndrome that progressed to acute myeloid leukemia. Both patients were found to have the identical mutation of ASXL1 on nextgen sequencing of both hematologic and nonhematologic tissues. Conclusions These cases support the diagnosis of a germline mutation of ASXL1.
Collapse
Affiliation(s)
- Karen Seiter
- 1Department of Medicine, New York Medical College, Valhalla, USA
| | - Kyaw Htun
- 1Department of Medicine, New York Medical College, Valhalla, USA
| | - Paul Baskind
- 1Department of Medicine, New York Medical College, Valhalla, USA
| | - Zach Liu
- Emerge Laboratories, Suffern, USA
| |
Collapse
|
44
|
Kakosaiou K, Panitsas F, Daraki A, Pagoni M, Apostolou P, Ioannidou A, Vlachadami I, Marinakis T, Giatra C, Vasilatou D, Sambani C, Pappa V, Manola KN. ASXL1 mutations in AML are associated with specific clinical and cytogenetic characteristics. Leuk Lymphoma 2018; 59:2439-2446. [PMID: 29411666 DOI: 10.1080/10428194.2018.1433298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mutations of ASXL1 are early events in acute myeloid leukemia (AML) leukemogenesis and have been associated with unfavorable prognosis. In this study, we investigated the type and frequency of ASXL1 mutations in a large cohort of patients with de novo or secondary AML (s-AML) and looked for correlations with cytogenetic findings and disease features. ASXL1 mutations were associated with older age, s-AML and higher peripheral leukocytosis. We observed more frequent co-occurrence of ASXL1 mutations with trisomy 8 and chromosome 11 aberrations but a negative correlation with myelodysplastic syndromes (MDS)-related cytogenetic abnormalities, especially -5/del(5q) and -7/del(7q). ASXL1 mutations were also found in other genetically defined AML subgroups such as those with t(9;22), inv(3)/t(3;3), t(8;21) or t(15;17); however, none of our inv(16) cases carried ASXL1 mutations. We detected two previously unreported ASXL1 mutations, p.IIe593Val and p.Cys688Tyr. Our findings suggest that ASXL1 mutations tend to cluster with specific clinical and cytogenetic profiles of AML patients.
Collapse
Affiliation(s)
- Katerina Kakosaiou
- a Laboratory of Health Physics, Radiobiology & Cytogenetics , NCSR "Demokritos" , Athens , Greece
| | - Fotios Panitsas
- b Hematology-Lymphoma Department - BMT Unit , Evangelismos Hospital , Athens , Greece
| | - Aggeliki Daraki
- a Laboratory of Health Physics, Radiobiology & Cytogenetics , NCSR "Demokritos" , Athens , Greece
| | - Maria Pagoni
- b Hematology-Lymphoma Department - BMT Unit , Evangelismos Hospital , Athens , Greece
| | | | - Agapi Ioannidou
- a Laboratory of Health Physics, Radiobiology & Cytogenetics , NCSR "Demokritos" , Athens , Greece
| | - Ioanna Vlachadami
- d Department of Pathophysiology , 'Laiko' Hospital, University of Athens , Athens , Greece
| | - Theodoros Marinakis
- e Department of Haematology , "Georgios Gennimatas" General Hospital , Athens , Greece
| | - Chara Giatra
- b Hematology-Lymphoma Department - BMT Unit , Evangelismos Hospital , Athens , Greece
| | | | - Constantina Sambani
- a Laboratory of Health Physics, Radiobiology & Cytogenetics , NCSR "Demokritos" , Athens , Greece
| | - Vassiliki Pappa
- f Hematology Unit , University General Hospital "Attikon" , Athens , Greece
| | - Kalliopi N Manola
- a Laboratory of Health Physics, Radiobiology & Cytogenetics , NCSR "Demokritos" , Athens , Greece
| |
Collapse
|
45
|
Shin SY, Lee ST, Kim HJ, Cho EH, Kim JW, Park S, Jung CW, Kim SH. Mutation profiling of 19 candidate genes in acute myeloid leukemia suggests significance of DNMT3A mutations. Oncotarget 2018; 7:54825-54837. [PMID: 27359055 PMCID: PMC5342384 DOI: 10.18632/oncotarget.10240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/13/2016] [Indexed: 11/25/2022] Open
Abstract
We selected 19 significantly-mutated genes in AMLs, including FLT3, DNMT3A, NPM1, TET2, RUNX1, CEBPA, WT1, IDH1, IDH2, NRAS, ASXL1, SETD2, PTPN11, TP53, KIT, JAK2, KRAS, BRAF and CBL, and performed massively parallel sequencing for 114 patients with acute myeloid leukemias, mainly including those with normal karyotypes (CN-AML). More than 80% of patients had at least one mutation in the genes tested. DNMT3A mutation was significantly associated with adverse outcome in addition to conventional risk stratification such as the European LeukemiaNet (ELN) classification. We observed clinical usefulness of mutation testing on multiple target genes and the association with disease subgroups, clinical features and prognosis in AMLs.
