1
|
Pratt EC, Mezzadra R, Kulick A, Kaminsky S, Samuels ZV, Loor A, de Stanchina E, Lowe SW, Lewis JS. uPAR Immuno-PET in Pancreatic Cancer, Aging, and Chemotherapy-Induced Senescence. J Nucl Med 2024; 65:1718-1723. [PMID: 39362768 PMCID: PMC11533913 DOI: 10.2967/jnumed.124.268278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Identifying cancer therapy resistance is a key time-saving tool for physicians. Part of chemotherapy resistance includes senescence, a persistent state without cell division or cell death. Chemically inducing senescence with the combination of trametinib and palbociclib (TP) yields several tumorigenic and prometastatic factors in pancreatic cancer models with many potential antibody-based targets. In particular, urokinase plasminogen activator receptor (uPAR) has been shown to be a membrane-bound marker of senescence in addition to an oncology target. Methods: Here, 2 antibodies against murine uPAR and human uPAR were developed as immuno-PET agents to noninvasively track uPAR antigen abundance. Results: TP treatment increased cell uptake both in murine KPC cells and in human MiaPaCa2 cells. In vivo, subcutaneously implanted murine KPC tumors had high tumor uptake with the antimurine uPAR antibody independently of TP in young mice, yet uPAR uptake was maintained in aged mice on TP. Mice xenografted with human MiaPaCa2 tumors showed a significant increase in tumor uptake on TP therapy when imaged with the antihuman uPAR antibody. Imaging with either uPAR antibody was found to be more tumor-selective than imaging with [18F]FDG or [18F]F-DPA-714. Conclusion: The use of radiolabeled uPAR-targeting antibodies provides a new antibody-based PET imaging candidate for pancreatic cancer imaging as well as chemotherapy-induced senescence.
Collapse
Affiliation(s)
- Edwin C Pratt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Riccardo Mezzadra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amanda Kulick
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Spencer Kaminsky
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zachary V Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Angelique Loor
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
- HHMI, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Pharmacology, Weill Cornell Graduate School, New York, New York
| |
Collapse
|
2
|
Buckle T, Rietbergen DDD, de Wit-van der Veen L, Schottelius M. Lessons learned in application driven imaging agent design for image-guided surgery. Eur J Nucl Med Mol Imaging 2024; 51:3040-3054. [PMID: 38900308 PMCID: PMC11300579 DOI: 10.1007/s00259-024-06791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
To meet the growing demand for intraoperative molecular imaging, the development of compatible imaging agents plays a crucial role. Given the unique requirements of surgical applications compared to diagnostics and therapy, maximizing translational potential necessitates distinctive imaging agent designs. For effective surgical guidance, exogenous signatures are essential and are achievable through a diverse range of imaging labels such as (radio)isotopes, fluorescent dyes, or combinations thereof. To achieve optimal in vivo utility a balanced molecular design of the tracer as a whole is required, which ensures a harmonious effect of the imaging label with the affinity and specificity (e.g., pharmacokinetics) of a pharmacophore/targeting moiety. This review outlines common design strategies and the effects of refinements in the molecular imaging agent design on the agent's pharmacological profile. This includes the optimization of affinity, pharmacokinetics (including serum binding and target mediated background), biological clearance route, the achievable signal intensity, and the effect of dosing hereon.
Collapse
Affiliation(s)
- Tessa Buckle
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
- Section Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda de Wit-van der Veen
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland.
- Agora, pôle de recherche sur le cancer, Lausanne, Switzerland.
| |
Collapse
|
3
|
Declerck NB, Huygen C, Mateusiak L, Stroet MCM, Hernot S. The GEM-handle as convenient labeling strategy for bimodal single-domain antibody-based tracers carrying 99mTc and a near-infrared fluorescent dye for intra-operative decision-making. Front Immunol 2023; 14:1285923. [PMID: 38035094 PMCID: PMC10684908 DOI: 10.3389/fimmu.2023.1285923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Intra-operative fluorescence imaging has demonstrated its ability to improve tumor lesion identification. However, the limited tissue penetration of the fluorescent signals hinders the detection of deep-lying or occult lesions. Integrating fluorescence imaging with SPECT and/or intra-operative gamma-probing synergistically combines the deep tissue penetration of gamma rays for tumor localization with the precision of fluorescence imaging for precise tumor resection. In this study, we detail the use of a genetically encoded multifunctional handle, henceforth referred to as a GEM-handle, for the development of fluorescent/radioactive bimodal single-domain antibody (sdAb)-based tracers. A sdAb that targets the urokinase plasminogen activator receptor (uPAR) was engineered to carry a GEM-handle containing a carboxy-terminal hexahistidine-tag and cysteine-tag. A two-step labeling strategy was optimized and applied to site-specifically label IRDye800CW and 99mTc to the sdAb. Bimodal labeling of the sdAbs proved straightforward and successful. 99mTc activity was however restricted to 18.5 MBq per nmol fluorescently-labeled sdAb to prevent radiobleaching of IRDye800CW without impeding SPECT/CT imaging. Subsequently, the in vivo biodistribution and tumor-targeting capacity of the bimodal tracer were evaluated in uPAR-positive tumor-bearing mice using SPECT/CT and fluorescence imaging. The bimodal sdAb showed expected renal background signals due to tracer clearance, along with slightly elevated non-specific liver signals. Four hours post-injection, both SPECT/CT and fluorescent images achieved satisfactory tumor uptake and contrast, with significantly higher values observed for the anti-uPAR bimodal sdAb compared to a control non-targeting sdAb. In conclusion, the GEM-handle is a convenient method for designing and producing bimodal sdAb-based tracers with adequate in vivo characteristics.
Collapse
Affiliation(s)
| | | | | | | | - Sophie Hernot
- Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
4
|
Baart VM, van Manen L, Bhairosingh SS, Vuijk FA, Iamele L, de Jonge H, Scotti C, Resnati M, Cordfunke RA, Kuppen PJK, Mazar AP, Burggraaf J, Vahrmeijer AL, Sier CFM. Side-by-Side Comparison of uPAR-Targeting Optical Imaging Antibodies and Antibody Fragments for Fluorescence-Guided Surgery of Solid Tumors. Mol Imaging Biol 2023; 25:122-132. [PMID: 34642899 PMCID: PMC9970952 DOI: 10.1007/s11307-021-01657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Radical resection is paramount for curative oncological surgery. Fluorescence-guided surgery (FGS) aids in intraoperative identification of tumor-positive resection margins. This study aims to assess the feasibility of urokinase plasminogen activator receptor (uPAR) targeting antibody fragments for FGS in a direct comparison with their parent IgG in various relevant in vivo models. PROCEDURES Humanized anti-uPAR monoclonal antibody MNPR-101 (uIgG) was proteolytically digested into F(ab')2 and Fab fragments named uFab2 and uFab. Surface plasmon resonance (SPR) and cell assays were used to determine in vitro binding before and after fluorescent labeling with IRDye800CW. Mice bearing subcutaneous HT-29 human colonic cancer cells were imaged serially for up to 120 h after fluorescent tracer administration. Imaging characteristics and ex vivo organ biodistribution were further compared in orthotopic pancreatic ductal adenocarcinoma (BxPc-3-luc2), head-and-neck squamous cell carcinoma (OSC-19-luc2-GFP), and peritoneal carcinomatosis (HT29-luc2) models using the clinical Artemis fluorescence imaging system. RESULTS Unconjugated and conjugated uIgG, uFab2, and uFab specifically recognized uPAR in the nanomolar range as determined by SPR and cell assays. Subcutaneous tumors were clearly identifiable with tumor-to-background ratios (TBRs) > 2 after 72 h for uIgG-800F and 24 h for uFab2-800F and uFab-800F. For the latter two, mean fluorescence intensities (MFIs) dipped below predetermined threshold after 72 h and 36 h, respectively. Tumors were easily identified in the orthotopic models with uIgG-800F consistently having the highest MFIs and uFab2-800F and uFab-800F having similar values. In biodistribution studies, kidney and liver fluorescence approached tumor fluorescence after uIgG-800F administration and surpassed tumor fluorescence after uFab2-800F or uFab-800F administration, resulting in interference in the abdominal orthotopic mouse models. CONCLUSIONS In a side-by-side comparison, FGS with uPAR-targeting antibody fragments compared with the parent IgG resulted in earlier tumor visualization at the expense of peak fluorescence intensity.
Collapse
Affiliation(s)
- Victor M Baart
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | - Labrinus van Manen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Floris A Vuijk
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Luisa Iamele
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Hugo de Jonge
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Massimo Resnati
- Age Related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Robert A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Percuros BV, Leiden, The Netherlands
| |
Collapse
|
5
|
Christensen A, Grønhøj C, Jensen JS, Lelkaitis G, Kiss K, Juhl K, Charabi BW, Mortensen J, Kjær A, Von Buchwald C. Expression patterns of uPAR, TF and EGFR and their potential as targets for molecular imaging in oropharyngeal squamous cell carcinoma. Oncol Rep 2022; 48:147. [PMID: 35775375 PMCID: PMC9263836 DOI: 10.3892/or.2022.8359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
The clinical introduction of molecular imaging for the management of oropharyngeal squamous cell carcinoma (OPSCC) relies on the identification of relevant cancer-specific biomarkers. The application of three membrane-bound receptors, namely urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and EGFR have been previously explored for targeted imaging and therapeutic strategies in a broad range of solid cancers. The present study aimed to investigate the expression patterns of uPAR, EGFR and TF by immunohistochemistry (IHC) to evaluate their potential for targeted imaging and prognostic value in OPSCC. In a retrospective cohort of 93 patients with primary OPSCC, who were balanced into the 45 human papillomavirus (HPV)-positive and 48 HPV-negative groups, the IHC-determined expression profiles of uPAR, TF and EGFR in large biopsy or tumor resection specimens were analyzed. Using the follow-up data, overall survival (OS) and recurrence-free survival were measured. Specifically, associations between survival outcome, biomarker expression and clinicopathological factors were examined using Cox proportional hazards model and log-rank test following Kaplan-Meier statistics. After comparing the expression pattern of biomarkers within the tumor compartment with that in the adjacent normal tissues, uPAR and TF exhibited a highly tumor-specific expression pattern, whereas EGFR showed a homogeneous expression within the tumor compartment as well as a consistent expression in the normal mucosal epithelium and salivary gland tissues. The positive expression rate of uPAR, TF and EGFR in the tumors was 98.9, 76.3 and 98.9%, respectively. No statistically significant association between biomarker expression and survival outcome could be detected. Higher uPAR expression levels had a trend towards reduced OS according to results from univariate analysis (P=0.07; hazard ratio=2.01; 95% CI=0.92-4.37). Taken together, these results suggest that uPAR, TF and EGFR may be suitable targets for molecular imaging and therapy in OPSCC. In particular, uPAR may be an attractive target owing to their high positive expression rates in tumors and a highly tumor-specific expression pattern.
