1
|
Zhang Y, Katkhada K, Meng LZ, Zhao B, Tong S, Chaabane W, Kallai A, Tobin NP, Östman A, Mega A, Ehnman M. Myogenic IGFBP5 levels in rhabdomyosarcoma are nourished by mesenchymal stromal cells and regulate growth arrest and apoptosis. Cell Commun Signal 2025; 23:184. [PMID: 40234830 PMCID: PMC12001570 DOI: 10.1186/s12964-025-02171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/24/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Mesenchymal stromal cells belong to a diverse collection of cells in different states that are poorly characterized in soft-tissue sarcomas. In this study, we explored tumor growth-regulatory signaling between differentially educated non-malignant mesenchymal stromal cells and malignant cells in pediatric rhabdomyosarcoma (RMS). METHODS Xenograft experiments demonstrated that non-malignant stromal cells influence tumor behavior. Gene expression analysis identified deregulated genes, which were further studied using cell culture assays and patient data. Clinicopathological correlations were made in a discovery cohort (N = 147) and a validation cohort (N = 101). RESULTS The results revealed transiently suppressive paracrine effects of orthotopic stromal cells derived from skeletal muscle. These effects were lost when the stromal cells were exposed to RMS cells, either short-term in vitro, or long-term in hindlimb muscle in vivo. High resolution microarray-based Clariom D gene expression analysis identified insulin-like growth factor binding protein 5 (IGFBP5) as the top upregulated gene in RMS cells exposed to naïve stromal cells, and effects on growth arrest, caspase 3/7 activation, and myogenic cell identity were demonstrated in functional assays. Furthermore, IGFBP5 associated with the caspase 3 substrate growth arrest specific protein 2 (GAS2), lower disease stage and favorable survival in patient cohorts. CONCLUSIONS This study uses functional modeling and omics approaches to identify IGFBP5 as a candidate mediator of anti-tumor growth mechanisms originating from tumor-neighboring mesenchymal stromal cells. Tumors of mesenchymal origin, such as RMS, are known for their heterogeneity, and this could potentially pose a limitation to the study. However, a clinical relevance is emphasized by consistent findings across patient cohorts. These insights pave the way for novel therapeutic strategies modulating activities of stromal cell subsets at primary and metastatic sites in RMS.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Karim Katkhada
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Liu Zhen Meng
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Binbin Zhao
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shanlin Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Wiem Chaabane
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Aditi Kallai
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Centre for Cancer Biomarkers CCBIO, University of Bergen, 5021, Bergen, Norway
| | - Alessandro Mega
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ehnman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- PO Bröst- och endokrina tumörer och sarkom, Tema Cancer, Karolinska University Hospital, Visionsgatan 4, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
2
|
Rajasekaran S, Cheng S, Gajendran N, Shekoohi S, Chesnokova L, Yu X, Witt SN. Transcriptomic analysis of melanoma cells reveals an association of α-synuclein with regulation of the inflammatory response. Sci Rep 2024; 14:27140. [PMID: 39511366 PMCID: PMC11544018 DOI: 10.1038/s41598-024-78777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
The Parkinson's disease protein, alpha-synuclein (α-syn/SNCA), is highly expressed in neurons and melanomas. The goal of this study was to reveal the mechanism(s) of α-syn's involvement in melanoma pathogenesis. To decipher the genes and pathways affected by α-syn, we conducted an RNA sequencing analysis of human SK-MEL-28 cells and several SK-MEL-28 SNCA-KO clones. We identified 1098 significantly up-regulated genes and 660 significantly down-regulated genes. Several of the upregulated genes are related to the immune system, i.e., the inflammatory response and the matrisome. We validated five upregulated genes (IL-1β, SAA1, IGFBP5, CXCL8, and CXCL10) by RT-qPCR and detected IGFBP5 and IL-1β in spent media of control and SNCA-KO cells. The levels of each of these secreted proteins were significantly higher in the spent media of the SNCA-KO clones than control cells. These secreted proteins quite likely activate the immune response against SNCA-KO cells. We suggest that, conversely, high levels of α-syn expression in melanoma cells helps the cells evade the immune system by inhibiting the secretion of these immune activating factors.
Collapse
Affiliation(s)
- Santhanasabapathy Rajasekaran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Siyuan Cheng
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Nithya Gajendran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Liudmila Chesnokova
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, USA
| | - Stephan N Witt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, USA.
- Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, USA.
| |
Collapse
|
3
|
Yang Y, Huang Z, Luo J, He J, Shi L, Chen G, Chen S, Deng Y, Yang Y, Tang Y, Pang Y. Comprehensive transcriptome and scRNA-seq analyses uncover the expression and underlying mechanism of SYNJ2 in papillary thyroid carcinoma. IET Syst Biol 2024; 18:183-198. [PMID: 39370684 PMCID: PMC11490192 DOI: 10.1049/syb2.12099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/27/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Synaptojanin 2 (SYNJ2) has crucial role in various tumors, but its role in papillary thyroid carcinoma (PTC) remains unexplored. This study first detected SYNJ2 protein expression in PTC using immunohistochemistry method and further assessed SYNJ2 mRNA expression through mRNA chip and RNA sequencing data and its association with clinical characteristics. Additionally, KEGG, GSVA, and GSEA analyses were conducted to investigate potential biological functions, while single-cell RNA sequencing data were used to explore SYNJ2's underlying mechanisms in PTC. Meanwhile, immune infiltration status in different SYNJ2 expression groups were analyzed. Besides, we investigated the immune checkpoint gene expression and implemented drug sensitivity analysis. Results indicated that SYNJ2 is highly expressed in PTC (SMD = 0.66 [95% CI: 0.17-1.15]) and could distinguish between PTC and non-PTC tissues (AUC = 0.74 [0.70-0.78]). Furthermore, the study identified 134 intersecting genes of DEGs and CEGs, mainly enriched in the angiogenesis and epithelial-mesenchymal transition (EMT) pathways. Subsequent analysis showed the above pathways were activated in PTC epithelial cells. PTC patients with high SYNJ2 expression showed higher sensitivity to the six common drugs. Summarily, SYNJ2 may promote PTC progression through angiogenesis and EMT pathways. High SYNJ2 expression is associated with better response to immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yuan‐Ping Yang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhi‐Guang Huang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jia‐Yuan Luo
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Juan He
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Lin Shi
- Department of PathologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gang Chen
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Si‐Yuan Chen
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Yu‐Wen Deng
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Yi‐Jia Yang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Yi‐Jun Tang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | | |
Collapse
|
4
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
5
|
Poddar A, Ahmady F, Rao SR, Sharma R, Kannourakis G, Prithviraj P, Jayachandran A. The role of pregnancy associated plasma protein-A in triple negative breast cancer: a promising target for achieving clinical benefits. J Biomed Sci 2024; 31:23. [PMID: 38395880 PMCID: PMC10885503 DOI: 10.1186/s12929-024-01012-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Pregnancy associated plasma protein-A (PAPP-A) plays an integral role in breast cancer (BC), especially triple negative breast cancer (TNBC). This subtype accounts for the most aggressive BC, possesses high tumor heterogeneity, is least responsive to standard treatments and has the poorest clinical outcomes. There is a critical need to address the lack of effective targeted therapeutic options available. PAPP-A is a protein that is highly elevated during pregnancy. Frequently, higher PAPP-A expression is detected in tumors than in healthy tissues. The increase in expression coincides with increased rates of aggressive cancers. In BC, PAPP-A has been demonstrated to play a role in tumor initiation, progression, metastasis including epithelial-mesenchymal transition (EMT), as well as acting as a biomarker for predicting patient outcomes. In this review, we present the role of PAPP-A, with specific focus on TNBC. The structure and function of PAPP-A, belonging to the pappalysin subfamily, and its proteolytic activity are assessed. We highlight the link of BC and PAPP-A with respect to the IGFBP/IGF axis, EMT, the window of susceptibility and the impact of pregnancy. Importantly, the relevance of PAPP-A as a TNBC clinical marker is reviewed and its influence on immune-related pathways are explored. The relationship and mechanisms involving PAPP-A reveal the potential for more treatment options that can lead to successful immunotherapeutic targets and the ability to assist with better predicting clinical outcomes in TNBC.
Collapse
Affiliation(s)
- Arpita Poddar
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
- RMIT University, Victoria, Australia
| | - Farah Ahmady
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Sushma R Rao
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Revati Sharma
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, Victoria, Australia.
- Federation University, Victoria, Australia.
| |
Collapse
|
6
|
Fan TY, Xu LL, Zhang HF, Peng J, Liu D, Zou WD, Feng WJ, Qin M, Zhang J, Li H, Li YK. Comprehensive Analyses and Experiments Confirmed IGFBP5 as a Prognostic Predictor Based on an Aging-genomic Landscape Analysis of Ovarian Cancer. Curr Cancer Drug Targets 2024; 24:760-778. [PMID: 38018207 DOI: 10.2174/0115680096276852231113111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is one of the malignant diseases of the reproductive system in elderly women. Aging-related genes (ARGs) were involved in tumor malignancy and cellular senescence, but the specifics of these mechanisms in OC remain unknown. METHODS ARGs expression and survival data of OC patients were collected from TCGA and CPTAC databases. Subtype classification was used to identify the roles of hub ARGs in OC progression, including function enrichment, immune infiltration, and drug sensitivity. LASSO regression was utilized to confirm the prognosis significance for these hub ARGs. MTT, EdU, Transwell, and wounding healing analysis confirmed the effect of IGFBP5 on the proliferation and migration ability of OC cells. RESULTS ARGs were ectopically expressed in OC tissues compared to normal ovary tissues. Three molecular subtypes were divided by ARGs for OC patients. There were significant differences in ferroptosis, m6A methylation, prognosis, immune infiltration, angiogenesis, differentiation level, and drug sensitivity among the three groups. LASSO regression indicated that 4 signatures, FOXO4, IGFBP5, OGG1 and TYMS, had important prognosis significance. Moreover, IGFBP5 was significantly correlated with immune infiltration. The hub ARG, IGFBP5, expression was significantly decreased in OC patients compared to normal women. IGFBP5 could also reduce the migration and proliferation ability of OC cells compared to vector and NC groups. CONCLUSION IGFBP5 was correlated with OC prognosis and associated with OC migration and proliferation. This gene may serve as potential prognostic biomarkers and therapeutic targets for OC patients.
Collapse
Affiliation(s)
- Ting-Yu Fan
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Li-Li Xu
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Hong-Feng Zhang
- Department of Laboratory Medicine, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Juan Peng
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wen-Da Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wen-Jie Feng
- Burn and Plastic Department, Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Mei Qin
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yu-Kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
7
|
Lin J, Huang G, Zeng Q, Zhang R, Lin Y, Li Y, Huang B, Pan H. IGFBP5, as a Prognostic Indicator Promotes Tumor Progression and Correlates with Immune Microenvironment in Glioma. J Cancer 2024; 15:232-250. [PMID: 38164271 PMCID: PMC10751672 DOI: 10.7150/jca.87733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Insulin-like growth factor binding protein 5 (IGFBP5) is highly expressed in multiple human cancers, including glioma. Despite this, it remains unclear what role it plays in glioma. The aim of the present study was to analyze whether IGFBP5 could be used as a predictor of prognosis and immune infiltration in glioma. Methods: Glioma patients' clinical information was collected from the Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), Rembrandt, and Gravendeel databases. The diagnostic and prognostic roles of IGFBP5 were assessed by the Kaplan-Meier survival curves, diagnostic receiver operating characteristic (ROC) curves, nomogram model, Cox regression analysis and Enrichment analysis by R software. Moreover, the correlation between IGFBP5 expression and immune cell infiltration, and immune checkpoint genes was conducted. Immunohistochemistry staining, CCK8, colony formation, scratch and transwell assays and western blot were used to interrogate the expression and function of IGFBP5 in glioma. Results: IGFBP5 levels were obviously increased in glioma with higher malignancy and predicted poor outcomes by Univariate and multivariate Cox analysis. The biological function analysis revealed that IGFBP5 correlated closely with immune signatures. Moreover, IGFBP5 expression was associated with tumor infiltration of B cells, T cells, macrophages, and NK cells. IGFBP5 affected glioma cell proliferation, migration, and invasion probably involved in the epithelial-to-mesenchymal transition (EMT) and Hippo-YAP signaling pathway. Further study showed that IGFBP5 induced the expression of PD-L1 and CXCR4. Conclusions: IGFBP5 as an oncogene is a useful biomarker of prognosis and correlates with progression and immune infiltration in glioma.