Collapse
Affiliation(s)
- Sang-Yong Shin
- Department of Laboratory Medicine, Center for Diagnostic Oncology, Hospital and Research Institute, National Cancer Center, Goyang, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Jong-Won Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Silvia Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul Won Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Li M, Yao J, Zhang X, Chen X, Chen J, Guan Y, Yang X. Q482H mutation of procaspase-8 in acute myeloid leukemia abolishes caspase-8-mediated apoptosis by impairing procaspase-8 dimerization. Biochem Biophys Res Commun 2018; 495:1376-1382. [DOI: 10.1016/j.bbrc.2017.11.168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 12/20/2022]
|
47
|
Belickova M, Vesela J, Jonasova A, Pejsova B, Votavova H, Merkerova MD, Zemanova Z, Brezinova J, Mikulenkova D, Lauermannova M, Valka J, Michalova K, Neuwirtova R, Cermak J. TP53 mutation variant allele frequency is a potential predictor for clinical outcome of patients with lower-risk myelodysplastic syndromes. Oncotarget 2017; 7:36266-36279. [PMID: 27167113 PMCID: PMC5094999 DOI: 10.18632/oncotarget.9200] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/16/2016] [Indexed: 12/31/2022] Open
Abstract
TP53 mutations are frequently detected in patients with higher-risk myelodysplastic syndromes (MDS); however, the clinical impact of these mutations on the disease course of patients with lower-risk MDS is unclear. In this study of 154 lower-risk MDS patients, TP53 mutations were identified in 13% of patients, with prevalence in patients with del(5q) (23.6%) compared to non-del(5q) (3.8%). Two-thirds of the mutations were detected at the time of diagnosis, and one-third were detected during the course of the disease. Multivariate analysis demonstrated that a TP53 mutation was the strongest independent prognostic factor for overall survival (OS) (HR: 4.39) and progression-free survival (PFS) (HR: 3.74). Evaluation of OS determined a TP53 variant allele frequency (VAF) threshold of 6% as an optimal cut-off for patient stratification. The median OS was 43.5 months in patients with mutations detected at the time of diagnosis and a mutational burden of > 6% VAF compared to 138 months (HR 12.2; p = 0.003) in patients without mutations; similarly, the median PFS was 20.2 months versus 116.6 months (HR 79.5; p < 0.0001). In contrast, patients with a mutational burden of < 6% VAF were stable for long periods without progression and had no significant impact on PFS or OS. Additionally, we found a high correlation in the mutational data from cells of the peripheral blood and those of the bone marrow, indicating that peripheral blood is a reliable source for mutation monitoring. Our results indicate that the clinical impact of TP53 mutations in lower-risk MDS patients depends on the level of mutational burden.