Collapse
Affiliation(s)
- Anders Christensen
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Christian Grønhøj
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Jakob Schmidt Jensen
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Giedrius Lelkaitis
- Department of Pathology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Katalin Kiss
- Department of Pathology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Karina Juhl
- Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Birgitte Wittenborg Charabi
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Jann Mortensen
- Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Andreas Kjær
- Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Christian Von Buchwald
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Usama SM, Marker SC, Hernandez Vargas S, AghaAmiri S, Ghosh SC, Ikoma N, Tran Cao HS, Schnermann MJ, Azhdarinia A. Targeted Dual-Modal PET/SPECT-NIR Imaging: From Building Blocks and Construction Strategies to Applications. Cancers (Basel) 2022; 14:1619. [PMID: 35406390 PMCID: PMC8996983 DOI: 10.3390/cancers14071619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular imaging is an emerging non-invasive method to qualitatively and quantitively visualize and characterize biological processes. Among the imaging modalities, PET/SPECT and near-infrared (NIR) imaging provide synergistic properties that result in deep tissue penetration and up to cell-level resolution. Dual-modal PET/SPECT-NIR agents are commonly combined with a targeting ligand (e.g., antibody or small molecule) to engage biomolecules overexpressed in cancer, thereby enabling selective multimodal visualization of primary and metastatic tumors. The use of such agents for (i) preoperative patient selection and surgical planning and (ii) intraoperative FGS could improve surgical workflow and patient outcomes. However, the development of targeted dual-modal agents is a chemical challenge and a topic of ongoing research. In this review, we define key design considerations of targeted dual-modal imaging from a topological perspective, list targeted dual-modal probes disclosed in the last decade, review recent progress in the field of NIR fluorescent probe development, and highlight future directions in this rapidly developing field.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Sierra C. Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Sukhen C. Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Hop S. Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| |
Collapse
|
7
|
Leth JM, Ploug M. Targeting the Urokinase-Type Plasminogen Activator Receptor (uPAR) in Human Diseases With a View to Non-invasive Imaging and Therapeutic Intervention. Front Cell Dev Biol 2021; 9:732015. [PMID: 34490277 PMCID: PMC8417595 DOI: 10.3389/fcell.2021.732015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
The interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) focalizes plasminogen activation to cell surfaces, thereby regulating extravascular fibrinolysis, cell adhesion, and migration. uPAR belongs to the Ly6/uPAR (LU) gene superfamily and the high-affinity binding site for uPA is assembled by a dynamic association of its three consecutive LU domains. In most human solid cancers, uPAR is expressed at the invasive areas of the tumor-stromal microenvironment. High levels of uPAR in resected tumors or shed to the plasma of cancer patients are robustly associated with poor prognosis and increased risk of relapse and metastasis. Over the years, a plethora of different strategies to inhibit uPA and uPAR function have been designed and investigated in vitro and in vivo in mouse models, but so far none have been implemented in the clinics. In recent years, uPAR-targeting with the intent of cytotoxic eradication of uPAR-expressing cells have nonetheless gained increasing momentum. Another avenue that is currently being explored is non-invasive imaging with specific uPAR-targeted reporter-molecules containing positron emitting radionuclides or near-infrared (NIR) florescence probes with the overarching aim of being able to: (i) localize disease dissemination using positron emission tomography (PET) and (ii) assist fluorescence guided surgery using optical imaging. In this review, we will discuss these advancements with special emphasis on applications using a small 9-mer peptide antagonist that targets uPAR with high affinity.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Mahmood N, Rabbani SA. Fibrinolytic System and Cancer: Diagnostic and Therapeutic Applications. Int J Mol Sci 2021; 22:ijms22094358. [PMID: 33921923 PMCID: PMC8122389 DOI: 10.3390/ijms22094358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrinolysis is a crucial physiological process that helps to maintain a hemostatic balance by counteracting excessive thrombosis. The components of the fibrinolytic system are well established and are associated with a wide array of physiological and pathophysiological processes. The aberrant expression of several components, especially urokinase-type plasminogen activator (uPA), its cognate receptor uPAR, and plasminogen activator inhibitor-1 (PAI-1), has shown a direct correlation with increased tumor growth, invasiveness, and metastasis. As a result, targeting the fibrinolytic system has been of great interest in the field of cancer biology. Even though there is a plethora of encouraging preclinical evidence on the potential therapeutic benefits of targeting the key oncogenic components of the fibrinolytic system, none of them made it from “bench to bedside” due to a limited number of clinical trials on them. This review summarizes our existing understanding of the various diagnostic and therapeutic strategies targeting the fibrinolytic system during cancer.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University, Montréal, QC H4A3J1, Canada;
- Department of Medicine, McGill University Health Centre, Montréal, QC H4A3J1, Canada
| | - Shafaat A. Rabbani
- Department of Medicine, McGill University, Montréal, QC H4A3J1, Canada;
- Department of Medicine, McGill University Health Centre, Montréal, QC H4A3J1, Canada
- Correspondence:
| |
Collapse
|
9
|
Linders D, Deken M, van der Valk M, Tummers W, Bhairosingh S, Schaap D, van Lijnschoten G, Zonoobi E, Kuppen P, van de Velde C, Vahrmeijer A, Farina Sarasqueta A, Sier C, Hilling D. CEA, EpCAM, αvβ6 and uPAR Expression in Rectal Cancer Patients with a Pathological Complete Response after Neoadjuvant Therapy. Diagnostics (Basel) 2021; 11:diagnostics11030516. [PMID: 33799475 PMCID: PMC8002064 DOI: 10.3390/diagnostics11030516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/19/2023] Open
Abstract
Rectal cancer patients with a complete response after neoadjuvant therapy can be monitored with a watch-and-wait strategy. However, regrowth rates indicate that identification of patients with a pathological complete response (pCR) remains challenging. Targeted near-infrared fluorescence endoscopy is a potential tool to improve response evaluation. Promising tumor targets include carcinoembryonic antigen (CEA), epithelial cell adhesion molecule (EpCAM), integrin αvβ6, and urokinase-type plasminogen activator receptor (uPAR). To investigate the applicability of these targets, we analyzed protein expression by immunohistochemistry and quantified these by a total immunostaining score (TIS) in tissue of rectal cancer patients with a pCR. CEA, EpCAM, αvβ6, and uPAR expression in the diagnostic biopsy was high (TIS > 6) in, respectively, 100%, 100%, 33%, and 46% of cases. CEA and EpCAM expressions were significantly higher in the diagnostic biopsy compared with the corresponding tumor bed (p < 0.01). CEA, EpCAM, αvβ6, and uPAR expressions were low (TIS < 6) in the tumor bed in, respectively, 93%, 95%, 85%, and 62.5% of cases. Immunohistochemical evaluation shows that CEA and EpCAM could be suitable targets for response evaluation after neoadjuvant treatment, since expression of these targets in the primary tumor bed is low compared with the diagnostic biopsy and adjacent pre-existent rectal mucosa in more than 90% of patients with a pCR.
Collapse
Affiliation(s)
- Daan Linders
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.L.); (M.D.); (M.v.d.V.); (W.T.); (S.B.); (P.K.); (C.v.d.V.); (A.V.); (C.S.)
| | - Marion Deken
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.L.); (M.D.); (M.v.d.V.); (W.T.); (S.B.); (P.K.); (C.v.d.V.); (A.V.); (C.S.)
| | - Maxime van der Valk
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.L.); (M.D.); (M.v.d.V.); (W.T.); (S.B.); (P.K.); (C.v.d.V.); (A.V.); (C.S.)
| | - Willemieke Tummers
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.L.); (M.D.); (M.v.d.V.); (W.T.); (S.B.); (P.K.); (C.v.d.V.); (A.V.); (C.S.)
| | - Shadhvi Bhairosingh
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.L.); (M.D.); (M.v.d.V.); (W.T.); (S.B.); (P.K.); (C.v.d.V.); (A.V.); (C.S.)
| | - Dennis Schaap
- Department of Surgery, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands;
| | - Gesina van Lijnschoten
- Laboratory of Pathology, Stichting Pathology and Medical Microbiology, 5623 EJ Eindhoven, The Netherlands;
| | - Elham Zonoobi
- Edinburgh Molecular Imaging Ltd., Edinburgh EH16 4UX, UK;
| | - Peter Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.L.); (M.D.); (M.v.d.V.); (W.T.); (S.B.); (P.K.); (C.v.d.V.); (A.V.); (C.S.)
| | - Cornelis van de Velde
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.L.); (M.D.); (M.v.d.V.); (W.T.); (S.B.); (P.K.); (C.v.d.V.); (A.V.); (C.S.)
| | - Alexander Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.L.); (M.D.); (M.v.d.V.); (W.T.); (S.B.); (P.K.); (C.v.d.V.); (A.V.); (C.S.)
| | | | - Cornelis Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.L.); (M.D.); (M.v.d.V.); (W.T.); (S.B.); (P.K.); (C.v.d.V.); (A.V.); (C.S.)
- Percuros BV, 2333 CL Leiden, The Netherlands
| | - Denise Hilling
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.L.); (M.D.); (M.v.d.V.); (W.T.); (S.B.); (P.K.); (C.v.d.V.); (A.V.); (C.S.)
