1
|
Qi B, Wang Y, Zhu X, Gong Y, Jin J, Wu H, Man X, Liu F, Yao W, Gao J. miR-301a-mediated crosstalk between the Hedgehog and HIPPO/YAP signaling pathways promotes pancreatic cancer. Cancer Biol Ther 2025; 26:2457761. [PMID: 39846248 PMCID: PMC11760222 DOI: 10.1080/15384047.2025.2457761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge in oncology due to its dismal prognosis and limited therapeutic options. In this study, we investigated the role of miR-301a in facilitating crosstalk between the Hedgehog (Hh) and HIPPO/YAP signaling pathways during the progression of PDAC. Our findings revealed that miR-301a served as a central regulatory node, targeting Gli1 within the Hh pathway and STK4 within the HIPPO/YAP pathway. Immunohistochemical and molecular analyses confirmed dysregulation of pathway components in pancreatic cancer, underscoring the pivotal role of miR-301a. Functional assays demonstrated the impact of miR-301a on cell proliferation and apoptosis, particularly in synergy with TNF-α. Overall, our study elucidated the intricate interplay between the Hh and HIPPO/YAP pathways mediated by miR-301a, providing valuable insights into potential therapeutic strategies for intervening in PDAC.
Collapse
Affiliation(s)
- Bing Qi
- Institute of Oncology, Second Affiliated Hospital, Xi’an Medical University, Xi’an, China
| | - Yuqiong Wang
- Department of Gastroenterology, The Hospital of 92608 People’s Liberation Army of China (PLA) Troops, Shanghai, China
| | - Xian Zhu
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yanfang Gong
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jing Jin
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hongyu Wu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaohua Man
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Feng Liu
- Department of Gastroenterology, Tongchuan People’s Hospital, Tongchuan, China
| | - Wenzhu Yao
- Institute of Oncology, Second Affiliated Hospital, Xi’an Medical University, Xi’an, China
| | - Jun Gao
- Institute of Oncology, Second Affiliated Hospital, Xi’an Medical University, Xi’an, China
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
2
|
Chakraborty N, Dimitrov G, Kanan S, Lawrence A, Moyler C, Gautam A, Fatanmi OO, Wise SY, Carpenter AD, Hammamieh R, Singh VK. Cross-species conserved miRNA as biomarker of radiation injury over a wide dose range using nonhuman primate model. PLoS One 2024; 19:e0311379. [PMID: 39570918 PMCID: PMC11581275 DOI: 10.1371/journal.pone.0311379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 11/24/2024] Open
Abstract
Multiple accidents in nuclear power plants and the growing concerns about the misuse of radiation exposure in warfare have called for the rapid determination of absorbed radiation doses (RDs). The latest findings about circulating microRNA (miRNAs) using several animal models revealed considerable promises, although translating this knowledge to clinics remains a major challenge. To address this issue, we randomly divided 36 nonhuman primates (NHPs) into six groups and exposed these groups to six different radiation doses ranging from 6.0-8.5 Gy in increments of 0.5 Gy. Serum samples were collected pre-irradiation as well as three post-irradiation timepoints, namely 1, 2 and 6 days post-total body irradiation (TBI). Generated from a deep sequencing platform, the miRNA reads were multi-variate analyzed to find the differentially expressed putative biomarkers that were linked to RDs, time since irradiation (TSI) and sex. To increase these biomarkers' translational potential, we aligned the NHP-miRNAs' sequences and their functional responses to humans following an in-silico routine. Those miRNAs, which were sequentially and functionally conserved between NHPs and humans, were down selected for further analysis. A linear regression model identified miRNA markers that were consistently regulated with increasing RD but independent TSI. Likewise, a set of potential TSI-markers were identified that consistently shifted with increasing TSI, but independent of RD. Additional molecular analysis found a considerable gender bias in the low-ranges of doses when the risk to radiation-induced fatality was low. Bionetworks linked to cell quantity and cell invasion were significantly altered between the survivors and decedents. Using these biomarkers, an assay could be developed to retrospectively determine the RD and TSI with high translational potential. Ultimately, this knowledge can lead to precise and personalized medicine.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - George Dimitrov
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Vysnova, Inc., Landover, MD, United States of America
| | - Swapna Kanan
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Vysnova, Inc., Landover, MD, United States of America
| | - Alexander Lawrence
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Oak Ridge Institute for Science and Education (ORISE), MD, United States of America
| | - Candance Moyler