Collapse
Affiliation(s)
- Monika Belickova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jitka Vesela
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Anna Jonasova
- First Department of Medicine, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Pejsova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Hana Votavova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Zuzana Zemanova
- Center of Oncocytogenetics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Brezinova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Dana Mikulenkova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Jan Valka
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Kyra Michalova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.,Center of Oncocytogenetics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radana Neuwirtova
- First Department of Medicine, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
48
|
Seymour JF, Döhner H, Butrym A, Wierzbowska A, Selleslag D, Jang JH, Kumar R, Cavenagh J, Schuh AC, Candoni A, Récher C, Sandhu I, Del Castillo TB, Al-Ali HK, Falantes J, Stone RM, Minden MD, Weaver J, Songer S, Beach CL, Dombret H. Azacitidine improves clinical outcomes in older patients with acute myeloid leukaemia with myelodysplasia-related changes compared with conventional care regimens. BMC Cancer 2017; 17:852. [PMID: 29241450 PMCID: PMC5731212 DOI: 10.1186/s12885-017-3803-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Compared with World Health Organization-defined acute myeloid leukaemia (AML) not otherwise specified, patients with AML with myelodysplasia-related changes (AML-MRC) are generally older and more likely to have poor-risk cytogenetics, leading to poor response and prognosis. More than one-half of all older (≥65 years) patients in the phase 3 AZA-AML-001 trial had newly diagnosed AML-MRC. METHODS We compared clinical outcomes for patients with AML-MRC treated with azacitidine or conventional care regimens (CCR; induction chemotherapy, low-dose cytarabine, or supportive care only) overall and within patient subgroups defined by cytogenetic risk (intermediate or poor) and age (65-74 years or ≥75 years). The same analyses were used to compare azacitidine with low-dose cytarabine in patients who had been preselected to low-dose cytarabine before they were randomized to receive azacitidine or CCR (ie, low-dose cytarabine). RESULTS Median overall survival was significantly prolonged with azacitidine (n = 129) versus CCR (n = 133): 8.9 versus 4.9 months (hazard ratio 0.74, [95%CI 0.57, 0.97]). Among patients with intermediate-risk cytogenetics, median overall survival with azacitidine was 16.4 months, and with CCR was 8.9 months (hazard ratio 0.73 [95%CI 0.48, 1.10]). Median overall survival was significantly improved for patients ages 65-74 years treated with azacitidine compared with those who received CCR (14.2 versus 7.3 months, respectively; hazard ratio 0.64 [95%CI 0.42, 0.97]). Within the subgroup of patients preselected to low-dose cytarabine before randomization, median overall survival with azacitidine was 9.5 months versus 4.6 months with low-dose cytarabine (hazard ratio 0.77 [95%CI 0.55, 1.09]). Within the low-dose cytarabine preselection group, patients with intermediate-risk cytogenetics who received azacitidine had a median overall survival of 14.1 months versus 6.4 months with low-dose cytarabine, and patients aged 65-74 years had median survival of 14.9 months versus 5.2 months, respectively. Overall response rates were similar with azacitidine and CCR (24.8% and 17.3%, respectively), but higher with azacitidine versus low-dose cytarabine (27.2% and 13.9%). Adverse events were generally comparable between the treatment arms. CONCLUSIONS Azacitidine may be the preferred treatment for patients with AML-MRC who are not candidates for intensive chemotherapy, particularly patients ages 65-74 years and those with intermediate-risk cytogenetics. TRIAL REGISTRATION This study was registered at clinicalTrials.gov on February 16, 2010 ( NCT01074047 ).
Collapse
Affiliation(s)
- John F Seymour
- Department of Haematology, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, East Melbourne, VIC, 8006, Australia. .,University of Melbourne, Parkville, Australia.