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-71-526-2377
| |
Collapse
|
10
|
Hollandsworth HM, Turner MA, Hoffman RM, Bouvet M. A review of tumor-specific fluorescence-guided surgery for colorectal cancer. Surg Oncol 2021; 36:84-90. [PMID: 33316684 PMCID: PMC7855598 DOI: 10.1016/j.suronc.2020.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023]
Abstract
The present study reviews the use of tumor-specific antibodies conjugated to fluorescent dyes in preclinical and clinical studies to enhance visualization of primary tumors and metastases for fluorescence-guided surgery (FGS) in colorectal cancer (CRC). A search strategy was developed using the peer-reviewed National Center for Biotechnology Information (NCBI) database on PubMed. Studies using tumor-specific fluorescence imaging and FGS techniques on murine models of colorectal cell lines or patient-derived orthotopic xenograft (PDOX) colorectal cancer are reviewed. A total of 24 articles were identified that met the inclusion criteria, 21 preclinical and 3 clinical trials. The most widely used target antigen in preclinical and clinical trials was carcinoembryonic antigen (CEA). Mouse studies and clinical studies have demonstrated that the use of FGS in CRC can aid in decreased residual tumor and decreased rates of recurrence. As the mainstay of colorectal cancer treatment is surgery, the addition of intraoperative fluorescence imaging can help locate tumor margins, visualize occult micro-metastases, drive surgical decision making and improve patient outcomes.
Collapse
Affiliation(s)
- Hannah M Hollandsworth
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Michael A Turner
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Robert M Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA; AntiCancer Inc., San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
11
|
Debie P, Declerck NB, van Willigen D, Huygen CM, De Sloovere B, Mateusiak L, Bridoux J, Puttemans J, Devoogdt N, van Leeuwen FWB, Hernot S. The Design and Preclinical Evaluation of a Single-Label Bimodal Nanobody Tracer for Image-Guided Surgery. Biomolecules 2021; 11:biom11030360. [PMID: 33652977 PMCID: PMC7996797 DOI: 10.3390/biom11030360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/22/2023] Open
Abstract
Intraoperative guidance using targeted fluorescent tracers can potentially provide surgeons with real-time feedback on the presence of tumor tissue in resection margins. To overcome the limited depth penetration of fluorescent light, combining fluorescence with SPECT/CT imaging and/or gamma-ray tracing has been proposed. Here, we describe the design and preclinical validation of a novel bimodal nanobody-tracer, labeled using a “multifunctional single attachment point” (MSAP) label, integrating a Cy5 fluorophore and a diethylenetriaminepentaacetic acid (DTPA) chelator into a single structure. After conjugation of the bimodal MSAP to primary amines of the anti-HER2 nanobody 2Rs15d and 111In-labeling of DTPA, the tracer’s characteristics were evaluated in vitro. Subsequently, its biodistribution and tumor targeting were assessed by SPECT/CT and fluorescence imaging over 24 h. Finally, the tracer’s ability to identify small, disseminated tumor lesions was investigated in mice bearing HER2-overexpressing SKOV3.IP1 peritoneal lesions. [111In]In-MSAP.2Rs15d retained its affinity following conjugation and remained stable for 24 h. In vivo SPECT/CT and fluorescence images showed specific uptake in HER2-overexpressing tumors with low background. High tumor-to-muscle ratios were obtained at 1h p.i. and remained 19-fold on SPECT/CT and 3-fold on fluorescence images over 24 h. In the intraperitoneally disseminated model, the tracer allowed detection of larger lesions via nuclear imaging, while fluorescence enabled accurate removal of submillimeter lesions. Bimodal nuclear/fluorescent nanobody-tracers can thus be conveniently designed by conjugation of a single-molecule MSAP-reagent carrying a fluorophore and chelator for radioactive labeling. Such tracers hold promise for clinical applications.
Collapse
Affiliation(s)
- Pieterjan Debie
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Noemi B. Declerck
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Danny van Willigen
- Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University, 2311 Leiden, The Netherlands; (D.v.W.); (F.W.B.v.L.)
| | - Celine M. Huygen
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Bieke De Sloovere
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Lukasz Mateusiak
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Jessica Bridoux
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Janik Puttemans
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Nick Devoogdt
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Fijs W. B. van Leeuwen
- Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University, 2311 Leiden, The Netherlands; (D.v.W.); (F.W.B.v.L.)
| | - Sophie Hernot
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
- Correspondence: ; Tel.: +32-2477-4991
| |
Collapse
|
12
|
A multimodal molecular imaging approach targeting urokinase plasminogen activator receptor for the diagnosis, resection and surveillance of urothelial cell carcinoma. Eur J Cancer 2021; 146:11-20. [PMID: 33561783 DOI: 10.1016/j.ejca.2021.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
With a 5-year recurrence rate of 30-78%, urothelial cell carcinoma (UCC) rates amongst the highest of all solid malignancies. Consequently, after transurethral resection, patients are subjugated to life-long endoscopic surveillance. A multimodal near-infrared (NIR) fluorescence-based imaging strategy can improve diagnosis, resection and surveillance, hence increasing quality of life. METHODS Expression of urokinase plasminogen activator receptor (uPAR) and epithelial cell adhesion molecule (EpCAM) are determined on paraffin-embedded human UCC using immunohistochemistry and on UCC cell lines by flow cytometry. MNPR-101, a humanised monoclonal antibody targeting uPAR is conjugated to IRDye800CW and binding is validated in vitro using surface plasmon resonance and cell-based binding assays. In vivo NIR fluorescence and photoacoustic three-dimensional (3D) imaging are performed with subcutaneously growing human UM-UC-3luc2 cells in BALB/c-nude mice. The translational potential is confirmed in a metastasising UM-UC-3luc2 orthotopic mouse model. Infliximab-IRDye800CW and rituximab-IRDye800CW are used as controls. RESULTS UCCs show prominent uPAR expression at the tumour-stroma interface and EpCAM on epithelial cells. uPAR and EpCAM are expressed by 6/7 and 4/7 UCC cell lines, respectively. In vitro, MNPR-101-IRDye800CW has a picomolar affinity for domain 2-3 of uPAR. In vivo fluorescence imaging with MNPR-101-IRDye800CW, specifically delineates both subcutaneous and orthotopic tumours with tumour-to-background ratios reaching as high as 6.8, differing significantly from controls (p < 0.0001). Photoacoustic 3D in depth imaging confirms the homogenous distribution of MNPR-101-IRDye800CW through the tumour. CONCLUSIONS MNPR-101-IRDye800CW is suitable for multimodal imaging of UCC, awaiting clinical translation.
Collapse
|
13
|
Morlandt AB, Moore LS, Johnson AO, Smith CM, Stevens TM, Warram JM, MacDougall M, Rosenthal EL, Amm HM. Fluorescently Labeled Cetuximab-IRDye800 for Guided Surgical Excision of Ameloblastoma: A Proof of Principle Study. J Oral Maxillofac Surg 2020; 78:1736-1747. [PMID: 32554066 PMCID: PMC7541684 DOI: 10.1016/j.joms.2020.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Fluorescently labeled epidermal growth factor receptor (EGFR) antibodies have successfully identified microscopic tumors in multiple in vivo models of human cancers with limited toxicity. The present study sought to demonstrate the ability of fluorescently labeled anti-EGFR, cetuximab-IRDye800, to localize to ameloblastoma (AB) tumor cells in vitro and in vivo. MATERIAL AND METHODS EGFR expression in AB cells was confirmed by quantitative real-time polymerase chain reaction and immunohistochemistry. Primary AB cells were labeled in vitro with cetuximab-IRDye800 or nonspecific IgG-IRDye800. An in vivo patient-derived xenograft (PDX) model of AB was developed. The tumor tissue from 3 patients was implanted subcutaneously into immunocompromised mice. The mice received an intravenous injection of cetuximab-IRDye800 or IgG-IRDye800 and underwent imaging to detect infrared fluorescence using a Pearl imaging system (LI-COR Biosciences, Lincoln, NE). After resection of the overlying skin, the tumor/background ratios (TBRs) were calculated and statistically analyzed using a paired t test. RESULTS EGFR expression was seen in all AB samples. Tumor-specific labeling was achieved, as evidenced by a positive fluorescence signal from cetuximab-IRDye800 binding to AB cells, with little staining seen in the negative controls treated with IgG-IRDye800. In the animal PDX model, imaging revealed that the TBRs produced by cetuximab were significantly greater than those produced by IgG on days 7 to 14 for AB-20 tumors. After skin flap removal to simulate a preresection state, the TBRs increased with cetuximab and were significantly greater than the TBRs with the IgG control for PDX tumors derived from the 3 patients with AB. The excised tissues were embedded in paraffin and examined to confirm the presence of tumor. CONCLUSIONS Fluorescently labeled anti-EGFR demonstrated specificity for AB cells and PDX tumors. The present study is the first report of tumor-specific, antibody-based imaging of odontogenic tumors, of which AB is one of the most clinically aggressive. We expect this technology will ultimately assist surgeons treating AB by helping to accurately assess the tumor margins during surgery, leading to improved long-term local tumor control and less surgical morbidity.
Collapse
Affiliation(s)
- Anthony B Morlandt
- Associate Professor and Section Chief, Division of Oral Oncology, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Lindsay S Moore
- Resident, Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Aubrey O Johnson
- Student, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Caris M Smith
- Researcher II, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Todd M Stevens
- Associate Professor, Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Jason M Warram
- Associate Professor, Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Mary MacDougall
- Dean and Professor, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Eben L Rosenthal
- Professor, Division of Otolaryngology - Head and Neck Surgery, and Associate Director, Department of Clinical Care, Stanford Cancer Institute, Stanford University, Stanford, CA
| | - Hope M Amm
- Assistant Professor, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
14
|
Onaciu A, Munteanu R, Munteanu VC, Gulei D, Raduly L, Feder RI, Pirlog R, Atanasov AG, Korban SS, Irimie A, Berindan-Neagoe I. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics (Basel) 2020; 10:E660. [PMID: 32878340 PMCID: PMC7555044 DOI: 10.3390/diagnostics10090660] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Considering the complexity of the current framework in oncology, the relevance of animal models in biomedical research is critical in light of the capacity to produce valuable data with clinical translation. The laboratory mouse is the most common animal model used in cancer research due to its high adaptation to different environments, genetic variability, and physiological similarities with humans. Beginning with spontaneous mutations arising in mice colonies that allow for pursuing studies of specific pathological conditions, this area of in vivo research has significantly evolved, now capable of generating humanized mice models encompassing the human immune system in biological correlation with human tumor xenografts. Moreover, the era of genetic engineering, especially of the hijacking CRISPR/Cas9 technique, offers powerful tools in designing and developing various mouse strains. Within this article, we will cover the principal mouse models used in oncology research, beginning with behavioral science of animals vs. humans, and continuing on with genetically engineered mice, microsurgical-induced cancer models, and avatar mouse models for personalized cancer therapy. Moreover, the area of spontaneous large animal models for cancer research will be briefly presented.