Collapse
Affiliation(s)
- Jiediao Lin
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Guowei Huang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qianru Zeng
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Rendong Zhang
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- The Breast Center, Surgical Oncology Session No. 1, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yun Lin
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yaochen Li
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Baohua Huang
- Department of Pathology, Shantou Central Hospital, Shantou, Guangdong 515041, China
| | - Hongchao Pan
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
8
|
Chung H, Gyu-mi P, Na YR, Lee YS, Choi H, Seok SH. Comprehensive characterization of early-programmed tumor microenvironment by tumor-associated macrophages reveals galectin-1 as an immune modulatory target in breast cancer. Theranostics 2024; 14:843-860. [PMID: 38169569 PMCID: PMC10758049 DOI: 10.7150/thno.88917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Background: In recent years, there has been considerable interest in the therapeutic targeting of tumor-associated macrophages (TAMs) to modulate the tumor microenvironment (TME), resulting in antitumoral phenotypes. However, key mediators suitable for TAM-mediated remodeling of the TME remain poorly understood. Methods: In this study, we used single-cell RNA sequencing analyses to analyze the landscape of the TME modulated by TAMs in terms of a protumor microenvironment during early tumor development. Results: Our data revealed that the depletion of TAMs leads to a decreased epithelial-to-mesenchymal transition (EMT) signature in cancer cells and a distinct transcriptional state characterized by CD8+ T cell activation. Moreover, notable alterations in gene expression were observed upon the depletion of TAMs, identifying Galectin-1 (Gal-1) as a crucial molecular factor responsible for the observed effect. Gal-1 inhibition reversed immune suppression via the reinvigoration of CD8+ T cells, impairing tumor growth and potentiating immune checkpoint inhibitors in breast tumor models. Conclusion: These results provide comprehensive insights into TAM-mediated early tumor microenvironments and reveal immune evasion mechanisms that can be targeted by Gal-1 to induce antitumor immune responses.
Collapse
Affiliation(s)
- Hyewon Chung
- Macrophage Lab, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 110-799, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea
| | - Park Gyu-mi
- Macrophage Lab, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 110-799, South Korea
- Department of Biomedical Sciences and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yi Rang Na
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyeok Seok
- Macrophage Lab, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 110-799, South Korea
- Department of Biomedical Sciences and Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Shen J, Li M. Gastric Cancer Immune Subtypes and Prognostic Modeling: Insights from Aging-Related Gene Analysis. Crit Rev Immunol 2024; 44:1-13. [PMID: 38618724 DOI: 10.1615/critrevimmunol.2024052391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Gastric cancer (GC) is highly heterogeneous and influenced by aging-related factors. This study aimed to improve individualized prognostic assessment of GC by identifying aging-related genes and subtypes. Immune scores of GC samples from GEO and TCGA databases were calculated using ESTIMATE and scored as high immune (IS_high) and low immune (IS_low). ssGSEA was used to analyze immune cell infiltration. Univariate Cox regression was employed to identify prognosis-related genes. LASSO regression analysis was used to construct a prognostic model. GSVA enrichment analysis was applied to determine pathways. CCK-8, wound healing, and Transwell assays tested the proliferation, migration, and invasion of the GC cell line (AGS). Cell cycle and aging were examined using flow cytometry, β-galactosidase staining, and Western blotting. Two aging-related GC subtypes were identified. Subtype 2 was characterized as lower survival probability and higher risk, along with a more immune-responsive tumor microenvironment. Three genes (IGFBP5, BCL11B, and AKR1B1) screened from aging-related genes were used to establish a prognosis model. The AUC values of the model were greater than 0.669, exhibiting strong prognostic value. In vitro, IGFBP5 overexpression in AGS cells was found to decrease viability, migration, and invasion, alter the cell cycle, and increase aging biomarkers (SA-β-galactosidase, p53, and p21). This analysis uncovered the immune characteristics of two subtypes and aging-related prognosis genes in GC. The prognostic model established for three aging-related genes (IGFBP5, BCL11B, and AKR1B1) demonstrated good prognosis performance, providing a foundation for personalized treatment strategies aimed at GC.
Collapse
Affiliation(s)
- Jian Shen
- Beijing Chao-Yang Hospital, Capital Medical University
| | - Minzhe Li
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
10
|
Lin W, Niu R, Park SM, Zou Y, Kim SS, Xia X, Xing S, Yang Q, Sun X, Yuan Z, Zhou S, Zhang D, Kwon HJ, Park S, Il Kim C, Koo H, Liu Y, Wu H, Zheng M, Yoo H, Shi B, Park JB, Yin J. IGFBP5 is an ROR1 ligand promoting glioblastoma invasion via ROR1/HER2-CREB signaling axis. Nat Commun 2023; 14:1578. [PMID: 36949068 PMCID: PMC10033905 DOI: 10.1038/s41467-023-37306-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Diffuse infiltration is the main reason for therapeutic resistance and recurrence in glioblastoma (GBM). However, potential targeted therapies for GBM stem-like cell (GSC) which is responsible for GBM invasion are limited. Herein, we report Insulin-like Growth Factor-Binding Protein 5 (IGFBP5) is a ligand for Receptor tyrosine kinase like Orphan Receptor 1 (ROR1), as a promising target for GSC invasion. Using a GSC-derived brain tumor model, GSCs were characterized into invasive or non-invasive subtypes, and RNA sequencing analysis revealed that IGFBP5 was differentially expressed between these two subtypes. GSC invasion capacity was inhibited by IGFBP5 knockdown and enhanced by IGFBP5 overexpression both in vitro and in vivo, particularly in a patient-derived xenograft model. IGFBP5 binds to ROR1 and facilitates ROR1/HER2 heterodimer formation, followed by inducing CREB-mediated ETV5 and FBXW9 expression, thereby promoting GSC invasion and tumorigenesis. Importantly, using a tumor-specific targeting and penetrating nanocapsule-mediated delivery of CRISPR/Cas9-based IGFBP5 gene editing significantly suppressed GSC invasion and downstream gene expression, and prolonged the survival of orthotopic tumor-bearing mice. Collectively, our data reveal that IGFBP5-ROR1/HER2-CREB signaling axis as a potential GBM therapeutic target.
Collapse
Affiliation(s)
- Weiwei Lin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Rui Niu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Seong-Min Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Yan Zou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sung Soo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Xue Xia
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Songge Xing
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qingshan Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xinhong Sun
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zheng Yuan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuchang Zhou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Dongya Zhang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hyung Joon Kwon
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Saewhan Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Chan Il Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Harim Koo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Yang Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Haigang Wu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Heon Yoo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Jong Bae Park
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea.
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea.
| | - Jinlong Yin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea.
| |
Collapse
|
11
|
Waters JA, Urbano I, Robinson M, House CD. Insulin-like growth factor binding protein 5: Diverse roles in cancer. Front Oncol 2022; 12:1052457. [PMID: 36465383 PMCID: PMC9714447 DOI: 10.3389/fonc.2022.1052457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) and the associated signaling components in the insulin-like growth factor (IGF) pathway regulate cell differentiation, proliferation, apoptosis, and adhesion. Of the IGFBPs, insulin-like growth factor binding protein 5 (IGFBP5) is the most evolutionarily conserved with a dynamic range of IGF-dependent and -independent functions, and studies on the actions of IGFBP5 in cancer have been somewhat paradoxical. In cancer, the IGFBPs respond to external stimuli to modulate disease progression and therapeutic responsiveness in a context specific manner. This review discusses the different roles of IGF signaling and IGFBP5 in disease with an emphasis on discoveries within the last twenty years, which underscore a need to clarify the IGF-independent actions of IGFBP5, the impact of its subcellular localization, the differential activities of each of the subdomains, and the response to elements of the tumor microenvironment (TME). Additionally, recent advances addressing the role of IGFBP5 in resistance to cancer therapeutics will be discussed. A better understanding of the contexts in which IGFBP5 functions will facilitate the discovery of new mechanisms of cancer progression that may lead to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jennifer A. Waters
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Ixchel Urbano
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Mikella Robinson
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Carrie D. House
- Biology Department, San Diego State University, San Diego, CA, United States,Moore’s Cancer Center, University of California, San Diego, San Diego, CA, United States,*Correspondence: Carrie D. House,
| |
Collapse
|
12
|
Yuan SHC, Chang SC, Chou PY, Yang Y, Liu HP. The Implication of Serum Autoantibodies in Prognosis of Canine Mammary Tumors. Animals (Basel) 2022; 12:ani12182463. [PMID: 36139323 PMCID: PMC9495273 DOI: 10.3390/ani12182463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Canine mammary tumor (CMT) is the most prevalent neoplasm in female dogs. Tumor recurrence and metastasis occur in malignant CMT (MMT) dogs after surgery. Identification of serum prognostic biomarkers holds the potential to facilitate prediction of disease outcomes. We have identified CMT-associated autoantibodies against thymidylate synthetase (TYMS), insulin-like growth factor-binding protein 5 (IGFBP5), hyaluronan and proteoglycan link protein 1 (HAPLN1), and anterior gradient 2 (AGR2), i.e., TYMS-AAb, IGFBP5-AAb, HAPLN1-AAb, and AGR2-AAb, respectively, by conducting serological enzyme-linked immunosorbent assays (ELISA). Herein we assessed serum AAb levels in 11 MMT dogs before and after surgery, demonstrating that IGFBP5-AAb and HAPLN1-AAb significantly decrease at 3- and 12-months post-surgery (p < 0.05). We evaluated the correlation between the presurgical AAb level and overall survival (OS) of 90 CMT dogs after surgery. Kaplan-Meier survival analysis reveals that IGFBP5-AAbHIgh and TYMS-AAbHigh are significantly correlated with worse OS (p = 0.017 and p = 0.029, respectively), while AGR2-AAbLow is correlated with somewhat poorer OS (p = 0.086). Areas under a time-dependent receiver operating characteristic curve (AUC) of IGFBP5-AAb and TYMS-AAb in predicting OS of MMT dogs are 0.611 and 0.616, respectively. Notably, MMT dogs presenting TYMS-AAbHigh/IGFBP5-AAbHigh/AGR2-AAbLow have worst OS (p = 0.0004). This study reveals an association between the serum AAb level and CMT prognosis.
Collapse
Affiliation(s)
- Stephen Hsien-Chi Yuan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shih-Chieh Chang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Pei-Yi Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Youngsen Yang
- Division of Hematology-Oncology, Department of Internal Medicine, Taichung, Veterans General Hospital, Taichung 40705, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0368 (ext. 51)
| |
Collapse
|
13
|
Hosseinkhan N, Honardoost M, Emami Z, Cheraghi S, Hashemi-Madani N, Khamseh ME. A systematic review of molecular alterations in invasive non-functioning pituitary adenoma. Endocrine 2022; 77:500-509. [PMID: 35711030 DOI: 10.1007/s12020-022-03105-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Invasive non-functional pituitary adenomas (NFPAs) constitute 35% of NFPAs. Despite a relatively large body of molecular investigations on the invasiveness of NFPA, the underlying molecular mechanisms of invasiveness are yet to be determined. Herein, we aimed to provide an overview of gene/microRNA(miRNAs) expression alterations in invasive NFPA. METHODS This article describes a systematic literature review of articles published up to March 23, 2021, on the transcriptional alterations of invasive NFPA. Five digital libraries were searched, and 42 articles in total fulfilled the eligibility criteria. Pathway enrichment was conducted, and protein interactions among the identified deregulated genes were inferred. RESULTS In total 133 gene/protein transcriptional alterations, comprising 87 increased and 46 decreased expressions, were detected in a collective number of 1001 invasive compared with 1007 non-invasive patients with NFPA. Deregulation of CDH1, PTTG1, CCNB1, SNAI1, SLUG, EZR, and PRKACB, which are associated with epidermal-mesenchymal transition (EMT), was identified. Moreover, six members of the angiogenesis pathway, i.e., VEGFA, FLT1, CCND1, CTNNB1, MYC(c-MYC), and PTTG1, were detected. SLC2A1, FLT1, and VEGFA were also recognized in the hypoxia pathway. Physical interactions of CTNNB1 with FLT1, CCND1, and EZR as well as its indirect interactions with VEGFA, MYC, CCNB1, and PCNA indicate the tight interplay between EMT, angiogenesis, and hypoxia pathways in invasive NFPAs. In addition, Hippo, JAK-STAT, MAPK, Wnt, PI3K-Akt, Ras, TGF-b, VEGF, and ErbB were identified as interwoven signaling pathways. CONCLUSION In conclusion, invasive NFPA shares very common deregulated signaling pathways with invasive cancers. A large amount of heterogeneity in the reported deregulations in different studies necessitates the validation of the expressional changes of the suggested biomarkers in a large number of patients with invasive NFPA.