| | | | | | | | | | - Jun Ho Jang
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | - Anna Candoni
- Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | | | | | | | | - Jose Falantes
- Hospital Universitario Virgen del Rocio/Instituto de BioMedicinia de Sevilla, Sevilla, Spain
| | | | | | | | | | - C L Beach
- Celgene Corporation, Summit, NJ, USA
| | - Hervé Dombret
- Hôpital Saint Louis, Institut Universitaire d'Hématologie, University Paris Diderot, Paris, France
| |
Collapse
|
49
|
Arber DA, Borowitz MJ, Cessna M, Etzell J, Foucar K, Hasserjian RP, Rizzo JD, Theil K, Wang SA, Smith AT, Rumble RB, Thomas NE, Vardiman JW. Initial Diagnostic Workup of Acute Leukemia: Guideline From the College of American Pathologists and the American Society of Hematology. Arch Pathol Lab Med 2017; 141:1342-1393. [PMID: 28225303 DOI: 10.5858/arpa.2016-0504-cp] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - A complete diagnosis of acute leukemia requires knowledge of clinical information combined with morphologic evaluation, immunophenotyping and karyotype analysis, and often, molecular genetic testing. Although many aspects of the workup for acute leukemia are well accepted, few guidelines have addressed the different aspects of the diagnostic evaluation of samples from patients suspected to have acute leukemia. OBJECTIVE - To develop a guideline for treating physicians and pathologists involved in the diagnostic and prognostic evaluation of new acute leukemia samples, including acute lymphoblastic leukemia, acute myeloid leukemia, and acute leukemias of ambiguous lineage. DESIGN - The College of American Pathologists and the American Society of Hematology convened a panel of experts in hematology and hematopathology to develop recommendations. A systematic evidence review was conducted to address 6 key questions. Recommendations were derived from strength of evidence, feedback received during the public comment period, and expert panel consensus. RESULTS - Twenty-seven guideline statements were established, which ranged from recommendations on what clinical and laboratory information should be available as part of the diagnostic and prognostic evaluation of acute leukemia samples to what types of testing should be performed routinely, with recommendations on where such testing should be performed and how the results should be reported. CONCLUSIONS - The guideline provides a framework for the multiple steps, including laboratory testing, in the evaluation of acute leukemia samples. Some aspects of the guideline, especially molecular genetic testing in acute leukemia, are rapidly changing with new supportive literature, which will require on-going updates for the guideline to remain relevant.
Collapse
|
50
|
Leite C, Delmonico L, Alves G, Gomes RJ, Martino MR, da Silva AR, Moreira ADS, Maioli MC, Scherrer LR, Bastos EF, Irineu R, Ornellas MH. Screening of mutations in the additional sex combs like 1, transcriptional regulator, tumor protein p53, and KRAS proto-oncogene, GTPase/NRAS proto-oncogene, GTPase genes of patients with myelodysplastic syndrome. Biomed Rep 2017; 7:343-348. [PMID: 28928972 DOI: 10.3892/br.2017.965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/28/2017] [Indexed: 11/06/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal bone marrow disorders characterized by ineffective hematopoiesis, different degrees of cellular dysplasia, and increased risk of progression to acute myeloid leukemia. International Prognostic Scoring System is the gold standard for MDS classification; however, patients exhibiting different clinical behaviors often coexist in the same group, indicating that the currently available scoring systems are insufficient. The genes that have recently been identified as mutated in MDS, including additional sex combs like 1, transcriptional regulator (ASXL1), tumor protein p53 (TP53), and KRAS proto-oncogene and GTPase (KRAS)/NRAS proto-oncogene, GTPase (NRAS), may contribute to a more comprehensive classification, as well as to the prognosis and progression of the disease. In the present study, the mutations in the ASXL1, TP53 and NRAS/KRAS genes in 50 patients were evaluated by sequencing genomic bone marrow DNA. Nine patients (18%) presented with at least one type of mutation. Mutations in TP53 were the most frequent in six patients (12%), followed by ASXL1 in two patients (4%) and NRAS in one patient (2%). The nine mutations were detected in patients with low- and high-risk MDS. The screening of mutations in MDS cases contributes to the application of personalized medicine.
Collapse
Affiliation(s)
- Carolina Leite
- Haematology Service, Pedro Ernesto University Hospital, Rio de Janeiro 20550-170, Brazil
| | - Lucas Delmonico
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Gilda Alves
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Romario José Gomes
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Mariana Rodrigues Martino
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Aline Rodrigues da Silva
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Aline Dos Santos Moreira
- Bioinformatics and Functional Genomic Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Maria Christina Maioli
- Haematology Service, Pedro Ernesto University Hospital, Rio de Janeiro 20550-170, Brazil
| | - Luciano Rios Scherrer
- Department of Engineering and Production, Kennedy Faculty, Belo Horizonte 31535-040, Brazil
| | - Elenice Ferreira Bastos
- Department of Medical Genetic, Fernandes Figueira Institute, Oswaldo Cruz Foundation, Rio de Janeiro 22250-020, Brazil
| | - Roberto Irineu
- Pedro II School, Realengo II Campus, Rio de Janeiro 21710-261, Brazil
| | - Maria Helena Ornellas
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|