Collapse
Affiliation(s)
- Anca Onaciu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Raluca Munteanu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Vlad Cristian Munteanu
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
| | - Richard-Ionut Feder
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Baart VM, Houvast RD, de Geus-Oei LF, Quax PHA, Kuppen PJK, Vahrmeijer AL, Sier CFM. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Res 2020; 10:87. [PMID: 32725278 PMCID: PMC7387399 DOI: 10.1186/s13550-020-00673-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The urokinase plasminogen activator receptor (uPAR) plays a multifaceted role in almost any process where migration of cells and tissue-remodeling is involved such as inflammation, but also in diseases as arthritis and cancer. Normally, uPAR is absent in healthy tissues. By its carefully orchestrated interaction with the protease urokinase plasminogen activator and its inhibitor (plasminogen activator inhibitor-1), uPAR localizes a cascade of proteolytic activities, enabling (patho)physiologic cell migration. Moreover, via the interaction with a broad range of cell membrane proteins, like vitronectin and various integrins, uPAR plays a significant, but not yet completely understood, role in differentiation and proliferation of cells, affecting also disease progression. The implications of these processes, either for diagnostics or therapeutics, have received much attention in oncology, but only limited beyond. Nonetheless, the role of uPAR in different diseases provides ample opportunity to exploit new applications for targeting. Especially in the fields of oncology, cardiology, rheumatology, neurology, and infectious diseases, uPAR-targeted molecular imaging could offer insights for new directions in diagnosis, surveillance, or treatment options.
Collapse
Affiliation(s)
- V M Baart
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - R D Houvast
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - L F de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - P H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - P J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands. .,Percuros BV, Leiden, The Netherlands.
| |
Collapse
|
16
|
EGFR and αvβ6 as Promising Targets for Molecular Imaging of Cutaneous and Mucosal Squamous Cell Carcinoma of the Head and Neck Region. Cancers (Basel) 2020; 12:cancers12061474. [PMID: 32516897 PMCID: PMC7352159 DOI: 10.3390/cancers12061474] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
R0 resection is paramount in cutaneous squamous cell carcinoma (CSCC) and head and neck squamous cell carcinoma (HNSCC). However, in the setting of recurrence, immunocompromised patients, or non-keratinizing squamous cell carcinoma (SCC) with a spindle growth pattern, tumor borders are difficult, if not impossible, to determine. Fluorescence-guided surgery (FGS) aids in this differentiation. Potential targets for FGS of CSCC and HNSCC were evaluated. Most sections stained intensely for αvβ6 and epidermal growth factor receptor (EGFR) on tumor cells. Normal epithelium stained less for αvβ6 than for EGFR. In addition, soft tissue and stroma stained negative for both, allowing for clear discrimination of the soft tissue margin. Tumor cells weakly expressed urokinase plasminogen activator receptor (uPAR) while expression on stromal cells was moderate. Normal epithelium rarely expressed uPAR, resulting in clear discrimination of superficial margins. Tumors did not consistently express integrin β3, carcinoembryonic antigen, epithelial cell adhesion molecule, or vascular endothelial growth factor A. In conclusion, αvβ6 and EGFR allowed for precise discrimination of SSC at the surgically problematic soft tissue margins. Superficial margins are ideally distinguished with uPAR. In the future, FGS in the surgically challenging setting of cutaneous and mucosal SCC could benefit from a tailor-made approach, with EGFR and αvβ6 as targets.
Collapse
|
17
|
Juhl K, Christensen A, Rubek N, Karnov KKS, von Buchwald C, Kjaer A. Improved surgical resection of metastatic pancreatic cancer using uPAR targeted in vivo fluorescent guidance: comparison with traditional white light surgery. Oncotarget 2019; 10:6308-6316. [PMID: 31695839 PMCID: PMC6824874 DOI: 10.18632/oncotarget.27220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
Pancreatic cancer remains one of the deadliest cancers. The five-year survival rates have been reported as 3%. Radical surgical tumor resection is critical for improved outcome and the low survival rate for pancreatic cancer is due to lack of other effective treatments and here optical guided surgery could be a solution for better surgical outcome. In the present study, we targeted the urokinase plasminogen activator receptor (uPAR) with a peptide conjugated with the fluophore ICG (ICG-Glu-Glu-AE105) for optical imaging. In the first part of the study we aimed to validate ICG-Glu-Glu-AE105 for resection of the primary tumor and metastases in an orthotopic human xenograft pancreatic cancer model. In the second part of the study we aimed to investigate if fluorescent-guided imaging could locate additional metastases following conventional removal of metastasis under normal white light surgery. Our study showed that ICG-Glu-Glu-AE105 was an excellent probe for intraoperative optical imaging with a mean tumor-to-background ratio (TBR) for the primary tumor of 3.5 and a TBR for the metastases of 3.4. Further, a benefit using intraoperative fluorescent guidance yielded identification of an additional 14% metastases compared to using normal white light surgery. In 4 of 8 mice there were identified additional metastases with uPAR optical imaging compared to white light. In conclusion, the uPAR-targeted optical probe ICG-Glu-Glu-AE105 enables intraoperative optical cancer imaging, including robotic surgery, and may be a benefit during intended radical resection of disseminated pancreas cancer by finding more metastasis than with traditional white light surgery.
Collapse
Affiliation(s)
- Karina Juhl
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Christensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niclas Rubek
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Kim Schmidt Karnov
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Kirstine Kim Schmidt Karnov sadly passed away before publishing of this article. We will miss her and our thoughts are with her family
| | - Christian von Buchwald
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Affiliation(s)
| | | | - Cornelis F M Sier
- Leiden University Medical Center, Department of Surgery, Albinusdreef, Leiden, The Netherlands
| |
Collapse
|
19
|
Vasiljeva O, Hostetter DR, Moore SJ, Winter MB. The multifaceted roles of tumor-associated proteases and harnessing their activity for prodrug activation. Biol Chem 2019; 400:965-977. [PMID: 30913028 DOI: 10.1515/hsz-2018-0451] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
The role of proteases in cancer was originally thought to be limited to the breakdown of basement membranes and extracellular matrix (ECM), thereby promoting cancer cell invasion into surrounding normal tissues. It is now well understood that proteases play a much more complicated role in all stages of cancer progression and that not only tumor cells, but also stromal cells are an important source of proteases in the tumor microenvironment. Among all the proteolytic enzymes potentially associated with cancer, some proteases have taken on heightened importance due to their significant up-regulation and ability to participate at multiple stages of cancer progression and metastasis. In this review, we discuss some of the advances in understanding of the roles of several key proteases from different classes in the development and progression of cancer and the potential to leverage their upregulated activity for the development of novel targeted treatment strategies.
Collapse
Affiliation(s)
- Olga Vasiljeva
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Daniel R Hostetter
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Stephen J Moore
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Michael B Winter
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| |
Collapse
|
20
|
Debie P, Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front Pharmacol 2019; 10:510. [PMID: 31139085 PMCID: PMC6527780 DOI: 10.3389/fphar.2019.00510] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescence imaging is an emerging technology that can provide real-time information about the operating field during cancer surgery. Non-specific fluorescent agents, used for the assessment of blood flow and sentinel lymph node detection, have so far dominated this field. However, over the last decade, several clinical studies have demonstrated the great potential of targeted fluorescent tracers to visualize tumor lesions in a more specific way. This has led to an exponential growth in the development of novel molecular fluorescent contrast agents. In this review, the design of fluorescent molecular tracers will be discussed, with particular attention for agents and approaches that are of interest for clinical translation.
Collapse
Affiliation(s)
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Abstract
PURPOSE Optical surgical navigation (OSN) will be a potent tool to help surgeons more accurately and efficiently remove tumors. The purpose of this study was to evaluate a novel humanized 3E8 antibody (3E8 MAb) fragment site-specifically conjugated with IR800, 3E8.scFv.Cys-IR800, as a potential OSN agent to target colorectal adenocarcinoma. PROCEDURES An engineered single-chain variable fragment of 3E8 MAb (targeted to TAG-72), appending a C-terminal cysteine residue (3E8.scFv.Cys), was created and reacted with IRDye800-maleimide. 3E8.scFv.Cys-IR800 identity and purity were verified by MALDI-TOF mass spectra and 800 nm detected size exclusion column HPLC. In vitro human colon adenocarcinoma LS-174 T cells binding and competition assay validated biological functionality. We further evaluated the imaging ability and receptor-specific binding of 3E8.scFv.Cys-IR800 in an orthotopic LS-174 T mouse model. RESULTS A 1:1 dye to protein conjugate was achieved at greater than 90 % HPLC purity. A 1 nmol dose of 3E8.scFv.Cys-IR800 via intraperitoneal injection administration was sufficient to produce high tumor to background fluorescence contrast. Blocking competition studies both in vitro and in vivo using a different blocking protein, 3E8ΔCH2, demonstrated 3E8.scFv.Cys-IR800 binding specificity for TAG-72 antigen. CONCLUSIONS 3E8.scFv.Cys-IR800 shows properties useful in a clinically viable OSN agent for colorectal cancer.