Collapse
Affiliation(s)
- Nazanin Hosseinkhan
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Emami
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Cheraghi
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Hashemi-Madani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad E Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Rix LLR, Sumi NJ, Hu Q, Desai B, Bryant AT, Li X, Welsh EA, Fang B, Kinose F, Kuenzi BM, Chen YA, Antonia SJ, Lovly CM, Koomen JM, Haura EB, Marusyk A, Rix U. IGF-binding proteins secreted by cancer-associated fibroblasts induce context-dependent drug sensitization of lung cancer cells. Sci Signal 2022; 15:eabj5879. [PMID: 35973030 PMCID: PMC9528501 DOI: 10.1126/scisignal.abj5879] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are often linked to drug resistance. Here, we found that coculture with CAFs or culture in CAF-conditioned medium unexpectedly induced drug sensitivity in certain lung cancer cell lines. Gene expression and secretome analyses of CAFs and normal lung-associated fibroblasts (NAFs) revealed differential abundance of insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs), which promoted or inhibited, respectively, signaling by the receptor IGF1R and the kinase FAK. Similar drug sensitization was seen in gefitinib-resistant, EGFR-mutant PC9GR lung cancer cells treated with recombinant IGFBPs. Conversely, drug sensitivity was decreased by recombinant IGFs or conditioned medium from CAFs in which IGFBP5 or IGFBP6 was silenced. Phosphoproteomics and receptor tyrosine kinase (RTK) array analyses indicated that exposure of PC9GR cells to CAF-conditioned medium also inhibited compensatory IGF1R and FAK signaling induced by the EGFR inhibitor osimertinib. Combined small-molecule inhibition of IGF1R and FAK phenocopied the CAF-mediated effects in culture and increased the antitumor effect of osimertinib in mice. Cells that were osimertinib resistant and had MET amplification or showed epithelial-to-mesenchymal transition also displayed residual sensitivity to IGFBPs. Thus, CAFs promote or reduce drug resistance in a context-dependent manner, and deciphering the relationship between the differential content of CAF secretomes and the signaling dependencies of the tumor may reveal effective combination treatment strategies.
Collapse
Affiliation(s)
- Lily L. Remsing Rix
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | - Natalia J. Sumi
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Qianqian Hu
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Bina Desai
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Annamarie T. Bryant
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | - Xueli Li
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Brent M. Kuenzi
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Y. Ann Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA,Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Scott J. Antonia
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Christine M. Lovly
- Department of Medicine, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - John M. Koomen
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA,Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Andriy Marusyk
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA,Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Uwe Rix
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA,Corresponding author.
| |
Collapse
|
15
|
Xu K, Wang Y, Xie Y, Zhang X, Chen W, Li Z, Wang T, Yang X, Guo B, Wang L, Zhu X, Zhang X. Anti-melanoma effect and action mechanism of a novel chitosan-based composite hydrogel containing hydroxyapatite nanoparticles. Regen Biomater 2022; 9:rbac050. [PMID: 35958518 PMCID: PMC9362996 DOI: 10.1093/rb/rbac050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Hydroxyapatite nanoparticles (HANPs) have been increasingly regarded and reported due to their potential anti-tumor ability. Previously, we found that the rod-like HANPs had good application potential for cutaneous melanoma (CMM). To satisfy the actual requirements in repairing post-operative skin defects and inhibiting CMM recurrence after tumorectomy, we constructed a novel chitosan/alginate (CS/Alg) hydrogel containing the aforementioned HANPs. The in vitro cell experiments confirmed that activated mitochondrial-dependent apoptosis was tightly related to the anti-tumor ability of HANPs. Specifically, we further discovered several target proteins might be involved in abnormal activating Wnt, proteoglycans in cancer, oxidative phosphorylation and p53 signaling pathways. The in vivo animal experiments demonstrated that the HANPs-loaded CS/Alg hydrogel (CS/Alg/HANPs) had a similar effect on inhibiting tumor growth as HANPs, and CS/Alg hydrogel as well as phosphate buffered saline (PBS) group (control) not showed any effect, proving the key role of HANPs. The immunohistochemical staining demonstrated a tumor inhibition via the mitochondria-mediated apoptosis pathway, consistent with the in vitro evaluation. Moreover, CS/Alg/HANPs exhibited no additional biosafety risk to the functions of major organs. Overall, this CS/Alg/HANPs hydrogel has substantial application potential for treating CMM.
Collapse
Affiliation(s)
- Kejia Xu
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Yifu Wang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Yao Xie
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Xiaoyan Zhang
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Wei Chen
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Zhongtao Li
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Tingting Wang
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Bo Guo
- West China Hospital, Sichuan University Department of Ophthalmology, , Chengdu 610041, China
| | - Lin Wang
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| |
Collapse
|
16
|
Shonibare Z, Monavarian M, O’Connell K, Altomare D, Shelton A, Mehta S, Jaskula-Sztul R, Phaeton R, Starr MD, Whitaker R, Berchuck A, Nixon AB, Arend RC, Lee NY, Miller CR, Hempel N, Mythreye K. Reciprocal SOX2 regulation by SMAD1-SMAD3 is critical for anoikis resistance and metastasis in cancer. Cell Rep 2022; 40:111066. [PMID: 35905726 PMCID: PMC9899501 DOI: 10.1016/j.celrep.2022.111066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Growth factors in tumor environments are regulators of cell survival and metastasis. Here, we reveal the dichotomy between TGF-β superfamily growth factors BMP and TGF-β/activin and their downstream SMAD effectors. Gene expression profiling uncovers SOX2 as a key contextual signaling node regulated in an opposing manner by BMP2, -4, and -9 and TGF-β and activin A to impact anchorage-independent cell survival. We find that SOX2 is repressed by BMPs, leading to a reduction in intraperitoneal tumor burden and improved survival of tumor-bearing mice. Repression of SOX2 is driven by SMAD1-dependent histone H3K27me3 recruitment and DNA methylation at SOX2's promoter. Conversely, TGF-β, which is elevated in patient ascites, and activin A can promote SOX2 expression and anchorage-independent survival by SMAD3-dependent histone H3K4me3 recruitment. Our findings identify SOX2 as a contextual and contrastingly regulated node downstream of TGF-β members controlling anchorage-independent survival and metastasis in ovarian cancers.
Collapse
Affiliation(s)
- Zainab Shonibare
- Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, AL, USA,Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Mehri Monavarian
- Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Kathleen O’Connell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Abigail Shelton
- Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Shubham Mehta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Rebecca Phaeton
- Department of Obstetrics and Gynecology, and Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mark D. Starr
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Andrew B. Nixon
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Rebecca C. Arend
- Department of Gynecology Oncology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Nam Y. Lee
- Department of Chemistry and Biochemistry, Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - C. Ryan Miller
- Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Nadine Hempel
- Department of Pharmacology, and Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Department of Medicine, Division of Hematology Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA.
| | - Karthikeyan Mythreye
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, AL, USA; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
17
|
IGF1R acts as a cancer-promoting factor in the tumor microenvironment facilitating lung metastasis implantation and progression. Oncogene 2022; 41:3625-3639. [PMID: 35688943 PMCID: PMC9184253 DOI: 10.1038/s41388-022-02376-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/08/2022]
Abstract
Given the long-term ineffectiveness of current therapies and late-stage diagnoses, lung cancer is a leading cause of malignant diseases. Tumor progression is influenced by cancer cell interactions with the tumor microenvironment (TME). Insulin-like growth factor 1 receptor (IGF1R) was reported to affect the TME; however, the role of IGF1R in lung TME has not been investigated. First, we assessed IGF1R genomic alterations and expression in NSCLC patient tissue samples, as well as IGF1R serum levels. Next, we performed tumor heterotopic transplantation and pulmonary metastases in IGF1R-deficient mice using melanoma and Lewis lung carcinoma (LLC) cells. Herein we report increased amplification and mRNA expression, as well as increased protein expression (IGF1R/p-IGF1R) and IGF1R levels in tumor samples and serum from NSCLC patients, respectively. Moreover, IGF1R deficiency in mice reduced tumor growth, proliferation, inflammation and vascularization, and increased apoptosis after tumor heterotopic transplantation. Following induction of lung metastasis, IGF1R-deficient lungs also demonstrated a reduced tumor burden, and decreased expression of tumor progression markers, p-IGF1R and p-ERK1/2. Additionally, IGF1R-deficient lungs showed increased apoptosis and diminished proliferation, vascularization, EMT and fibrosis, along with attenuated inflammation and immunosuppression. Accordingly, IGF1R deficiency decreased expression of p-IGF1R in blood vessels, fibroblasts, tumor-associated macrophages and FOXP3+ tumor-infiltrating lymphocytes. Our results demonstrate that IGF1R promotes metastatic tumor initiation and progression in lung TME. Furthermore, our research indicates that IGF1R could be a potential biomarker for early prediction of drug response and clinical evolution in NSCLC patients.
Collapse
|
18
|
Olbryt M. Potential Biomarkers of Skin Melanoma Resistance to Targeted Therapy—Present State and Perspectives. Cancers (Basel) 2022; 14:cancers14092315. [PMID: 35565444 PMCID: PMC9102921 DOI: 10.3390/cancers14092315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Around 5–10% of advanced melanoma patients progress early on anti-BRAF targeted therapy and 20–30% respond only with the stabilization of the disease. Presumably, these patients could benefit more from first-line immunotherapy. Resistance to BRAF/MEK inhibitors is generated by genetic and non-genetic factors inherent to a tumor or acquired during therapy. Some of them are well documented as a cause of treatment failure. They are potential predictive markers that could improve patients’ selection for both standard and also alternative therapy as some of them have therapeutic potential. Here, a summary of the most promising predictive and therapeutic targets is presented. This up-to-date knowledge may be useful for further study on implementing more accurate genetic/molecular tests in melanoma treatment. Abstract Melanoma is the most aggressive skin cancer, the number of which is increasing worldwide every year. It is completely curable in its early stage and fatal when spread to distant organs. In addition to new therapeutic strategies, biomarkers are an important element in the successful fight against this cancer. At present, biomarkers are mainly used in diagnostics. Some biological indicators also allow the estimation of the patient’s prognosis. Still, predictive markers are underrepresented in clinics. Currently, the only such indicator is the presence of the V600E mutation in the BRAF gene in cancer cells, which qualifies the patient for therapy with inhibitors of the MAPK pathway. The identification of response markers is particularly important given primary and acquired resistance to targeted therapies. Reliable predictive tests would enable the selection of patients who would have the best chance of benefiting from treatment. Here, up-to-date knowledge about the most promising genetic and non-genetic resistance-related factors is described. These are alterations in MAPK, PI3K/AKT, and RB signaling pathways, e.g., due to mutations in NRAS, RAC1, MAP2K1, MAP2K2, and NF1, but also other changes activating these pathways, such as the overexpression of HGF or EGFR. Most of them are also potential therapeutic targets and this issue is also addressed here.
Collapse
Affiliation(s)
- Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
19
|
Borden ES, Adams AC, Buetow KH, Wilson MA, Bauman JE, Curiel-Lewandrowski C, Chow HHS, LaFleur BJ, Hastings KT. Shared Gene Expression and Immune Pathway Changes Associated with Progression from Nevi to Melanoma. Cancers (Basel) 2021; 14:cancers14010003. [PMID: 35008167 PMCID: PMC8749980 DOI: 10.3390/cancers14010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Melanoma is a deadly skin cancer, and the incidence of melanoma is rising. Chemoprevention, using small molecule drugs to prevent the development of cancer, is a key strategy that could reduce the burden of melanoma on society. The long-term goal of our study is to develop a gene signature biomarker of progression from nevi to melanoma. We found that a small number of genes can distinguish nevi from melanoma and identified shared genes and immune-related pathways that are associated with progression from nevi to melanoma across independent datasets. This study demonstrates (1) a novel approach to aid melanoma chemoprevention trials by using a gene signature as a surrogate endpoint and (2) the feasibility of determining a gene signature biomarker of melanoma progression. Abstract There is a need to identify molecular biomarkers of melanoma progression to assist the development of chemoprevention strategies to lower melanoma incidence. Using datasets containing gene expression for dysplastic nevi and melanoma or melanoma arising in a nevus, we performed differential gene expression analysis and regularized regression models to identify genes and pathways that were associated with progression from nevi to melanoma. A small number of genes distinguished nevi from melanoma. Differential expression of seven genes was identified between nevi and melanoma in three independent datasets. C1QB, CXCL9, CXCL10, DFNA5 (GSDME), FCGR1B, and PRAME were increased in melanoma, and SCGB1D2 was decreased in melanoma, compared to dysplastic nevi or nevi that progressed to melanoma. Further supporting an association with melanomagenesis, these genes demonstrated a linear change in expression from benign nevi to dysplastic nevi to radial growth phase melanoma to vertical growth phase melanoma. The genes associated with melanoma progression showed significant enrichment of multiple pathways related to the immune system. This study demonstrates (1) a novel application of bioinformatic approaches to aid clinical trials of melanoma chemoprevention and (2) the feasibility of determining a gene signature biomarker of melanomagenesis.
Collapse
Affiliation(s)
- Elizabeth S. Borden
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA; (E.S.B.); (A.C.A.)
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - Anngela C. Adams
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA; (E.S.B.); (A.C.A.)
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - Kenneth H. Buetow
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (K.H.B.); (M.A.W.)
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (K.H.B.); (M.A.W.)