Collapse
|
22
|
Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation. Surg Oncol 2018; 28:1-8. [PMID: 30851880 DOI: 10.1016/j.suronc.2018.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
Tumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on epithelial-derived cancers. This study describes the development and evaluation of EpCAM-F800, a novel fluorescent anti-EpCAM antibody fragment, for intraoperative tumor imaging. Fab production, conjugation to the fluorophore IRDye 800CW, and binding capacities were determined and validated using HPLC, spectrophotometry and cell-based assays. In vivo, dose escalation-, blocking-, pharmacokinetic- and biodistribution studies (using both fluorescence and radioactivity) were performed, next to imaging of clinically relevant orthotopic xenografts for breast and colorectal cancer. EpCAM-F800 targets EpCAM with high specificity in vitro, which was validated using in vivo blocking experiments with a 10x higher dose of unlabeled Fab. The optimal dose range for fluorescence tumor detection in mice was 1-5 nmol (52-260 μg), which corresponds to a human equivalent dose of 0.2-0.8 mg/kg. Biodistribution showed high accumulation of EpCAM-F800 in tumors and metabolizing organs. Breast and colorectal tumors could clearly be visualized within 8 h post-injection and up to 96 h, while the agent already showed homogenous tumor distribution within 4 h. The blood half-life was 4.5 h. This study describes the development and evaluation of a novel EpCAM-targeting agent and the feasibility to visualize breast and colorectal tumors by fluorescence imaging during resections. EpCAM-F800 will be translated for clinical use, considering its abundance in a broad range of tumor types.
Collapse
|
23
|
Buckle T, van Willigen DM, Spa SJ, Hensbergen AW, van der Wal S, de Korne CM, Welling MM, van der Poel HG, Hardwick JCH, van Leeuwen FWB. Tracers for Fluorescence-Guided Surgery: How Elongation of the Polymethine Chain in Cyanine Dyes Alters the Pharmacokinetics of a Dual-Modality c[RGDyK] Tracer. J Nucl Med 2018; 59:986-992. [PMID: 29449447 DOI: 10.2967/jnumed.117.205575] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023] Open
Abstract
The potential of receptor-mediated fluorescence-based image-guided surgery tracers is generally linked to the near-infrared emission profile and good-manufacturing-production availability of fluorescent dyes. Surprisingly, little is known about the critical interaction between the structural composition of the dyes and the pharmacokinetics of the tracers. In this study, a dual-modality tracer design was used to systematically and quantitatively evaluate the influence of elongation of the polymethine chain in a fluorescent cyanine dye on the imaging potential of a targeted tracer. Methods: As a model system, the integrin marker αvβ3 was targeted using arginylglycylaspartisc acid [RGD]-based vectors functionalized with a 111In-diethylenetriaminepentaacetic acid (DTPA) chelate and a fluorescent dye: (Cy3-(SO3)methyl-COOH [emission wavelength (λem), 580 nm], Cy5-(SO3)methyl-COOH [λem, 680 nm], or Cy7-(SO3)methyl-COOH [λem, 780 nm]). Tracers were analyzed for differences in photophysical properties, serum protein binding, chemical or optical stability, and signal penetration through tissue. Receptor affinities were evaluated using saturation and competition experiments. In vivo biodistribution (SPECT imaging and percentage injected dose per gram of tissue) was assessed in tumor-bearing mice and complemented with in vivo and ex vivo fluorescence images obtained using a clinical-grade multispectral fluorescence laparoscope. Results: Two carbon-atom-step variations in the polymethine chain of the fluorescent cyanine dyes were shown to significantly influence the chemical and photophysical characteristics (e.g., stability, brightness, and tissue penetration) of the hybrid RGD tracers. DTPA-Cy5-(SO3)methyl-COOH-c[RGDyK] structurally outperformed its Cy3 and Cy7 derivatives. Radioactivity-based evaluation of in vivo tracer pharmacokinetics yielded the lowest nonspecific uptake and highest tumor-to-background ratio for DTPA-Cy5-(SO3)methyl-COOH-c[RGDyK] (13.2 ± 1.7), with the Cy3 and Cy7 analogs trailing at respective tumor-to-background ratios of 5.7 ± 0.7 and 4.7 ± 0.7. Fluorescence-based assessment of tumor visibility revealed a similar trend. Conclusion: These findings underline that variations in the polymethine chain lengths of cyanine dyes have a profound influence on the photophysical properties, stability, and in vivo targeting capabilities of fluorescent imaging tracers. In a direct comparison, the intermediate-length dye (Cy5) yielded a superior c[RGDyK] tracer, compared with the shorter (Cy3) and longer (Cy7) analogs.
Collapse
Affiliation(s)
- Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Silvia J Spa
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albertus W Hensbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steffen van der Wal
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clarize M de Korne
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mick M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk G van der Poel
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands; and
| | - James C H Hardwick
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands; and
| |
Collapse
|
24
|
Zhao J, Chen J, Ma S, Liu Q, Huang L, Chen X, Lou K, Wang W. Recent developments in multimodality fluorescence imaging probes. Acta Pharm Sin B 2018; 8:320-338. [PMID: 29881672 PMCID: PMC5989919 DOI: 10.1016/j.apsb.2018.03.010] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI) probe integration with other imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and photoacoustic imaging (PAI). The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy.
Collapse
Affiliation(s)
- Jianhong Zhao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Junwei Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Shengnan Ma
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Qianqian Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Lixian Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Xiani Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyan Lou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
25
|
Chen Q, Shang W, Zeng C, Wang K, Liang X, Chi C, Liang X, Yang J, Fang C, Tian J. Theranostic imaging of liver cancer using targeted optical/MRI dual-modal probes. Oncotarget 2018; 8:32741-32751. [PMID: 28416757 PMCID: PMC5464824 DOI: 10.18632/oncotarget.15642] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
The accurate preoperative detection and intraoperative navigation afforded by imaging techniques have had significant impact on the success of liver cancer surgeries. However, it is difficult to achieve satisfactory performance in both diagnosis and surgical treatment processes using any single modality imaging method. Here, we report the synthesis and characteristics of a novel dual-modality magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) probe and verify its feasibility in nude mouse models with liver cancer. The probes are comprised of superparamagnetic iron oxide (SPIO) nanoparticles coated with liposomes to which a tumor-targeted agent, Arg-Gly-Asp peptides (RGD), and a NIRF dye (indocyanine green, ICG) have been conjugated. Specific targeting, biodistribution, and the imaging ability of the probes for MRI-NIRF were examined. Furthermore, we applied the dual-modality methodology toward the preoperative diagnosis and intraoperative guidance of radical resection in mouse models with both orthotopic liver tumors and intrahepatic tumor metastasis. The study demonstrated that both MRI and fluorescent images showed clear tumor delineation after probe injection (SPIO@Liposome-ICG-RGD). The contrast-to-noise ratio obtained from MRI was 31.9 ± 25.4 at post-injection for the preoperative diagnosis, which is helpful for detecting small tumors (0.9 ± 0.5 mm). The maximum tumor to background ratio of NIRF imaging was 2.5 ± 0.3 at 72 h post-injection for effectively capturing miniscule tumor lesions (0.6 ± 0.3 mm) intraoperatively. The novel MRI-NIRF dual modality probes are promising for the achievement of more accurate liver tumor detection and resection.
Collapse
Affiliation(s)
- Qingshan Chen
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.,Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenting Shang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Chaoting Zeng
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.,Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Xiaoyuan Liang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Chongwei Chi
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Xiao Liang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Jian Yang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.,Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| |
Collapse
|
26
|
Antibody-based PET of uPA/uPAR signaling with broad applicability for cancer imaging. Oncotarget 2018; 7:73912-73924. [PMID: 27729618 PMCID: PMC5342023 DOI: 10.18632/oncotarget.12528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence suggests that the urokinase plasminogen activator (uPA) and its receptor (uPAR) play a central role in tumor progression. The goal of this study was to develop an 89Zr-labeled, antibody-based positron emission tomography (PET) tracer for quantitative imaging of the uPA/uPAR system. An anti-uPA monoclonal antibody (ATN-291) was conjugated with a deferoxamine (Df) derivative and subsequently labeled with 89Zr. Flow cytometry, microscopy studies, and competitive binding assays were conducted to validate the binding specificity of Df-ATN-291 against uPA. PET imaging with 89Zr-Df-ATN-291 was carried out in different tumors with distinct expression levels of uPA. Biodistribution, histology examination, and Western blotting were performed to correlate tumor uptake with uPA or uPAR expression. ATN-291 retained uPA binding affinity and specificity after Df conjugation. 89Zr-labeling of ATN-291 was achieved in good radiochemical yield and high specific activity. Serial PET imaging demonstrated that, in most tumors studied (except uPA- LNCaP), the uptake of 89Zr-Df-ATN-291 was higher compared to major organs at 120 h post-injection, providing excellent tumor contrast. The tumor-to-muscle ratio of 89Zr-Df-ATN-291 in U87MG was as high as 45.2 ± 9.0 at 120 h p.i. In vivo uPA specificity of 89Zr-Df-ATN-291 was confirmed by successful pharmacological blocking of tumor uptake with ATN-291 in U87MG tumors. Although the detailed mechanisms behind in vivo 89Zr-Df-ATN-291 tumor uptake remained to be further elucidated, quantitative PET imaging with 89Zr-Df-ATN-291 in tumors can facilitate oncologists to adopt more relevant cancer treatment planning.