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Julie E. Bauman
- Department of Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ 85724, USA; (J.E.B.); (C.C.-L.); (H.-H.S.C.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Clara Curiel-Lewandrowski
- Department of Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ 85724, USA; (J.E.B.); (C.C.-L.); (H.-H.S.C.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - H.-H. Sherry Chow
- Department of Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ 85724, USA; (J.E.B.); (C.C.-L.); (H.-H.S.C.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | | | - Karen Taraszka Hastings
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA; (E.S.B.); (A.C.A.)
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
- Correspondence: ; Tel.: +1-602-827-2106
| |
Collapse
|
20
|
Murugesan N, Maitituoheti M. KMT2D deficiency confers a therapeutic vulnerability to glycolytic and IGFR inhibitors in melanoma. Mol Cell Oncol 2021; 8:1984827. [PMID: 34859145 PMCID: PMC8632269 DOI: 10.1080/23723556.2021.1984827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We reported that histone H3 lysine (K) 4 methyltransferase, KMT2D, serves as a potent tumor-suppressor in melanoma, which was identified via in vivo epigenome-focused RNA interference (RNAi) screen. KMT2D-deficient tumors show substantial reprogramming of key metabolic pathways including glycolysis via reduction of H3K4me1 (Histone H3K4 mono-methylation)-marked active enhancers, conferring sensitivity to inhibitors of glycolysis and IGFR (Insulin Growth Factor Receptor) pathway.
Collapse
Affiliation(s)
- Navya Murugesan
- Department of Genomic Medicine, University of Texas Md Anderson Cancer Center, Houston, TX, USA
| | - Mayinuer Maitituoheti
- Department of Genomic Medicine, University of Texas Md Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Wozniak M, Czyz M. The Functional Role of Long Non-Coding RNAs in Melanoma. Cancers (Basel) 2021; 13:cancers13194848. [PMID: 34638331 PMCID: PMC8508152 DOI: 10.3390/cancers13194848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most lethal skin cancer, with increasing incidence worldwide. The molecular events that drive melanoma development and progression have been extensively studied, resulting in significant improvements in diagnostics and therapeutic approaches. However, a high drug resistance to targeted therapies and adverse effects of immunotherapies are still a major challenge in melanoma treatment. Therefore, the elucidation of molecular mechanisms of melanomagenesis and cancer response to treatment is of great importance. Recently, many studies have revealed the close association of long noncoding RNAs (lncRNAs) with the development of many cancers, including melanoma. These RNA molecules are able to regulate a plethora of crucial cellular processes including proliferation, differentiation, migration, invasion and apoptosis through diverse mechanisms, and even slight dysregulation of their expression may lead to tumorigenesis. lncRNAs are able to bind to protein complexes, DNA and RNAs, affecting their stability, activity, and localization. They can also regulate gene expression in the nucleus. Several functions of lncRNAs are context-dependent. This review summarizes current knowledge regarding the involvement of lncRNAs in melanoma. Their possible role as prognostic markers of melanoma response to treatment and in resistance to therapy is also discussed.
Collapse
|
22
|
Chhabra G, Singh CK, Guzmán-Pérez G, Ndiaye MA, Iczkowski KA, Ahmad N. Anti-melanoma effects of concomitant inhibition of SIRT1 and SIRT3 in Braf V600E/Pten NULL mice. J Invest Dermatol 2021; 142:1145-1157.e7. [PMID: 34597611 PMCID: PMC9199498 DOI: 10.1016/j.jid.2021.08.434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
Novel therapeutic strategies are required for the effective and lasting treatment of metastatic melanoma, one of the deadliest skin malignancies. In this study, we determined the anti-melanoma efficacy of 4'-bromo-resveratrol (4'-BR), which is a small molecule dual inhibitor of SIRT1 and SIRT3 in a BrafV600E/PtenNULL mouse model that recapitulates human disease, including metastases. Tumors were induced by topical application of 4-hydroxy-tamoxifen on shaved backs of 10-week-old mice, and the effects of 4'-BR (5-30 mg/kg b.wt.; intraperitoneally; 3d/week for 5 weeks) were assessed on melanoma development and progression. We found that 4'-BR at a dose of 30 mg/kg significantly reduced size and volume of primary melanoma tumors, as well as lung metastasis, with no adverse effects. Further, mechanistic studies on tumors showed significant modulation in markers of proliferation, survival and melanoma progression. As SIRT1 and SIRT3 are linked to immunomodulation, we performed differential gene expression analysis via NanoString PanCancer Immune Profiling panel (770 genes). Our data demonstrated that 4'-BR significantly downregulated genes related to metastasis-promotion, chemokine/cytokine-regulation, and innate/adaptive immune functions. Overall, inhibition of SIRT1 and SIRT3 by 4'-BR is a promising anti-melanoma therapy with anti-metastatic and immunomodulatory activities warranting further detailed studies, including clinical investigations.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA; William S. Middleton VA Medical Center, Madison, Wisconsin, USA.
| |
Collapse
|
23
|
The Fatty Acid and Protein Profiles of Circulating CD81-Positive Small Extracellular Vesicles Are Associated with Disease Stage in Melanoma Patients. Cancers (Basel) 2021; 13:cancers13164157. [PMID: 34439311 PMCID: PMC8392159 DOI: 10.3390/cancers13164157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Early detection of cutaneous melanoma is the key to increasing survival and proper therapeutic adjustment, especially in stages II–IV. We investigated whether the fatty acid (FA) and protein compositions of small extracellular vesicles (sEV) expressing CD81, derived from the plasma of stage 0–I, II and III–IV melanoma patients, could reflect disease stage. Results showed a higher content of FA and differences in C18:0/C18:1 ratio, a marker of cell membrane fluidity, that distinguished patients’ CD81sEV from those of healthy donors (HD). By proteomic analysis (identifier PXD024434) we identified significant increases in CD14, PON1, PON3 and APOA5 in stage II CD81sEV compared to HD. In stage III–IV, CD81sEV’ RAP1B expression was decreased. These stage-related signatures may support the potential of sEV to provide information for early diagnosis, prediction of metastatic behavior, treatment and follow-up of melanoma patients. Abstract The early detection of cutaneous melanoma, a potentially lethal cancer with rising incidence, is fundamental to increasing survival and therapeutic adjustment. In stages II–IV especially, additional indications for adjuvant therapy purposes after resection and for treatment of metastatic patients are urgently needed. We investigated whether the fatty acid (FA) and protein compositions of small extracellular vesicles (sEV) derived from the plasma of stage 0–I, II and III–IV melanoma patients (n = 38) could reflect disease stage. The subpopulation of sEV expressing CD81 EV marker (CD81sEV) was captured by an ad hoc immune affinity technique from plasma depleted of large EV. Biological macromolecules were investigated by gas chromatography and mass spectrometry in CD81sEV. A higher content of FA was detectable in patients with respect to healthy donors (HD). Moreover, a higher C18:0/C18:1 ratio, as a marker of cell membrane fluidity, distinguished early (stage 0–I) from late (III–IV) stages’ CD81sEV. Proteomics detected increases in CD14, PON1, PON3 and APOA5 exclusively in stage II CD81sEV, and RAP1B was decreased in stage III–IV CD81sEV, in comparison to HD. Our results suggest that stage dependent alterations in CD81sEV’ FA and protein composition may occur early after disease onset, strengthening the potential of circulating sEV as a source of discriminatory information for early diagnosis, prediction of metastatic behavior and following up of melanoma patients.
Collapse
|
24
|
Zhou L, Jia X, Yang X. LncRNA-TUG1 promotes the progression of infantile hemangioma by regulating miR-137/IGFBP5 axis. Hum Genomics 2021; 15:50. [PMID: 34362467 PMCID: PMC8344165 DOI: 10.1186/s40246-021-00349-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023] Open
Abstract
Background Previous studies indicated that lncRNA taurine upregulated gene 1 (TUG1) played essential roles in human cancers. This study aimed to investigate its function in infantile hemangioma (IH). Methods A total of 30 pairs of clinical infantile specimens were used in this study. The expression of TUG1 in IH tissues was assessed by quantitative reverse transcriptase PCR (qRT-PCR). Two short hairpin RNA targeting TUG1 (sh-TUG1-1 and sh-TUG1-2) were transfected into hemangioma-derived endothelial cells, HemECs, to block its expression. The effects of TUG1 on HemECs were evaluated by Cell Counting Kit-8 (CCK-8), colony formation assay, wound healing assay, and Transwell assay. The underlying molecular mechanism of TUG1 was investigated by Starbase prediction and luciferase reporter assay and further determined by loss- and gain-of-function approaches. In addition, the role of TUG1 on tumorigenesis of HemECs was confirmed in an in vivo mouse model. Results TUG1 was significantly upregulated in infant hemangioma tissues compared with normal adjacent subcutaneous tissues. The loss- and gain-of-function approaches indicated that TUG1 overexpression promoted proliferation, migration, and invasion of HemECs in vitro, and TUG1 knockdown inhibited the tumorigenesis of HemECs in vivo. Specifically, TUG1 could compete with IGFBP5 for miR137 binding. Rescue experiments further confirmed the role of the TUG1/miR137/IGFBP5 axis in HemECs. Conclusion TUG1 was closely associated with the progression of IH by regulating the miR-137/IGFBP5 axis, which might be a potential target for IH treatment.
Collapse
Affiliation(s)
- Lili Zhou
- Department of Pediatrics, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), No. 1 Dayun Road, Shenzhen City, Guangdong Province, 518000, People's Republic of China.
| | - Xiao Jia
- Department of Orthopedics, Gansu Provincial Hospital of TCM, Lanzhou City, Gansu Province, 730050, People's Republic of China
| | - Xiangzheng Yang
- Department of Pediatrics, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), No. 1 Dayun Road, Shenzhen City, Guangdong Province, 518000, People's Republic of China
| |
Collapse
|
25
|
Lee J, Ng KGL, Dombek KM, Eom DS, Kwon YV. Tumors overcome the action of the wasting factor ImpL2 by locally elevating Wnt/Wingless. Proc Natl Acad Sci U S A 2021; 118:e2020120118. [PMID: 34078667 PMCID: PMC8201939 DOI: 10.1073/pnas.2020120118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tumors often secrete wasting factors associated with atrophy and the degeneration of host tissues. If tumors were to be affected by the wasting factors, mechanisms allowing tumors to evade the adverse effects of the wasting factors must exist, and impairing such mechanisms may attenuate tumors. We use Drosophila midgut tumor models to show that tumors up-regulate Wingless (Wg) to oppose the growth-impeding effects caused by the wasting factor, ImpL2 (insulin-like growth factor binding protein [IGFBP]-related protein). Growth of Yorkie (Yki)-induced tumors is dependent on Wg while either elimination of ImpL2 or elevation of insulin/insulin-like growth factor signaling in tumors revokes this dependency. Notably, Wg augmentation could be a general mechanism for supporting the growth of tumors with elevated ImpL2 and exploited to attenuate muscle degeneration during wasting. Our study elucidates the mechanism by which tumors negate the action of ImpL2 to uphold their growth during cachexia-like wasting and implies that targeting the Wnt/Wg pathway might be an efficient treatment strategy for cancers with elevated IGFBPs.
Collapse
Affiliation(s)
- Jiae Lee
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195
| | - Katelyn G-L Ng
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195
| | - Kenneth M Dombek
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195
| | - Dae Seok Eom
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697
| | - Young V Kwon
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195;
| |
Collapse
|
26
|
Pourbagher R, Ghorbani H, Akhavan-Niaki H, Jorsaraei SGA, Fattahi S, Ghooran S, Abedian Z, Ghasemi M, Saeedi F, Jafari N, Kalali B, Mostafazadeh A. Downregulation of Stemness Genes and Induction of Necrosis in Rat LA7 Cancer Stem Cells Induced Tumors Treated with Starved Fibroblasts Culture Supernatant. Rep Biochem Mol Biol 2021; 10:105-118. [PMID: 34277874 PMCID: PMC8279721 DOI: 10.52547/rbmb.10.1.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 04/11/2023]
Abstract
BACKGROUND Stem cell differentiation therapy is a promising strategy in cancer treatment. we show that protein cocktail prepared from serum starved fibroblasts has therapeutic potential based on this strategy. METHODS The condition medium was prepared from foreskin isolated fibroblasts and analyzed by Liquid chromatography electrospray ionization mass spectrometry-mass spectrometry (LC-ESI-MS/MS). LA7 mammary gland cancer stem cells originated tumors were induced in Sprague Dawley rats. The rats treated subcutaneously with DMEM (group A), condition medium (group B), or normal saline (group C) once daily for 7 days. Then the tumors were removed and divided into the two parts, one part was used to quantify gene expression by stem-loop RT-qPCR assay and the other part was used for Hematoxylin & Eosin (H & E), Giemsa, and immunohistochemistry (IHC) staining. RESULTS All induced tumors appeared as sarcomatoid carcinoma (SC). Immunohistochemistry staining confirmed this conclusion by recognizing the tumor as Ki67+, cytokeratin+, vimentine+, and estrogen receptor negative SC. RT-qPCR analysis revealed that Oct4-, Sox-2, Nanog- gene expression was much reduced in the condition medium treated tumors versus proper controls (p< 0.05). Tissue necrosis was more prevalent in this group while tumors volume was diminished almost by 40%. The LC-ESI-MS/MS analysis unrevealed the stemness reducing and the cell death inducing proteins such as, pigment epithelium-derived factor (PEDF), insulin like growth factor binding protein-5 (IGFBP-5) and -7 (IGFBP-7) in the condition medium. CONCLUSION This study showed that the substances released from starved human fibroblasts were able to down-regulate the stemness-related genes and induce necrosis in LA7 derived tumors.
Collapse
Affiliation(s)
- Roghayeh Pourbagher
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Hossein Ghorbani
- Department of Pathology, Rohani Hospital, Babol University of Medical Sciences, Babol, Iran.
| | - Haleh Akhavan-Niaki
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Seyed Gholam Ali Jorsaraei
- Fatemeh Zahra Infertility and Reproductive Health Research Centre, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Sadegh Fattahi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Sahar Ghooran
- Department of Pathology, Rohani Hospital, Babol University of Medical Sciences, Babol, Iran.
| | - Zeinab Abedian
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
- Dental Materials Research Center, Dental Faculty, Babol University of Medical Sciences, Babol, Iran.
| | - Masoumeh Ghasemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Fatemeh Saeedi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Negar Jafari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Behnam Kalali
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany.
| | - Amrollah Mostafazadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
27
|
Saini M, Jha AN, Tangri R, Qudratullah M, Ali S. MN1 overexpression with varying tumor grade is a promising predictor of survival of glioma patients. Hum Mol Genet 2021; 29:3532-3545. [PMID: 33105486 PMCID: PMC7788295 DOI: 10.1093/hmg/ddaa231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Gliomas have substantial mortality to incidence rate ratio and a dismal clinical course. Newer molecular insights, therefore, are imperative to refine glioma diagnosis, prognosis and therapy. Meningioma 1 (MN1) gene is a transcriptional co-regulator implicated in other malignancies, albeit its significance in glioma pathology remains to be explored. IGFBP5 is regulated transcriptionally by MN1 and IGF1 and is associated with higher glioma grade and shorter survival time, prompting us to ascertain their correlation in these tumors. We quantified the expression of MN1, IGFBP5 and IGF1 in 40 glioma samples and examined their interrelatedness. MN1 mRNA-protein inter-correlation and the gene's copy number were evaluated in these tumors. Publicly available TCGA datasets were used to examine the association of MN1 expression levels with patient survival and for validating our findings. We observed MN1 overexpression correlated with low-grade (LGGs) and not high-grade gliomas and is not determined by the copy number alteration of the gene. Notably, gliomas with upregulated MN1 have better overall survival (OS) and progression-free survival (PFS). IGFBP5 expression associated inversely with MN1 expression levels in gliomas but correlated positively with IGF1 expression in only LGGs. This suggests a potential grade-specific interplay between repressive and activating roles of MN1 and IGF1, respectively, in the regulation of IGFBP5. Thus, MN1 overexpression, a promising predictor of OS and PFS in gliomas, may serve as a prognostic biomarker in clinical practice to categorize patients with survival advantage.
Collapse
Affiliation(s)
- Masum Saini
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Ajaya Nand Jha
- Max Super Specialty Hospital, 1, Press Enclave Road, Saket, New Delhi 110017, India
| | - Rajiv Tangri
- Max Super Specialty Hospital, 1, Press Enclave Road, Saket, New Delhi 110017, India
- Dr. Lal PathLabs, National Reference Laboratory, Sector 18, Rohini, New Delhi 110085, India
| | - Md Qudratullah
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sher Ali
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Life Sciences, SBSR, Sharda University, KP-III, Greater Noida 201310, India
| |
Collapse
|
28
|
Egbeto IA, Garelli CJ, Piedra-Mora C, Wong NB, David CN, Robinson NA, Richmond JM. Case Series: Gene Expression Analysis in Canine Vogt-Koyanagi-Harada/Uveodermatologic Syndrome and Vitiligo Reveals Conserved Immunopathogenesis Pathways Between Dog and Human Autoimmune Pigmentary Disorders. Front Immunol 2020; 11:590558. [PMID: 33384688 PMCID: PMC7770226 DOI: 10.3389/fimmu.2020.590558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
Vogt-Koyanagi-Harada syndrome (VKH) and vitiligo are autoimmune diseases that target melanocytes. VKH affects several organs such as the skin, hair follicle, eyes, ears, and meninges, whereas vitiligo is often limited to the skin and mucosa. Many studies have identified immune genes, pathways and cells that drive the pathogeneses of VKH and vitiligo, including interleukins, chemokines, cytotoxic T-cells, and other leukocytes. Here, we present case studies of 2 canines with VKH and 1 with vitiligo, which occurred spontaneously in client-owned companion dogs. We performed comparative transcriptomics and immunohistochemistry studies on lesional skin biopsies from these cases in order to determine if the immunopathogenesis of autoimmune responses against melanocytes are conserved. In dogs, we found enrichment of T cell gene signatures, with upregulation of IFNG, TNF, PRF1, IL15, CTSW, CXCL10, and CCL5 in both VKH and vitiligo in dogs compared to healthy controls. Similar findings were reported in humans, suggesting that these genes play a role in the pathogenesis of spontaneous VKH and vitiligo. T cell-associated genes, including FOXP3 and TBX21, were enriched, while IGFBP5, FOXO1, and PECAM1 were decreased compared to healthy controls. Further, we identified TGFB3, SFRP2, and CXCL7 as additional potential drivers of autoimmune pigmentary disorders. Future studies exploring the immunopathogenesis of spontaneous autoimmunity will expand our understanding of these disorders, and will be useful in developing targeted therapies, repurposing drugs for veterinary and human medicine, and predicting disease prognosis and treatment response.
Collapse
Affiliation(s)
- Ista A Egbeto
- Department of Dermatology, UMass Medical School, Worcester, MA, United States.,Tufts University School of Medicine, Boston, MA, United States
| | - Colton J Garelli
- Department of Dermatology, UMass Medical School, Worcester, MA, United States
| | - Cesar Piedra-Mora
- Pathology Department, Tufts Cummings School of Veterinary Medicine, Grafton, MA, United States
| | - Neil B Wong
- Department of Dermatology, UMass Medical School, Worcester, MA, United States
| | | | - Nicholas A Robinson
- Pathology Department, Tufts Cummings School of Veterinary Medicine, Grafton, MA, United States
| | - Jillian M Richmond
- Department of Dermatology, UMass Medical School, Worcester, MA, United States
| |
Collapse
|
29
|
Maitituoheti M, Keung EZ, Tang M, Yan L, Alam H, Han G, Singh AK, Raman AT, Terranova C, Sarkar S, Orouji E, Amin SB, Sharma S, Williams M, Samant NS, Dhamdhere M, Zheng N, Shah T, Shah A, Axelrad JB, Anvar NE, Lin YH, Jiang S, Chang EQ, Ingram DR, Wang WL, Lazar A, Lee MG, Muller F, Wang L, Ying H, Rai K. Enhancer Reprogramming Confers Dependence on Glycolysis and IGF Signaling in KMT2D Mutant Melanoma. Cell Rep 2020; 33:108293. [PMID: 33086062 PMCID: PMC7649750 DOI: 10.1016/j.celrep.2020.108293] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/11/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
Histone methyltransferase KMT2D harbors frequent loss-of-function somatic point mutations in several tumor types, including melanoma. Here, we identify KMT2D as a potent tumor suppressor in melanoma through an in vivo epigenome-focused pooled RNAi screen and confirm the finding by using a genetically engineered mouse model (GEMM) based on conditional and melanocyte-specific deletion of KMT2D. KMT2D-deficient tumors show substantial reprogramming of key metabolic pathways, including glycolysis. KMT2D deficiency aberrantly upregulates glycolysis enzymes, intermediate metabolites, and glucose consumption rates. Mechanistically, KMT2D loss causes genome-wide reduction of H3K4me1-marked active enhancer chromatin states. Enhancer loss and subsequent repression of IGFBP5 activates IGF1R-AKT to increase glycolysis in KMT2D-deficient cells. Pharmacological inhibition of glycolysis and insulin growth factor (IGF) signaling reduce proliferation and tumorigenesis preferentially in KMT2D-deficient cells. We conclude that KMT2D loss promotes tumorigenesis by facilitating an increased use of the glycolysis pathway for enhanced biomass needs via enhancer reprogramming, thus presenting an opportunity for therapeutic intervention through glycolysis or IGF pathway inhibitors.
Collapse
Affiliation(s)
- Mayinuer Maitituoheti
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Z Keung
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Tang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liang Yan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hunain Alam
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anand K Singh
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ayush T Raman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate Program in Quantitative Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Christopher Terranova
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharmistha Sarkar
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Orouji
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir B Amin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Sneha Sharma
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura Williams
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neha S Samant
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayura Dhamdhere
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Norman Zheng
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tara Shah
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amiksha Shah
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacob B Axelrad
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nazanin E Anvar
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu-Hsi Lin
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Jiang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edward Q Chang
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davis R Ingram
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Lazar
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florian Muller
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate Program in Quantitative Sciences, Baylor College of Medicine, Houston, TX, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
30
|
Jenkins EC, Brown SO, Germain D. The Multi-Faced Role of PAPP-A in Post-Partum Breast Cancer: IGF-Signaling is Only the Beginning. J Mammary Gland Biol Neoplasia 2020; 25:181-189. [PMID: 32901383 DOI: 10.1007/s10911-020-09456-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling and control of local bioavailability of free IGF by the IGF binding proteins (IGFBP) are important regulators of both mammary development and breast cancer. A recent genome-wide association study (GWAS) identified small nucleotide polymorphisms that reduce the expression of IGFBP-5 as a risk factor of developing breast cancer. This observation suggests that genetic alterations leading to a decreased level of IGFBP-5 may also contribute to breast cancer. In the current review, we focus on Pregnancy-Associated Plasma Protein A (PAPP-A), a protease involved in the degradation of IGFBP-5. PAPP-A is overexpressed in the majority of breast cancers but its role in cancer has only begun to be explored. More specifically, this review aims at highlighting the role of post-partum involution in the oncogenic function of PAPP-A. Notably, we summarize recent studies indicating that PAPP-A plays a role not only in the degradation of IGFBP-5 but also in the deposition of collagen and activation of the collagen receptor discoidin 2 (DDR2) during post-partum involution. Finally, considering the immunosuppressive microenvironment of post-partum involution, we also discuss the unexpected finding made in Ewing Sarcoma that PAPP-A plays a role in immune evasion. While the immunosuppressive role of PAPP-A in breast cancer remains to be determined, collectively these studies highlight the multifaced role of PAPP-A in cancer that extends well beyond its effect on IGF-signaling.
Collapse
Affiliation(s)
- Edmund Charles Jenkins
- Department of Medicine, Division of Hematology/ Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, 10029, USA
| | - Samantha O Brown
- Department of Medicine, Division of Hematology/ Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, 10029, USA
| | - Doris Germain
- Department of Medicine, Division of Hematology/ Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, 10029, USA.
| |
Collapse
|
31
|
Integration of quantitative phosphoproteomics and transcriptomics revealed phosphorylation-mediated molecular events as useful tools for a potential patient stratification and personalized treatment of human nonfunctional pituitary adenomas. EPMA J 2020; 11:419-467. [PMID: 32849927 DOI: 10.1007/s13167-020-00215-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Background Invasiveness is a very challenging clinical problem in nonfunctional pituitary adenomas (NFPAs), and currently, there are no effective invasiveness-related molecular biomarkers. The post-neurosurgery treatment is much different as for invasive and noninvasive NFPAs. The aim of this study was to integrate phosphoproteomics and transcriptomics data to reveal phosphorylation-mediated molecular events for invasive characteristics of NFPAs to achieve a potential tool for patient stratification, and prognostic/predictive assessment to discriminate invasive from noninvasive NFPAs for personalized attitude. Methods The 6-plex tandem mass tag (TMT) labeling reagents coupled with TiO2 enrichment of phosphopeptides and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify and quantify each phosphoprotein and phosphosite in NFPAs and controls. Differentially expressed genes (DEGs) between invasive NFPA and control tissues were obtained from the Gene Expression Omnibus (GEO) database. The overlapping analysis was performed between phosphoprotiens and invasive DEGs. Gene Ontology (GO) enrichment, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) analyses were used to analyze these overlapped molecules. Results In total, 1035 phosphoproteins with 2982 phosphorylation sites were identified in NFPAs vs. controls, and 2751 DEGs were identified in invasive NFPAs vs. controls. Overlapping analysis of these phosphoproteins and DEGs exposed 130 overlapped molecules (phosphoproteins; invasive DEGs). GO enrichment and KEGG pathway analyses of 130 overlapped molecules revealed multiple biological processes and signaling pathway network alterations, including cell-cell adhesion, platelet activation, GTPase signaling pathway, protein kinase signaling, calcium signaling pathway, estrogen signaling pathway, glucagon signaling pathway, cGMP-PKG signaling pathway, GnRH signaling pathway, inflammatory mediator regulation of TRP channels, vascular smooth muscle contraction, and Fc gamma R-mediated phagocytosis, which were obviously associated with tumor invasive characteristics. For 130 overlapped molecules, PPI network-based molecular complex detection (MCODE) identified 10 hub molecules, namely SLC2A4, TSC2, AKT1, SCG3, ALB, APOL1, ACACA, SPARCL1, CHGB, and IGFBP5. These hub molecules are involved in multiple signaling pathways and represent potential predictive/prognostic markers in NFPA patients as well as they represent potential therapeutic targets. Conclusions This study provided the first large-scale phosphoprotein profiling and phosphorylation-related signaling pathway network alterations in human NFPA tissues. Further, overlapping analysis of phosphoproteins and invasive DEGs revealed the phosphorylation-mediated signaling pathway network changes in invasive NFPAs. These findings are the precious resource for in-depth insight into the molecular mechanisms of NFPAs, as well as for the discovery of effective phosphoprotein biomarkers and therapeutic targets for invasive NFPAs.