Collapse
|
27
|
Mahmood N, Mihalcioiu C, Rabbani SA. Multifaceted Role of the Urokinase-Type Plasminogen Activator (uPA) and Its Receptor (uPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front Oncol 2018; 8:24. [PMID: 29484286 PMCID: PMC5816037 DOI: 10.3389/fonc.2018.00024] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/24/2018] [Indexed: 01/01/2023] Open
Abstract
The plasminogen activator (PA) system is an extracellular proteolytic enzyme system associated with various physiological and pathophysiological processes. A large body of evidence support that among the various components of the PA system, urokinase-type plasminogen activator (uPA), its receptor (uPAR), and plasminogen activator inhibitor-1 and -2 (PAI-1 and PAI-2) play a major role in tumor progression and metastasis. The binding of uPA with uPAR is instrumental for the activation of plasminogen to plasmin, which in turn initiates a series of proteolytic cascade to degrade the components of the extracellular matrix, and thereby, cause tumor cell migration from the primary site of origin to a distant secondary organ. The components of the PA system show altered expression patterns in several common malignancies, which have identified them as ideal diagnostic, prognostic, and therapeutic targets to reduce cancer-associated morbidity and mortality. This review summarizes the various components of the PA system and focuses on the role of uPA-uPAR in different biological processes especially in the context of malignancy. We also discuss the current state of knowledge of uPA-uPAR-targeted diagnostic and therapeutic strategies for various malignancies.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Catalin Mihalcioiu
- Department of Oncology, McGill University Health Centre, Montreal, QC, Canada
| | - Shafaat A. Rabbani
- Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
- Department of Oncology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
28
|
Mahalingam SM, Dudkin V, Goldberg S, Klein D, Yi F, Singhal S, O’Neil KT, Low PS. Evaluation of a Centyrin-Based Near-Infrared Probe for Fluorescence-Guided Surgery of Epidermal Growth Factor Receptor Positive Tumors. Bioconjug Chem 2017; 28:2865-2873. [PMID: 28945346 PMCID: PMC11017363 DOI: 10.1021/acs.bioconjchem.7b00566] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor-targeted near-infrared fluorescent dyes have the potential to improve cancer surgery by enabling surgeons to locate and resect more malignant lesions where good visualization tools are required to ensure complete removal of malignant tissue. Although the tumor-targeted fluorescent dyes used in humans to date have been either small organic molecules or high molecular weight antibodies, low molecular weight protein scaffolds have attracted significant attention because they penetrate solid tumors almost as efficiently as small molecules, but can be infinitely mutated to bind almost any antigen. Here we describe the use of a 10 kDa protein scaffold, a Centyrin, to target a near-infrared fluorescent dye to tumors that overexpress the epidermal growth factor receptor (EGFR) for fluorescence-guided surgery (FGS). We have developed and optimized the dose and time required for imaging small tumor burdens with minimal background fluorescence in real-time fluorescence-guided surgery of EGFR-expressing tumor xenografts in murine models. We demonstrate that the Centyrin-near-infrared dye conjugate (CNDC) binds selectively to human EGFR+ cancer cells with an EC50 of 2 nM, localizes to EGFR+ tumor xenografts in athymic nude mice and that uptake of the dye in xenografts is significantly reduced when EGFR are blocked by preinjection of excess unlabeled Centyrin. Taken together, these data suggest that CNDCs can be used for intraoperative identification and surgical removal of EGFR-expressing lesions and that Centyrins targeted to other tumor-specific antigens should prove similarly useful in fluorescence guided surgery of cancer. In addition, we demonstrate that the CNDC is detected in the NIR region of the spectrum and can be utilized for fluorescence-guided surgery (FGS). In addition, we propose that with its eventual complete clearance from EGFR-negative tissues and its quantitative retention in the tumor mass for >24 h, a Centyrin-targeted NIR dye should provide excellent tumor contrast when injected at least 6-8 h before initiation of cancer surgery in human patients.
Collapse
Affiliation(s)
- Sakkarapalayam M. Mahalingam
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vadim Dudkin
- Janssen Research & Development, 1400 McKean Road, Springhouse PA 19477, United States
| | - Shalom Goldberg
- Janssen Research & Development, 1400 McKean Road, Springhouse PA 19477, United States
| | - Donna Klein
- Janssen Research & Development, 1400 McKean Road, Springhouse PA 19477, United States
| | - Fang Yi
- Janssen Research & Development, 1400 McKean Road, Springhouse PA 19477, United States
| | - Sunil Singhal
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Karyn T. O’Neil
- Janssen Research & Development, 1400 McKean Road, Springhouse PA 19477, United States
| | - Philip S. Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
29
|
Abstract
PURPOSE Recently we showed that a number of carboxylated near-infrared fluorescent (NIRF) cyanine dyes possess strong necrosis avid properties in vitro as well as in different mouse models of spontaneous and therapy-induced tumor necrosis, indicating their potential use for cancer diagnostic- and prognostic purposes. In the previous study, the detection of the cyanines was achieved by whole body optical imaging, a technique that, due to the limited penetration of near-infrared light, is not suitable for investigations deeper than 1 cm within the human body. Therefore, in order to facilitate clinical translation, the purpose of the present study was to generate a necrosis avid cyanine-based NIRF probe that could also be used for single photon emission computed tomography (SPECT). For this, the necrosis avid NIRF cyanine HQ4 was radiolabeled with 111indium, via the chelate diethylene triamine pentaacetic acid (DTPA). PROCEDURES The necrosis avid properties of the radiotracer [111In]DTPA-HQ4 were examined in vitro and in vivo in different breast tumor models in mice using SPECT and optical imaging. Moreover, biodistribution studies were performed to examine the pharmacokinetics of the probe in vivo. RESULTS Using optical imaging and radioactivity measurements, in vitro, we showed selective accumulation of [111In]DTPA-HQ4 in dead cells. Using SPECT and in biodistribution studies, the necrosis avidity of the radiotracer was confirmed in a 4T1 mouse breast cancer model of spontaneous tumor necrosis and in a MCF-7 human breast cancer model of chemotherapy-induced tumor necrosis. CONCLUSIONS The radiotracer [111In]DTPA-HQ4 possessed strong and selective necrosis avidity in vitro and in various mouse models of tumor necrosis in vivo, indicating its potential to be clinically applied for diagnostic purposes and to monitor anti-cancer treatment efficacy.
Collapse
|
30
|
uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer: proof-of-concept in orthotopic xenograft model. Oncotarget 2017; 8:15407-15419. [PMID: 28039488 PMCID: PMC5362495 DOI: 10.18632/oncotarget.14282] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/30/2016] [Indexed: 12/29/2022] Open
Abstract
Purpose Urokinase-like Plasminogen Activator Receptor (uPAR) is overexpressed in a variety of carcinoma types, and therefore represents an attractive imaging target. The aim of this study was to assess the feasibility of two uPAR-targeted probes for PET and fluorescence tumor imaging in a human xenograft tongue cancer model. Experimental design and results Tumor growth of tongue cancer was monitored by bioluminescence imaging (BLI) and MRI. Either ICG-Glu-Glu-AE105 (fluorescent agent) or 64Cu-DOTA-AE105 (PET agent) was injected systemically, and fluorescence imaging or PET/CT imaging was performed. Tissue was collected for micro-fluorescence imaging and histology. A clear fluorescent signal was detected in the primary tumor with a mean in vivo tumor-to-background ratio of 2.5. Real-time fluorescence-guided tumor resection was possible, and sub-millimeter tumor deposits could be localized. Histological analysis showed co-localization of the fluorescent signal, uPAR expression and tumor deposits. In addition, the feasibility of uPAR-guided robotic cancer surgery was demonstrated. Also, uPAR-PET imaging showed a clear and localized signal in the tongue tumors. Conclusions This study demonstrated the feasibility of combining two uPAR-targeted probes in a preclinical head and neck cancer model. The PET modality provided preoperative non-invasive tumor imaging and the optical modality allowed for real-time fluorescence-guided tumor detection and resection. Clinical translation of this platform seems promising.
Collapse
|
31
|
Ding F, Chen S, Zhang W, Tu Y, Sun Y. UPAR targeted molecular imaging of cancers with small molecule-based probes. Bioorg Med Chem 2017; 25:5179-5184. [PMID: 28869084 DOI: 10.1016/j.bmc.2017.08.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/31/2017] [Accepted: 08/20/2017] [Indexed: 01/05/2023]
Abstract
Molecular imaging can allow the non-invasive characterization and measurement of biological and biochemical processes at the molecular and cellular levels in living subjects. The imaging of specific molecular targets that are associated with cancers could allow for the earlier diagnosis and better treatment of diseases. Small molecule-based probes play prominent roles in biomedical research and have high clinical translation ability. Here, with an emphasis on small molecule-based probes, we review some recent developments in biomarkers, imaging techniques and multimodal imaging in molecular imaging and highlight the successful applications for molecular imaging of cancers.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Seng Chen
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wanshu Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yufeng Tu
- Department of Cardiology, The Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
32
|
Skovgaard D, Persson M, Kjaer A. Urokinase Plasminogen Activator Receptor–PET with 68 Ga-NOTA-AE105. PET Clin 2017; 12:311-319. [DOI: 10.1016/j.cpet.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Simkens GA, Rovers KP, Nienhuijs SW, de Hingh IH. Patient selection for cytoreductive surgery and HIPEC for the treatment of peritoneal metastases from colorectal cancer. Cancer Manag Res 2017; 9:259-266. [PMID: 28721098 PMCID: PMC5501638 DOI: 10.2147/cmar.s119569] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) is a viable option for selected patients with peritoneal metastases (PM) from colorectal origin, resulting in long-term survival and even cure in some cases. However, adequate patient selection for this treatment is currently one of the major challenges. The aim of this review is to provide a comprehensive overview of clinically relevant factors associated with overall survival. This may help to guide clinicians through the complex interplay of patient, tumor, and treatment characteristics to adequately select patients who benefit the most from this extensive surgical treatment. First, basic principles of colorectal PM and the CRS and HIPEC treatment will be discussed. According to available literature, especially extent of peritoneal disease, completeness of cytoreduction, and signet ring cell histology have great influence on the outcome after CRS and HIPEC. Other factors that seem to have a negative prognostic value are the presence of liver metastases and the absence of treatment with neo-adjuvant systemic therapy. Prognostic models combining the above-mentioned factors, such as the Colorectal Peritoneal Metastases Prognostic Surgical Score nomogram, may provide clinically relevant tools to use in everyday practice.