Collapse
|
32
|
Comprehensive Analysis of a circRNA-miRNA-mRNA Network to Reveal Potential Inflammation-Related Targets for Gastric Adenocarcinoma. Mediators Inflamm 2020; 2020:9435608. [PMID: 32801999 PMCID: PMC7416288 DOI: 10.1155/2020/9435608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the most common malignancy of the stomach. This study was aimed at elucidating the regulatory network of circRNA-miRNA-mRNA and identifying the precise inflammation-related targets in GC. The expression profiles of GSE83521, GSE78091, and GSE33651 were obtained from the GEO database. Interactions between miRNAs and circRNAs were investigated by the Circular RNA Interactome, and targets of miRNAs were predicted with miRTarBase. Then, a circRNA/miRNA/mRNA regulatory network was constructed. Also, functional enrichment analysis of selected differentially expressed genes (DEGs) was performed. The inflammation-/GC-related targets were collected in the GeneCards and GenLiP3 database, respectively. And a protein-protein interaction (PPI) network of DE mRNAs was constructed with STRING and Cytoscape to identify hub genes. The genetic alterations, neighboring gene networks, expression levels, and the poor prognosis of hub genes were investigated in cBioPortal, Oncomine, and Human Protein Atlas databases and Kaplan-Meier plotter, respectively. A total of 10 DE miRNAs and 33 DEGs were identified. The regulatory network contained 26 circRNAs, 10 miRNAs, and 1459 mRNAs. Functional enrichment analysis revealed that the selected 33 DEGs were involved in negative regulation of fat cell differentiation, response to wounding, extracellular matrix- (ECM-) receptor interaction, and regulation of cell growth pathways. THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5 were selected as inflammation-related hub genes of GC in the PPI network. The genetic alterations in these hub genes were related to amplification and missense mutations. Furthermore, the genes RYR2, ERBB2, PI3KCA, and HELZ2 were connected to hub genes in this study. The hub gene levels in clinical specimens were markedly upregulated in GC tissues and correlated with poor overall survival (OS). Our results suggest that THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5 were associated with the pathogenesis of gastric carcinogenesis and may serve as biomarkers and inflammation-related targets for GC.
Collapse
|
33
|
Garcia-Peterson LM, Ndiaye MA, Chhabra G, Singh CK, Guzmán-Pérez G, Iczkowski KA, Ahmad N. CRISPR/Cas9-mediated Knockout of SIRT6 Imparts Remarkable Antiproliferative Response in Human Melanoma Cells in vitro and in vivo. Photochem Photobiol 2020; 96:1314-1320. [PMID: 32621766 DOI: 10.1111/php.13305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
Melanoma is one of the most aggressive, potentially fatal forms of skin cancer and has been shown to be associated with solar ultraviolet radiation-dependent initiation and progression. Despite remarkable recent advances with targeted and immune therapeutics, lasting and recurrence-free survival remain significant concerns. Therefore, additional novel mechanism-based approaches are needed for effective melanoma management. The sirtuin SIRT6 appears to have a pro-proliferative function in melanocytic cells. In this study, we determined the effects of genetic manipulation of SIRT6 in human melanoma cells, in vitro and in vivo. Our data demonstrated that CRISPR/Cas9-mediated knockout (KO) of SIRT6 in A375 melanoma cells resulted in a significant (1) decrease in growth, viability and clonogenic survival and (2) induction of G1-phase cell cycle arrest. Further, employing a RT2 Profiler PCR array containing 84 key transformation and tumorigenesis genes, we found that SIRT6 KO resulted in modulation of genes involved in angiogenesis, apoptosis, cellular senescence, epithelial-to-mesenchymal transition, hypoxia signaling and telomere maintenance. Finally, we found significantly decreased tumorigenicity of SIRT6 KO A375 cells in athymic nude mice. Our data provide strong evidence that SIRT6 promotes melanoma cell survival, both in vitro and in vivo, and could be exploited as a target for melanoma management.
Collapse
Affiliation(s)
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, WI
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, WI
| | | | | | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI.,William S. Middleton VA Medical Center, Madison, WI
| |
Collapse
|
34
|
Widyastuti HP, Norden-Krichmar TM, Grosberg A, Zaragoza MV. Gene expression profiling of fibroblasts in a family with LMNA-related cardiomyopathy reveals molecular pathways implicated in disease pathogenesis. BMC MEDICAL GENETICS 2020; 21:152. [PMID: 32698886 PMCID: PMC7374820 DOI: 10.1186/s12881-020-01088-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Background Intermediate filament proteins that construct the nuclear lamina of a cell include the Lamin A/C proteins encoded by the LMNA gene, and are implicated in fundamental processes such as nuclear structure, gene expression, and signal transduction. LMNA mutations predominantly affect mesoderm-derived cell lineages in diseases collectively termed as laminopathies that include dilated cardiomyopathy with conduction defects, different forms of muscular dystrophies, and premature aging syndromes as Hutchinson-Gilford Progeria Syndrome. At present, our understanding of the molecular mechanisms regulating tissue-specific manifestations of laminopathies are still limited. Methods To gain deeper insight into the molecular mechanism of a novel LMNA splice-site mutation (c.357-2A > G) in an affected family with cardiac disease, we conducted deep RNA sequencing and pathway analysis for nine fibroblast samples obtained from three patients with cardiomyopathy, three unaffected family members, and three unrelated, unaffected individuals. We validated our findings by quantitative PCR and protein studies. Results We identified eight significantly differentially expressed genes between the mutant and non-mutant fibroblasts, that included downregulated insulin growth factor binding factor protein 5 (IGFBP5) in patient samples. Pathway analysis showed involvement of the ERK/MAPK signaling pathway consistent with previous studies. We found no significant differences in gene expression for Lamin A/C and B-type lamins between the groups. In mutant fibroblasts, RNA-seq confirmed that only the LMNA wild type allele predominately was expressed, and Western Blot showed normal Lamin A/C protein levels. Conclusions IGFBP5 may contribute in maintaining signaling pathway homeostasis, which may lead to the absence of notable molecular and structural abnormalities in unaffected tissues such as fibroblasts. Compensatory mechanisms from other nuclear membrane proteins were not found. Our results also demonstrate that only one copy of the wild type allele is sufficient for normal levels of Lamin A/C protein to maintain physiological function in an unaffected cell type. This suggests that affected cell types such as cardiac tissues may be more sensitive to haploinsufficiency of Lamin A/C. These results provide insight into the molecular mechanism of disease with a possible explanation for the tissue specificity of LMNA-related dilated cardiomyopathy.
Collapse
Affiliation(s)
- Halida P Widyastuti
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Chemistry, University of California, Irvine, School of Medicine, 2042 Hewitt Hall, Irvine, CA, 92697-3940, USA
| | - Trina M Norden-Krichmar
- Department of Epidemiology, University of California, Irvine, School of Medicine, 3062 Anteater Instruction and Research Building, Irvine, CA, 92697-7550, USA.
| | - Anna Grosberg
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
| | - Michael V Zaragoza
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Chemistry, University of California, Irvine, School of Medicine, 2042 Hewitt Hall, Irvine, CA, 92697-3940, USA.
| |
Collapse
|
35
|
Chen X, Yu Q, Pan H, Li P, Wang X, Fu S. Overexpression of IGFBP5 Enhances Radiosensitivity Through PI3K-AKT Pathway in Prostate Cancer. Cancer Manag Res 2020; 12:5409-5418. [PMID: 32753958 PMCID: PMC7351625 DOI: 10.2147/cmar.s257701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/29/2020] [Indexed: 01/14/2023] Open
Abstract
Background Radiotherapy is the main treatment for localized prostate cancer. The therapeutic effects of radiotherapy are highly dependent on radiosensitivity of target tumors. Here, we investigated the impact of insulin-like growth factor-binding protein 5 (IGFBP5) on irradiation therapy in prostate cancer. Methods IGFBP5 gene was overexpressed in human prostate cancer cell lines, PC3 and DU145, with transfection of lentivirus expression vector. Radiosensitivity of the cell lines was assessed with colony formation, cell cycle and cell proliferation assays. The expression of proteins associated with the PI3K-AKT pathway was determined by Western blotting. The effect of IGFBP5 knockdown on PI3K-AKT pathway was tested using PI3K inhibitor. Results Higher expression of IGFBP5 improved the efficacy of radiotherapy for prostate cancer patients. The effects of IGFBP5 were linked to the PI3K-AKT signaling pathway. Overexpression of IGFBP5 enhanced radiosensitivity and induced G2/M phase arrest in prostate cancer cells. In contrast, it decreased PI3K, p-AKT expression and cell viability. These effects were reversed by IGFBP5 knockdown. Conclusion Our results reveal that IGFBP5 regulates radiosensitivity in prostate cancer via the PI3K-AKT pathway. It is, therefore, a potential biomarker of tumors that influences the therapeutic effect of radiotherapy.
Collapse
Affiliation(s)
- Xue Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qi Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Hailun Pan
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, People's Republic of China.,Institute of Modern Physics, Fudan University, Shanghai, People's Republic of China
| | - Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People's Republic of China
| | - Xufei Wang
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, People's Republic of China.,Institute of Modern Physics, Fudan University, Shanghai, People's Republic of China
| | - Shen Fu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, People's Republic of China.,Department of Radiation Oncology, Shanghai Concord Cancer Hospital, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Nam B, Kim SA, Park SD, Kim HJ, Kim JS, Bae CH, Kim JY, Nam W, Lee JL, Sim JH. Regulatory effects of Lactobacillus plantarum HY7714 on skin health by improving intestinal condition. PLoS One 2020; 15:e0231268. [PMID: 32275691 PMCID: PMC7147770 DOI: 10.1371/journal.pone.0231268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/19/2020] [Indexed: 01/01/2023] Open
Abstract
Despite increasing research on the gut-skin axis, there is a lack of comprehensive studies on the improvement of skin health through the regulation of the intestinal condition in humans. In this study, we investigated the benefits of Lactobacillus plantarum HY7714 (HY7714) consumption on skin health through its modulatory effects on the intestine and ensuing immune responses. HY7714 consumption led to differences in bacterial abundances from phylum to genus level, including increases in Actinobacteria followed by Bifidobacterium and a decrease in Proteobacteria. Additionally, HY7714 significantly ameliorated inflammation by reducing matrix metallopeptidases (MMP-2 and MMP-9), zonulin, and calprotectin in plasma, all of which are related to skin and intestinal permeability. Furthermore, RNA-seq analysis revealed its efficacy at restoring the integrity of the gut barrier by regulating gene expression associated with the extracellular matrix and immunity. This was evident by the upregulation of IGFBP5, SERPINE1, EFEMP1, COL6A3, and SEMA3B and downregulation of MT2A, MT1E, MT1X, MT1G, and MT1F between TNF- α and TNF- α plus HY7714 treated Caco-2 cells. These results propose the potential mechanistic role of HY7714 on skin health by the regulation of the gut condition.
Collapse
Affiliation(s)
- Bora Nam
- R&BD Center, Korea Yakult Co. Ltd., Yongin, Republic of Korea
| | - Soo A. Kim
- R&BD Center, Korea Yakult Co. Ltd., Yongin, Republic of Korea
| | - Soo Dong Park
- R&BD Center, Korea Yakult Co. Ltd., Yongin, Republic of Korea
| | - Hyeon Ji Kim
- R&BD Center, Korea Yakult Co. Ltd., Yongin, Republic of Korea
| | - Ji Soo Kim
- R&BD Center, Korea Yakult Co. Ltd., Yongin, Republic of Korea
| | - Chu Hyun Bae
- R&BD Center, Korea Yakult Co. Ltd., Yongin, Republic of Korea
| | - Joo Yun Kim
- R&BD Center, Korea Yakult Co. Ltd., Yongin, Republic of Korea
| | - Woo Nam
- R&BD Center, Korea Yakult Co. Ltd., Yongin, Republic of Korea
| | - Jung Lyoul Lee
- R&BD Center, Korea Yakult Co. Ltd., Yongin, Republic of Korea
| | - Jae Hun Sim
- R&BD Center, Korea Yakult Co. Ltd., Yongin, Republic of Korea
- * E-mail:
| |
Collapse
|
37
|
Dong C, Zhang J, Fang S, Liu F. IGFBP5 increases cell invasion and inhibits cell proliferation by EMT and Akt signaling pathway in Glioblastoma multiforme cells. Cell Div 2020; 15:4. [PMID: 32127912 PMCID: PMC7047354 DOI: 10.1186/s13008-020-00061-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
Background Recurrence of Glioblastoma multiforme (GBM) seems to be the rule despite combination therapies. Cell invasion and cell proliferation are major reasons for recurrence of GBM. And insulin-like growth factor binding protein 5 (IGFBP5) is the most conserved of the IGFBPs and is frequently dysregulated in cancers and metastatic tissues. Results By studying the human glioma tissues, we find that IGFBP5 expression associate to the histopathological classification and highly expressed in GBM. Using IGFBP5 mutants we demonstrate that knockdown of IGFBP5 inhibited cell invasion, whereas promoting cell proliferation in GBM cells. Mechanistically, we observed that promoting GBM cell proliferation by inhibiting IGFBP5 was associated with stimulating Akt (Protein kinase B) phosphorylation. However, IGFBP5 promote GBM cell invasion was related to the epithelial-to-mesenchymal transition (EMT). Furthermore, the Chinese Glioma Genome Altas (CGGA) database show that IGFBP5 is significantly increased in recurrent glioma and it predicted worse survival. Conclusions The obtained results indicate that IGFBP5 has two sides in GBM—inhibiting cell proliferation but promoting cell invasion.
Collapse
Affiliation(s)
- Chengyuan Dong
- 1Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 People's Republic of China.,2Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070 People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070 People's Republic of China
| | - Junwen Zhang
- 1Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 People's Republic of China.,2Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070 People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070 People's Republic of China
| | - Sheng Fang
- 1Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 People's Republic of China.,2Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070 People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070 People's Republic of China
| | - Fusheng Liu
- 1Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 People's Republic of China.,2Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070 People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070 People's Republic of China
| |
Collapse
|
38
|
Alem FZ, Bejaoui M, Villareal MO, Rhourri-Frih B, Isoda H. Elucidation of the effect of plumbagin on the metastatic potential of B16F10 murine melanoma cells via MAPK signalling pathway. Exp Dermatol 2020; 29:427-435. [PMID: 32012353 DOI: 10.1111/exd.14079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022]
Abstract
Melanoma is the most dangerous form of skin cancer with a very poor prognosis. Melanoma develops when unrepaired DNA damage causes to skin cells to multiply and form malignant tumors. The current therapy is limited by the highly ability of this disease to metastasize rapidly. Plumbagin is a naphthoquinone (5-hydroxy-2-methyl-1, 4-naphthoquinone), isolated from the roots of medicinal plant Plumbago zeylanica, and it is widely present in Lawsonia inermis L. It has been shown that plumbagin has an anti-proliferative and anti-invasive activities in various cancer cell lines; however, the anti-cancer and anti-metastatic effects of plumbagin are largely unknown against melanoma cells. In this study, we evaluated the effect of plumbagin on B16F10 murine melanoma cells . Plumbagin decreased B16F10 cell viability as well as the cell migration, adhesion, and invasion. The molecular mechanism was studied, and plumbagin downregulated genes relevant in MAPK pathway, matrix metalloproteinases (MMP's), and cell adhesion. Furthermore, plumbagin elevated the expression of apoptosis and tumors suppressor genes, and genes significant in reactive oxygen species (ROS) response. Taken together, our findings suggest that plumbagin has an anti-invasion and anti-metastasis effect on melanoma cancer cells by acting on MAPK pathway and its related genes.
Collapse
Affiliation(s)
- Fatima-Zahra Alem
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco.,Chimie et Biologie des Membranes et Nanoobjets, University of Bordeaux, CNRS UMR 5248, Bordeaux, France
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba city, Japan
| | - Myra O Villareal
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba city, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Boutayna Rhourri-Frih
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,Chimie et Biologie des Membranes et Nanoobjets, University of Bordeaux, CNRS UMR 5248, Bordeaux, France
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba city, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Japan
| |
Collapse
|
39
|
System-Based Differential Gene Network Analysis for Characterizing a Sample-Specific Subnetwork. Biomolecules 2020; 10:biom10020306. [PMID: 32075209 PMCID: PMC7072632 DOI: 10.3390/biom10020306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 12/18/2022] Open
Abstract
Gene network estimation is a method key to understanding a fundamental cellular system from high throughput omics data. However, the existing gene network analysis relies on having a sufficient number of samples and is required to handle a huge number of nodes and estimated edges, which remain difficult to interpret, especially in discovering the clinically relevant portions of the network. Here, we propose a novel method to extract a biomedically significant subnetwork using a Bayesian network, a type of unsupervised machine learning method that can be used as an explainable and interpretable artificial intelligence algorithm. Our method quantifies sample specific networks using our proposed Edge Contribution value (ECv) based on the estimated system, which realizes condition-specific subnetwork extraction using a limited number of samples. We applied this method to the Epithelial-Mesenchymal Transition (EMT) data set that is related to the process of metastasis and thus prognosis in cancer biology. We established our method-driven EMT network representing putative gene interactions. Furthermore, we found that the sample-specific ECv patterns of this EMT network can characterize the survival of lung cancer patients. These results show that our method unveils the explainable network differences in biological and clinical features through artificial intelligence technology.
Collapse
|
40
|
Expression of genes encoding IGF1, IGF2, and IGFBPs in blood of obese adolescents with insulin resistance. Endocr Regul 2020; 53:34-45. [PMID: 31517621 DOI: 10.2478/enr-2019-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE The development of obesity and its metabolic complications is associated with dys-regulation of various intrinsic mechanisms, which control basic metabolic processes via changes in the expression of numerous regulatory genes. The main goal of this work was to study the association between the expression of insulin-like growth factors (IGF1 and IGF2) and IGF-binding proteins and insulin resistance in obese adolescents for evaluation of possible contribution of these genes in development of insulin resistance. METHODS The expression of IGF1, IGF2, and IGFBPs mRNA was measured in blood of obese adolescents with normal insulin sensitivity and insulin resistance in comparison with the normal (control) individuals. RESULTS In the blood of obese adolescents with normal insulin sensitivity the expression of IGFBP4, IGFBP5 and HTRA1 genes was down-regulated, but IGFBP2 and IGFBP7 genes up-regulated as compared to control (normal) group. At the same time, no significant changes in IGF1 and IGF2 gene expressions in this group of obese adolescents were found. Insulin resistance in obese adolescents led to up-regulation of IGF2, IGFBP2, and IGFBP7 gene expressions as well as to down-regulation of the expression of IGF1, IGFBP5 and HTRA1 genes in the blood in comparison with the obese patients, which have normal insulin sensitivity. Furthermore, the level of IGFBP4 gene expression was similar in both groups of obese adolescents. CONCLUSIONS Results of this investigation provide evidence that insulin resistance in obese adolescents is associated with gene specific changes in the expression of IGF1, IGF2, IGFBP2, IGFBP5, IGFBP7, and HTRA1 genes and these changes possibly contribute to the development of glucose intolerance and insulin resistance.
Collapse
|
41
|
Mikeli M, Fujikawa M, Nagahisa K, Yasuda S, Yamada N, Tanabe T. Contribution of GPD2/mGPDH to an alternative respiratory chain of the mitochondrial energy metabolism and the stemness in CD133-positive HuH-7 cells. Genes Cells 2020; 25:139-148. [PMID: 31887237 DOI: 10.1111/gtc.12744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
HuH-7 cells, derived from human hepatocarcinoma, are known to contain the CD133-positive cancer stem cell populations. HuH-7 cells showed higher ATP synthesis activity through the respiratory chain compared to another human hepatocarcinoma cell line HepG2 and showed an especially higher glycerol-3-phosphate (G3P)-driven ATP synthesis (G3P-ATPase) activity. We found that the CD133-positive HuH-7 cells expressed high levels of GPD2 (glycerol-3-phosphate dehydrogenase or mGPDH) and showed high G3P-ATPase activity. Next, to elucidate the relationship between CD133 and GPD2, we inhibited downstream factors of CD133 and found that a p38 inhibitor decreased the expression of GPD2 and decreased the G3P-ATPase activity. Furthermore, GPD2-knockdown (GPD2-KD) cells exhibited strong reduction of the G3P-ATPase activity and reduction of lactic acid secretion. Finally, we validated the effect of GPD2-KD on tumorigenicity. GPD2-KD cells were found to show decreased anchorage-independent cell proliferation, suggesting the linkage of G3P-ATPase activity to the tumorigenicity of the CD133-positive HuH-7 cells. Inhibition of G3P-ATPase disrupts the homeostasis of energy metabolism and blocks cancer development and progression. Our results suggest inhibitors, targeting GPD2 may be potential new anticancer agents.
Collapse
Affiliation(s)
- Maimaiti Mikeli
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Fujikawa
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kai Nagahisa
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuhei Yasuda
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Natsuhiko Yamada
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
42
|
Duan C, Allard JB. Insulin-Like Growth Factor Binding Protein-5 in Physiology and Disease. Front Endocrinol (Lausanne) 2020; 11:100. [PMID: 32194505 PMCID: PMC7063065 DOI: 10.3389/fendo.2020.00100] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling is regulated by a conserved family of IGF binding proteins (IGFBPs) in vertebrates. Among the six distinct types of IGFBPs, IGFBP-5 is the most highly conserved across species and has the broadest range of biological activities. IGFBP-5 is expressed in diverse cell types, and its expression level is regulated by a variety of signaling pathways in different contexts. IGFBP-5 can exert a range of biological actions including prolonging the half-life of IGFs in the circulation, inhibition of IGF signaling by competing with the IGF-1 receptor for ligand binding, concentrating IGFs in certain cells and tissues, and potentiation of IGF signaling by delivery of IGFs to the IGF-1 receptor. IGFBP-5 also has IGF-independent activities and is even detected in the nucleus. Its broad biological activities make IGFBP-5 an excellent representative for understanding IGFBP functions. Despite its evolutionary conservation and numerous biological activities, knockout of IGFBP-5 in mice produced only a negligible phenotype. Recent research has begun to explain this paradox by demonstrating cell type-specific and physiological/pathological context-dependent roles for IGFBP-5. In this review, we survey and discuss what is currently known about IGFBP-5 in normal physiology and human disease. Based on recent in vivo genetic evidence, we suggest that IGFBP-5 is a multifunctional protein with the ability to act as a molecular switch to conditionally regulate IGF signaling.
Collapse
|
43
|
Coe EA, Tan JY, Shapiro M, Louphrasitthiphol P, Bassett AR, Marques AC, Goding CR, Vance KW. The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor. PLoS Genet 2019; 15:e1008501. [PMID: 31881017 PMCID: PMC6934268 DOI: 10.1371/journal.pgen.1008501] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/30/2019] [Indexed: 01/14/2023] Open
Abstract
The MITF and SOX10 transcription factors regulate the expression of genes important for melanoma proliferation, invasion and metastasis. Despite growing evidence of the contribution of long noncoding RNAs (lncRNAs) in cancer, including melanoma, their functions within MITF-SOX10 transcriptional programmes remain poorly investigated. Here we identify 245 candidate melanoma associated lncRNAs whose loci are co-occupied by MITF-SOX10 and that are enriched at active enhancer-like regions. Our work suggests that one of these, Disrupted In Renal Carcinoma 3 (DIRC3), may be a clinically important MITF-SOX10 regulated tumour suppressor. DIRC3 depletion in human melanoma cells leads to increased anchorage-independent growth, a hallmark of malignant transformation, whilst melanoma patients classified by low DIRC3 expression have decreased survival. DIRC3 is a nuclear lncRNA that activates expression of its neighbouring IGFBP5 tumour suppressor through modulating chromatin structure and suppressing SOX10 binding to putative regulatory elements within the DIRC3 locus. In turn, DIRC3 dependent regulation of IGFBP5 impacts the expression of genes involved in cancer associated processes and is needed for DIRC3 control of anchorage-independent growth. Our work indicates that lncRNA components of MITF-SOX10 networks are an important new class of melanoma regulators and candidate therapeutic targets that can act not only as downstream mediators of MITF-SOX10 function but as feedback regulators of MITF-SOX10 activity.