Collapse
Affiliation(s)
- Geert A Simkens
- Department of Surgical Oncology, Catharina Cancer Institute, Eindhoven, The Netherlands
| | - Koen P Rovers
- Department of Surgical Oncology, Catharina Cancer Institute, Eindhoven, The Netherlands
| | - Simon W Nienhuijs
- Department of Surgical Oncology, Catharina Cancer Institute, Eindhoven, The Netherlands
| | - Ignace H de Hingh
- Department of Surgical Oncology, Catharina Cancer Institute, Eindhoven, The Netherlands
| |
Collapse
|
34
|
Bugby SL, Lees JE, Perkins AC. Hybrid intraoperative imaging techniques in radioguided surgery: present clinical applications and future outlook. Clin Transl Imaging 2017; 5:323-341. [PMID: 28804703 PMCID: PMC5532406 DOI: 10.1007/s40336-017-0235-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/10/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE This review aims to summarise the hybrid modality radioguidance techniques currently in clinical use and development, and to discuss possible future avenues of research. Due to the novelty of these approaches, evidence of their clinical relevance does not yet exist. The purpose of this review is to inform nuclear medicine practitioners of current cutting edge research in radioguided surgery which may enter standard clinical practice within the next 5-10 years. Hybrid imaging is of growing importance to nuclear medicine diagnostics, but it is only with recent advances in technology that hybrid modalities are being investigated for use during radioguided surgery. These modalities aim to overcome some of the difficulties of surgical imaging while maintaining many benefits, or providing entirely new information unavailable to surgeons with traditional radioguidance. METHODS A literature review was carried out using online reference databases (Scopus, PubMed). Review articles obtained using this technique were citation mined to obtain further references. RESULTS In total, 2367 papers were returned, with 425 suitable for further assessment. 60 papers directly related to hybrid intraoperative imaging in radioguided surgery are reported on. Of these papers, 25 described the clinical use of hybrid imaging, 22 described the development of new hybrid probes and tracers, and 13 described the development of hybrid technologies for future clinical use. Hybrid gamma-NIR fluorescence was found to be the most common clinical technique, with 35 papers associated with these modalities. Other hybrid combinations include gamma-bright field imaging, gamma-ultrasound imaging, gamma-β imaging and β-OCT imaging. The combination of preoperative and intraoperative images is also discussed. CONCLUSION Hybrid imaging offers new possibilities for assisting clinicians and surgeons in localising the site of uptake in procedures such as in sentinel node detection.
Collapse
Affiliation(s)
- S L Bugby
- Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH UK
| | - J E Lees
- Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH UK
| | - A C Perkins
- Radiological Sciences, Division of Clinical Neuroscience, School of Medical, University of Nottingham, Nottingham, NG7 2UH UK.,Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, NH7 2UH UK
| |
Collapse
|
35
|
Tummers WS, Farina-Sarasqueta A, Boonstra MC, Prevoo HA, Sier CF, Mieog JS, Morreau J, van Eijck CH, Kuppen PJ, van de Velde CJ, Bonsing BA, Vahrmeijer AL, Swijnenburg RJ. Selection of optimal molecular targets for tumor-specific imaging in pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:56816-56828. [PMID: 28915633 PMCID: PMC5593604 DOI: 10.18632/oncotarget.18232] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022] Open
Abstract
Discrimination of pancreatic ductal adenocarcinoma (PDAC) from chronic pancreatitis (CP) or peritumoral inflammation is challenging, both at preoperative imaging and during surgery, but it is crucial for proper therapy selection. Tumor-specific molecular imaging aims to enhance this discrimination and to help select and stratify patients for resection. We evaluated various biomarkers for the specific identification of PDAC and associated lymph node metastases. Using immunohistochemistry (IHC), expression levels and patterns were investigated of integrin αvβ6, carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), Cathepsin E (Cath E), epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (c-MET), thymocyte differentiation antigen 1 (Thy1), and urokinase-type plasminogen activator receptor (uPAR). In a first cohort, multiple types of pancreatic tissue were evaluated (n=62); normal pancreatic tissue (n=8), CP (n=7), PDAC (n=9), tumor associated lymph nodes (n=32), and PDAC after neoadjuvant radiochemotherapy (n=6). In a second cohort, tissues were investigated (n=55) with IHC and immunofluorescence (IF) for concordance of biomarker expression in all tissue types, obtained from an individual patient. Integrin αvβ6 and CEACAM5 showed significantly higher expression levels in PDAC versus normal pancreatic tissue (P=0.001 and P<0.001, respectively) and CP (P=0.003 and P<0.001, respectively). Avβ6 and CEACAM5 expression identified tumor-positive lymph nodes correctly in 84% and 68%, respectively, and in 100% of tumor-negative nodes for both biomarkers. In conclusion, αvβ6 and CEACAM5 are excellent biomarkers to differentiate PDAC from surrounding tissue and to identify lymph node metastases. Individually or combined, these biomarkers are promising targets for tumor-specific molecular imaging of PDAC.
Collapse
Affiliation(s)
- Willemieke S Tummers
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrica A Prevoo
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis F Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan S Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Johannes Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Casper H van Eijck
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter J Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
36
|
Boonstra MC, Van Driel PBAA, Keereweer S, Prevoo HAJM, Stammes MA, Baart VM, Löwik CWGM, Mazar AP, van de Velde CJH, Vahrmeijer AL, Sier CFM. Preclinical uPAR-targeted multimodal imaging of locoregional oral cancer. Oral Oncol 2017; 66:1-8. [PMID: 28249642 DOI: 10.1016/j.oraloncology.2016.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/27/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Establishing adequate resection margins and lymphatic mapping are crucial for the prognosis of oral cancer patients. Novel targeted imaging modalities are needed, enabling pre- and intraoperative detection of tumour cells, in combination with improved post-surgical examination by the pathologist. The urokinase-receptor (uPAR) is overexpressed in head and neck cancer, where it is associated with tumour progression and metastasis. MATERIAL AND METHODS To determine suitability of uPAR for molecular imaging of oral cancer surgery, human head and neck tumours were sectioned and stained for uPAR to evaluate the expression pattern compared to normal mucosa. Furthermore, metastatic oral squamous carcinoma cell line OSC-19 was used for targeting uPAR in in vivo mouse models. Using anti-uPAR antibody ATN-658, equipped with a multimodal label, the in vivo specificity was investigated and the optimal dose and time-window were evaluated. RESULTS All human oral cancer tissues expressed uPAR in epithelial and stromal cells. Hybrid ATN-658 clearly visualized tongue tumours in mice using either NIRF or SPECT imaging. Mean fluorescent TBRs over time were 4.3±0.7 with the specific tracer versus 1.7±0.1 with a control antibody. A significant difference in TBRs could be seen between 1nmol (150μg) and 0.34nmol (50μg) dose groups (n=4, p<0.05). Co-expression between BLI, GFP and the NIR fluorescent signals were seen in the tongue tumour, whereas human cytokeratin staining confirmed presence of malignant cells in the positive cervical lymph nodes. CONCLUSION This study shows the applicability of an uPAR specific multimodal tracer in an oral cancer model, combining SPECT with intraoperative guidance.
Collapse
Affiliation(s)
- M C Boonstra
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - P B A A Van Driel
- Department of Radiology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - S Keereweer
- Department of Otorhinolaryngology, and Head & Neck Surgery, Erasmus Medical Centre, Rotterdam, Netherlands
| | - H A J M Prevoo
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - M A Stammes
- Department of Radiology, Leiden University Medical Centre, Leiden, Netherlands; Percuros BV, Enschede, Netherlands
| | - V M Baart
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - C W G M Löwik
- Department of Radiology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - A P Mazar
- Monopar Therapeutics Inc, Northbrook, IL, United States
| | - C J H van de Velde
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands; Antibodies for Research Applications BV, Gouda, Netherlands.
| |
Collapse
|
37
|
van Driel PBAA, Boonstra MC, Prevoo HAJM, van de Giessen M, Snoeks TJA, Tummers QRJG, Keereweer S, Cordfunke RA, Fish A, van Eendenburg JDH, Lelieveldt BPF, Dijkstra J, van de Velde CJH, Kuppen PJK, Vahrmeijer AL, Löwik CWGM, Sier CFM. EpCAM as multi-tumour target for near-infrared fluorescence guided surgery. BMC Cancer 2016; 16:884. [PMID: 27842504 PMCID: PMC5109830 DOI: 10.1186/s12885-016-2932-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 10/30/2016] [Indexed: 01/08/2023] Open
Abstract
Background Evaluation of resection margins during cancer surgery can be challenging, often resulting in incomplete tumour removal. Fluorescence-guided surgery (FGS) aims to aid the surgeon to visualize tumours and resection margins during surgery. FGS relies on a clinically applicable imaging system in combination with a specific tumour-targeting contrast agent. In this study EpCAM (epithelial cell adhesion molecule) is evaluated as target for FGS in combination with the novel Artemis imaging system. Methods The NIR fluorophore IRDye800CW was conjugated to the well-established EpCAM specific monoclonal antibody 323/A3 and an isotype IgG1 as control. The anti-EpCAM/800CW conjugate was stable in serum and showed preserved binding capacity as evaluated on EpCAM positive and negative cell lines, using flow cytometry and cell-based plate assays. Four clinically relevant orthotopic tumour models, i.e. colorectal cancer, breast cancer, head and neck cancer, and peritonitis carcinomatosa, were used to evaluate the performance of the anti-EpCAM agent with the clinically validated Artemis imaging system. The Pearl Impulse small animal imaging system was used as reference. The specificity of the NIRF signal was confirmed using bioluminescence imaging and green-fluorescent protein. Results All tumour types could clearly be delineated and resected 72 h after injection of the imaging agent. Using NIRF imaging millimetre sized tumour nodules were detected that were invisible for the naked eye. Fluorescence microscopy demonstrated the distribution and tumour specificity of the anti-EpCAM agent. Conclusions This study shows the potential of an EpCAM specific NIR-fluorescent agent in combination with a clinically validated intraoperative imaging system to visualize various tumours during surgery.