Collapse
Affiliation(s)
- Elizabeth A. Coe
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jennifer Y. Tan
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Michael Shapiro
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Andrew R. Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ana C. Marques
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Keith W. Vance
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
44
|
Golonko A, Lewandowska H, Świsłocka R, Jasińska U, Priebe W, Lewandowski W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur J Med Chem 2019; 181:111512. [DOI: 10.1016/j.ejmech.2019.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
45
|
Chen Z, Zhang W, Zhang N, Zhou Y, Hu G, Xue M, Liu J, Li Y. Down-regulation of insulin-like growth factor binding protein 5 is involved in intervertebral disc degeneration via the ERK signalling pathway. J Cell Mol Med 2019; 23:6368-6377. [PMID: 31290273 PMCID: PMC6714225 DOI: 10.1111/jcmm.14525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
It is obvious that epigenetic processes influence the evolution of intervertebral disc degeneration (IDD). However, its molecular mechanisms are poorly understood. Therefore, we tested the hypothesis that IGFBP5, a potential regulator of IDD, modulates IDD via the ERK signalling pathway. We showed that IGFBP5 mRNA was significantly down-regulated in degenerative nucleus pulposus (NP) tissues. IGFBP5 was shown to significantly promote NP cell proliferation and inhibit apoptosis in vitro, which was confirmed by MTT, flow cytometry and colony formation assays. Furthermore, IGFBP5 was shown to exert its effects by inhibiting the ERK signalling pathway. The effects induced by IGFBP5 overexpression on NP cells were similar to those induced by treatment with an ERK pathway inhibitor (PD98059). Moreover, qRT-PCR and Western blot analyses were performed to examine the levels of apoptosis-related factors, including Bax, caspase-3 and Bcl2. The silencing of IGFBP5 up-regulated the levels of Bax and caspase-3 and down-regulated the level of Bcl2, thereby contributing to the development of human IDD. Furthermore, these results were confirmed in vivo using an IDD rat model, which showed that the induction of Igfbp5 mRNA expression abrogated the effects of IGFBP5 silencing on intervertebral discs. Overall, our findings elucidate the role of IGFBP5 in the pathogenesis of IDD and provide a potential novel therapeutic target for IDD.
Collapse
Affiliation(s)
- Zhonghui Chen
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| | - Weibing Zhang
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| | - Nu Zhang
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| | - Yan Zhou
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| | - Geliang Hu
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| | - Mingdi Xue
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| | - Junhua Liu
- Orthopedic SurgeryChibi Third Renmin HospitalChibiChina
| | - Yaming Li
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| |
Collapse
|
46
|
Wang T, Wang CJ, Tian S, Song HB. Overexpressed IGFBP5 promotes cell proliferation and inhibits apoptosis of nucleus pulposus derived from rats with disc degeneration through inactivating the ERK/MAPK axis. J Cell Biochem 2019; 120:18782-18792. [PMID: 31310371 DOI: 10.1002/jcb.29191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
It is previously suggested that insulin-like growth factor binding proteins (IGFBPs) potentially share an association with disc degeneration (DD) that causes back pain. This study aimed at exploring the functional relevance of IGFBP5 in DD by establishing a rat model of DD. The nucleus pulposus (NP) cells were transduced with IGFBP5-shRNA or IGFBP5 overexpression to determine the cellular processes (proliferation, apoptosis, as well as colony formation). The protein levels of apoptosis-related proteins were evaluated. Furthermore, NP cells were treated with the extracellular signal-regulated kinases/mitogen-activated protein kinase (ERK/MAPK) pathway inhibitor (PD98059) followed by measurement of ERK protein level and ERK phosphorylation content. The NP cells showed suppressed proliferation and colony formation ability, yet promoted apoptosis after transfection with IGFBP5-shRNA. It was found that silencing of IGFBP5 could lead to the ERK/MAPK axis activation, as indicated by an elevated ERK protein level and ERK phosphorylation content. However, overexpression of IGFBP5 could reverse all the reaction induced by silenced IGFBP5. These key findings demonstrate that overexpressed IGFBP5 inactivates the ERK/MAPK axis to stimulate the proliferation and inhibit apoptosis of NP cells in a rat model of DD.
Collapse
Affiliation(s)
- Tao Wang
- Department of Spine Surgery, Dongying People's Hospital, Dongying, Shandong, P.R. China
| | - Chun-Ju Wang
- Department of Spine Surgery, Dongying People's Hospital, Dongying, Shandong, P.R. China
| | - Shuang Tian
- Department of Spine Surgery, Dongying People's Hospital, Dongying, Shandong, P.R. China
| | - Hai-Bo Song
- Department of Spine Surgery, Dongying People's Hospital, Dongying, Shandong, P.R. China
| |
Collapse
|
47
|
Marzagalli M, Raimondi M, Fontana F, Montagnani Marelli M, Moretti RM, Limonta P. Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Semin Cancer Biol 2019; 59:221-235. [PMID: 31265892 DOI: 10.1016/j.semcancer.2019.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 01/17/2023]
Abstract
Malignant melanoma is a tumor characterized by a very high level of heterogeneity, responsible for its malignant behavior and ability to escape from standard therapies. In this review we highlight the molecular and biological features of the subpopulation of cancer stem cells (CSCs), well known to be characterized by self-renewal properties, deeply involved in triggering the processes of tumor generation, metastasis, progression and drug resistance. From the molecular point of view, melanoma CSCs are identified and characterized by the expression of stemness markers, such as surface markers, ATP-binding cassette (ABC) transporters, embryonic stem cells and intracellular markers. These cells are endowed with different functional features. In particular, they play pivotal roles in the processes of tumor dissemination, epithelial-to-mesenchymal transition (EMT) and angiogenesis, mediated by specific intracellular signaling pathways; moreover, they are characterized by a unique metabolic reprogramming. As reported for other types of tumors, the CSCs subpopulation in melanoma is also characterized by a low immunogenic profile as well as by the ability to escape the immune system, through the expression of a negative modulation of T cell functions and the secretion of immunosuppressive factors. These biological features allow melanoma CSCs to escape standard treatments, thus being deeply involved in tumor relapse. Targeting the CSCs subpopulation is now considered an attractive treatment strategy; in particular, combination treatments, based on both CSCs-targeting and standard drugs, will likely increase the therapeutic options for melanoma patients. The characterization of CSCs in liquid biopsies from single patients will pave the way towards precision medicine.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | | | - Roberta M Moretti
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy.
| |
Collapse
|
48
|
Weng X, Wu J, Lv Z, Peng C, Chen J, Zhang C, He B, Tong R, Hu W, Ding C, Cao L, Chen D, Wu J, Zheng S. Targeting Mybbp1a suppresses HCC progression via inhibiting IGF1/AKT pathway by CpG islands hypo-methylation dependent promotion of IGFBP5. EBioMedicine 2019; 44:225-236. [PMID: 31109829 PMCID: PMC6606930 DOI: 10.1016/j.ebiom.2019.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Myb-binding protein 1A (Mybbp1a) is a nucleolar protein that can regulate rRNA metabolism, the stress response and carcinogenesis. However, the function of Mybbp1a in the progression of hepatocellular carcinoma (HCC) is unclear. We aimed to determine the role of Mybbp1a in HCC and the underlying mechanism. METHODS We investigated the function of Mybbp1a in HCC cell models and the xenograft mouse model. The relationship between Mybbp1a and IGFBP5 was found through expression profile chip. The molecular mechanism of Mybbp1a regulating IGFBP5 was proved through CO-IP, CHIP, Bisulfite Sequencing and Pyrosequencing. FINDINGS In this study, we observed that Mybbp1a was overexpressed in HCC tissues and associated with the poor prognosis of HCC patients. Suppression of Mybbp1a led to a reduction in the proliferation and migration ability of HCC cells through inhibiting the IGF1/AKT signaling pathway. Further study found that Mybbp1a could form a complex with DNMT1 and induce aberrant hyper-methylation of CpG islands of IGFBP5, which inhibits secretion of IGFBP5 and then activates IGF1/AKT signaling pathway. INTERPRETATION These findings extend our understanding of the function of Mybbp1a in the progression of HCC. The newly identified Mybbp1a may provide a novel biomarker for developing potential therapeutic targets of HCC. FUND: Science Technology Department of Zhejiang Province (No. 2015C03034), National Health and Family Planning Commission of China (No. 2016138643), Innovative Research Groups of National Natural Science Foundation of China (No. 81721091), Major program of National Natural Science Foundation of China (No. 91542205).
Collapse
Affiliation(s)
- Xiaoyu Weng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Jingbang Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Zhen Lv
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Junru Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Bin He
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Wendi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Chaofeng Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
49
|
Emran AA, Marzese DM, Menon DR, Hammerlindl H, Ahmed F, Richtig E, Duijf P, Hoon DS, Schaider H. Commonly integrated epigenetic modifications of differentially expressed genes lead to adaptive resistance in cancer. Epigenomics 2019; 11:732-737. [PMID: 31070054 PMCID: PMC6595545 DOI: 10.2217/epi-2018-0173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: To investigate the integrated epigenetic regulation of acquired drug resistance in cancer. Materials & methods: Our gene expression data of five induced drug-tolerant cell models, one resistant cell line and one publicly available drug-resistant dataset were integrated to identify common differentially expressed genes and pathways. ChIP-seq and DNA methylation by HM450K beadchip were used to study the epigenetic profile of differential expressed genes. Results & conclusion: Integrated transcriptomic analysis identified a common ‘viral mimicry’ related gene signature in induced drug-tolerant cells and the resistant state. Analysis of the epigenetic regulation revealed a common set of down-regulated genes, which are marked and regulated by a concomitant loss of H3K4me3, gain of H3K9me3 and increment of regional DNA methylation levels associated with tumor suppressor genes and apoptotic signaling.
Collapse
Affiliation(s)
- Abdullah Al Emran
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.,Centenary Institute of Cancer Medicine & Cell Biology, University of Sydney, Camperdown, NSW, Australia
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA
| | - Dinoop R Menon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA
| | - Heinz Hammerlindl
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Farzana Ahmed
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Erika Richtig
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Pascal Duijf
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Dave Sb Hoon
- Centenary Institute of Cancer Medicine & Cell Biology, University of Sydney, Camperdown, NSW, Australia
| | - Helmut Schaider
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.,Department of Dermatology, The Townsville Hospital, Douglas, QLD, Australia
| |
Collapse
|
50
|
Okuno K, Akiyama Y, Shimada S, Nakagawa M, Tanioka T, Inokuchi M, Yamaoka S, Kojima K, Tanaka S. Asymmetric dimethylation at histone H3 arginine 2 by PRMT6 in gastric cancer progression. Carcinogenesis 2019; 40:15-26. [PMID: 30508037 DOI: 10.1093/carcin/bgy147] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/21/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Histone modification plays important molecular roles in development and progression of cancers. Dysregulation of histone H3 arginine (R) methylation is still unknown in primary cancer, including gastric cancer (GC). Although PRMT6 contributes to asymmetric dimethylation at H3R2 (H3R2me2as) in cancer cells, its molecular functions are poorly understood in GC. In this study, we assessed H3R2me2as and PRMT6 expression levels in 133 primary GC tissues by immunohistochemistry. Increased H3R2me2as was found in 68 GC (51.1%) cases and independently related to poor prognosis. PRMT6 was overexpressed in 70 GC (52.6%) and strongly correlated with the global H3R2me2as levels (P < 0.001). By analyzing biological functions of PRMT6 in GC cell lines by lentivirus-based systems, PRMT6 overexpression enhanced global H3R2me2as and invasiveness in vitro, while PRMT6 knockout (PRMT6-KO) suppressed these effects and tumorigenicity in vivo. ChIP and microarray assays demonstrated that PRMT6-KO GC cells decreased the enrichments of H3R2me2as at the promoter regions of PCDH7, SCD and IGFBP5, resulting in upregulation of their gene expression. PRMT6 was recruited to the promoter regions of PCDH7 and SCD in the PRMT6-overexpressed cells. Knockdown of tumor suppressor PCDH7 in the PRMT6-KO GC cells elevated cell migration and invasion. PRMT6 expression inversely correlated with PCDH7 expression in primary GC (P = 0.021). Collectively, our findings strongly indicate that H3R2me2as is a strong prognostic indicator of GC patients, and PRMT6-overexpressing GC cells may acquire invasiveness through direct transcriptional inhibition of PCDH7 by increasing H3R2me2as level. Thus, inhibition of the PRMT6-H3R2me2as pathway could be a promising new therapeutic strategy in GC.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Gastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Minimally Invasive Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Nakagawa
- Department of Gastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiro Tanioka
- Department of Gastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikito Inokuchi
- Department of Gastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuyuki Kojima
- Department of Gastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Minimally Invasive Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|