Collapse
Affiliation(s)
- P B A A van Driel
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Centre, Leiden, Netherlands.,Percuros BV, Enschede, The Netherlands
| | - M C Boonstra
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - H A J M Prevoo
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - M van de Giessen
- Department of Radiology and Division of Image Processing, Leiden University Medical Centre, Leiden, Netherlands
| | - T J A Snoeks
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Centre, Leiden, Netherlands
| | - Q R J G Tummers
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - S Keereweer
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus Medical Centre, Rotterdam, Netherlands
| | - R A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands
| | - A Fish
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - B P F Lelieveldt
- Department of Radiology and Division of Image Processing, Leiden University Medical Centre, Leiden, Netherlands
| | - J Dijkstra
- Department of Radiology and Division of Image Processing, Leiden University Medical Centre, Leiden, Netherlands
| | - C J H van de Velde
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - P J K Kuppen
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands.,Antibodies for Research Applications BV, Gouda, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - C W G M Löwik
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Centre, Leiden, Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands. .,Antibodies for Research Applications BV, Gouda, The Netherlands.
| |
Collapse
|
38
|
Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM, Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC. Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions. Front Surg 2016; 3:55. [PMID: 27800481 PMCID: PMC5066076 DOI: 10.3389/fsurg.2016.00055] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Fluorescence-guided surgery is one of the rapidly emerging methods of surgical "theranostics." In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients as well as future applications of recent laboratory and translational studies. METHODS Review of the literature. RESULTS A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence-guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-aminolevulinic acid, and indocyanine green), less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine, can be used for rapid tumor detection and pathological tissue examination. Other emerging agents, such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment, are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed. CONCLUSION We are standing on the threshold of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kaan Yagmurlu
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Eric J. Miller
- University of Arizona College of Medicine – Phoenix, Phoenix, AZ, USA
| | - Jennifer M. Eschbacher
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mohammadhassan Izadyyazdanabadi
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Liudmila A. Bardonova
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Vadim A. Byvaltsev
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark C. Preul
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
39
|
Boonstra MC, de Geus SWL, Prevoo HAJM, Hawinkels LJAC, van de Velde CJH, Kuppen PJK, Vahrmeijer AL, Sier CFM. Selecting Targets for Tumor Imaging: An Overview of Cancer-Associated Membrane Proteins. BIOMARKERS IN CANCER 2016; 8:119-133. [PMID: 27721658 PMCID: PMC5040425 DOI: 10.4137/bic.s38542] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022]
Abstract
Tumor targeting is a booming business: The global therapeutic monoclonal antibody market accounted for more than $78 billion in 2012 and is expanding exponentially. Tumors can be targeted with an extensive arsenal of monoclonal antibodies, ligand proteins, peptides, RNAs, and small molecules. In addition to therapeutic targeting, some of these compounds can also be applied for tumor visualization before or during surgery, after conjugation with radionuclides and/or near-infrared fluorescent dyes. The majority of these tumor-targeting compounds are directed against cell membrane-bound proteins. Various categories of targetable membrane-bound proteins, such as anchoring proteins, receptors, enzymes, and transporter proteins, exist. The functions and biological characteristics of these proteins determine their location and distribution on the cell membrane, making them more, or less, accessible, and therefore, it is important to understand these features. In this review, we evaluate the characteristics of cancer-associated membrane proteins and discuss their overall usability for cancer targeting, especially focusing on imaging applications.
Collapse
Affiliation(s)
- Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susanna W L de Geus
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Lukas J A C Hawinkels
- Department of Gastroenterology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.; Antibodies for Research Applications BV, Gouda, the Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.; Antibodies for Research Applications BV, Gouda, the Netherlands
| |
Collapse
|
40
|
Vangestel C, Thomae D, Van Soom J, Ides J, wyffels L, Pauwels P, Stroobants S, Van der Veken P, Magdolen V, Joossens J, Augustyns K, Staelens S. Preclinical evaluation of [111In]MICA-401, an activity-based probe for SPECT imaging ofin vivouPA activity. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:448-458. [DOI: 10.1002/cmmi.1706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/15/2016] [Accepted: 06/30/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Christel Vangestel
- Molecular Imaging Center Antwerp; University of Antwerp; Universiteitsplein 1 B-2610 Antwerp Belgium
- Department of Nuclear Medicine; Antwerp University Hospital; Wilrijkstraat 10 B-2650 Edegem Belgium
| | - David Thomae
- Molecular Imaging Center Antwerp; University of Antwerp; Universiteitsplein 1 B-2610 Antwerp Belgium
- Department of Medicinal Chemistry; University of Antwerp; Universiteitsplein 1 B-2610 Antwerp Belgium
| | - Jeroen Van Soom
- Department of Medicinal Chemistry; University of Antwerp; Universiteitsplein 1 B-2610 Antwerp Belgium
| | - Johan Ides
- Center for Oncological Research; University of Antwerp; Universiteitsplein 1 B-2610 Antwerp Belgium
| | - Leonie wyffels
- Molecular Imaging Center Antwerp; University of Antwerp; Universiteitsplein 1 B-2610 Antwerp Belgium
- Department of Nuclear Medicine; Antwerp University Hospital; Wilrijkstraat 10 B-2650 Edegem Belgium
| | - Patrick Pauwels
- Center for Oncological Research; University of Antwerp; Universiteitsplein 1 B-2610 Antwerp Belgium
- Department of Pathology; Antwerp University Hospital; Wilrijkstraat 10 B-2650 Edegem Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp; University of Antwerp; Universiteitsplein 1 B-2610 Antwerp Belgium
- Department of Nuclear Medicine; Antwerp University Hospital; Wilrijkstraat 10 B-2650 Edegem Belgium
| | - Pieter Van der Veken
- Department of Medicinal Chemistry; University of Antwerp; Universiteitsplein 1 B-2610 Antwerp Belgium
| | - Viktor Magdolen
- Klinische Forschergruppe der Frauenklinik; Klinikum rechts der Isar der TU München; 81675 Munich Germany
| | - Jurgen Joossens
- Department of Medicinal Chemistry; University of Antwerp; Universiteitsplein 1 B-2610 Antwerp Belgium
| | - Koen Augustyns
- Department of Medicinal Chemistry; University of Antwerp; Universiteitsplein 1 B-2610 Antwerp Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp; University of Antwerp; Universiteitsplein 1 B-2610 Antwerp Belgium
| |
Collapse
|
41
|
Juhl K, Christensen A, Persson M, Ploug M, Kjaer A. Peptide-Based Optical uPAR Imaging for Surgery: In Vivo Testing of ICG-Glu-Glu-AE105. PLoS One 2016; 11:e0147428. [PMID: 26828431 PMCID: PMC4734687 DOI: 10.1371/journal.pone.0147428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/03/2016] [Indexed: 12/22/2022] Open
Abstract
Near infrared intra-operative optical imaging is an emerging technique with clear implications for improved cancer surgery by enabling a more distinct delineation of the tumor margins during resection. This modality has the potential to increase the number of patients having a curative radical tumor resection. In the present study, a new uPAR-targeted fluorescent probe was developed and the in vivo applicability was evaluated in a human xenograft mouse model. Most human carcinomas express high level of uPAR in the tumor-stromal interface of invasive lesions and uPAR is therefore considered an ideal target for intra-operative imaging. Conjugation of the flourophor indocyanine green (ICG) to the uPAR agonist (AE105) provides an optical imaging ligand with sufficiently high receptor affinity to allow for a specific receptor targeting in vivo. For in vivo testing, human glioblastoma xenograft mice were subjected to optical imaging after i.v. injection of ICG-AE105, which provided an optimal contrast in the time window 6–24 h post injection. Specificity of the uPAR-targeting probe ICG-AE105 was demonstrated in vivo by 1) no uptake of unconjugated ICG after 15 hours, 2) inhibition of ICG-AE105 tumor uptake by a bolus injection of the natural uPAR ligand pro-uPA, and finally 3) the histological colocalization of ICG-AE105 fluorescence and immunohistochemical detected human uPAR on resected tumor slides. Taken together, our data supports the potential use of this probe for intra-operative optical guidance in cancer surgery to ensure complete removal of tumors while preserving adjacent, healthy tissue.
Collapse
Affiliation(s)
- Karina Juhl
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Anders Christensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, Copenhagen, Denmark
| | - Morten Persson
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Copenhagen University, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
42
|
Boonstra MC, Prakash J, Van De Velde CJH, Mesker WE, Kuppen PJK, Vahrmeijer AL, Sier CFM. Stromal Targets for Fluorescent-Guided Oncologic Surgery. Front Oncol 2015; 5:254. [PMID: 26636036 PMCID: PMC4653299 DOI: 10.3389/fonc.2015.00254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/05/2015] [Indexed: 12/17/2022] Open
Abstract
Pre-operative imaging techniques are essential for tumor detection and diagnosis, but offer limited help during surgery. Recently, the applicability of imaging during oncologic surgery has been recognized, using near-infrared fluorescent dyes conjugated to targeting antibodies, peptides, or other vehicles. Image-guided oncologic surgery (IGOS) assists the surgeFon to distinguish tumor from normal tissue during operation, and can aid in recognizing vital structures. IGOS relies on an optimized combination of a dedicated fluorescent camera system and specific probes for targeting. IGOS probes for clinical use are not widely available yet, but numerous pre-clinical studies have been published and clinical trials are being established or prepared. Most of the investigated probes are based on antibodies or peptides against proteins on the membranes of malignant cells, whereas others are directed against stromal cells. Targeting stroma cells for IGOS has several advantages. Besides the high stromal content in more aggressive tumor types, the stroma is often primarily located at the periphery/invasive front of the tumor, which makes stromal targets particularly suited for imaging purposes. Moreover, because stroma up-regulation is a physiological reaction, most proteins to be targeted on these cells are “universal” and not derived from a specific genetic variation, as is the case with many upregulated proteins on malignant cancer cells.
Collapse
Affiliation(s)
- Martin C Boonstra
- Department of Surgery, Leiden University Medical Center , Leiden , Netherlands
| | - Jai Prakash
- Department of Biomaterial Science and Technology, Targeted Therapeutics, University of Twente , Enschede , Netherlands
| | | | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Center , Leiden , Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center , Leiden , Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center , Leiden , Netherlands ; Antibodies for Research Applications BV , Gouda , Netherlands
| |
Collapse
|