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Vysnova, Inc., Landover, MD, United States of America
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| |
Collapse
|
3
|
Yao H, Luo L, Li R, Zhao Y, Zhang L, Pešić M, Cai L, Li L. New insight into the role of SMAD4 mutation/deficiency in the prognosis and therapeutic resistance of pancreatic ductal adenocarcinomas. Biochim Biophys Acta Rev Cancer 2024; 1879:189220. [PMID: 39571764 DOI: 10.1016/j.bbcan.2024.189220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients have an unfavorable prognosis and disappointing treatment outcomes because of late diagnosis, high chemotherapy resistance, ineffective adjuvant chemotherapy, unavailable molecular targeted therapy, and profound immunosuppressive effects in the tumor microenvironment (TME). There are a variety of critical driver proteins, such as KRAS, TP53, PTEN and SMAD4, putatively involved in PDAC etiology. Current knowledge of their molecular mechanisms is still limited. SMAD4 gene alterations in ∼55 % of patients emphasize its key role in PDAC progression, metastasis, resistance and immunity. Despite extensive studies on the TGF-β/SMAD pathway, the impact of SMAD4 mutation/deficiency on PDAC prognosis and treatment, especially its mechanism in drug resistance, has not yet been elucidated. This review summarizes the latest advances in the effect of SMAD4 deficiency on the prognosis and therapeutic resistance of PDAC patients. It might be a predictive and prognostic biomarker or therapeutic target to achieve the desired clinical benefits. Moreover, we discuss potential strategies to implement targeted therapies in terms of SMAD4 genetic status.
Collapse
Affiliation(s)
- Hongjuan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Liaoxin Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Rui Li
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Yelin Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research, "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Lin Cai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China..
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China.
| |
Collapse
|
4
|
Tiwari PK, Shanmugam P, Karn V, Gupta S, Mishra R, Rustagi S, Chouhan M, Verma D, Jha NK, Kumar S. Extracellular Vesicular miRNA in Pancreatic Cancer: From Lab to Therapy. Cancers (Basel) 2024; 16:2179. [PMID: 38927885 PMCID: PMC11201547 DOI: 10.3390/cancers16122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic cancer is a prevalent lethal gastrointestinal cancer that generally does not show any symptoms until it reaches advanced stages, resulting in a high mortality rate. People at high risk, such as those with a family history or chronic pancreatitis, do not have a universally accepted screening protocol. Chemotherapy and radiotherapy demonstrate limited effectiveness in the management of pancreatic cancer, emphasizing the urgent need for innovative therapeutic strategies. Recent studies indicated that the complex interaction among pancreatic cancer cells within the dynamic microenvironment, comprising the extracellular matrix, cancer-associated cells, and diverse immune cells, intricately regulates the biological characteristics of the disease. Additionally, mounting evidence suggests that EVs play a crucial role as mediators in intercellular communication by the transportation of different biomolecules, such as miRNA, proteins, DNA, mRNA, and lipids, between heterogeneous cell subpopulations. This communication mediated by EVs significantly impacts multiple aspects of pancreatic cancer pathogenesis, including proliferation, angiogenesis, metastasis, and resistance to therapy. In this review, we delve into the pivotal role of EV-associated miRNAs in the progression, metastasis, and development of drug resistance in pancreatic cancer as well as their therapeutic potential as biomarkers and drug-delivery mechanisms for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Poojhaa Shanmugam
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Vamika Karn
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India
| | - Sarvesh Rustagi
- School of Applied and Life science, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
5
|
Saleh O, Shihadeh H, Yousef A, Erekat H, Abdallh F, Al-Leimon A, Elsalhy R, Altiti A, Dajani M, AlBarakat MM. The Effect of Intratumor Heterogeneity in Pancreatic Ductal Adenocarcinoma Progression and Treatment. Pancreas 2024; 53:e450-e465. [PMID: 38728212 DOI: 10.1097/mpa.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND OBJECTIVES Pancreatic cancer is one of the most lethal malignancies. Even though many substantial improvements in the survival rates for other major cancer forms were made, pancreatic cancer survival rates have remained relatively unchanged since the 1960s. Even more, no standard classification system for pancreatic cancer is based on cellular biomarkers. This review will discuss and provide updates about the role of stem cells in the progression of PC, the genetic changes associated with it, and the promising biomarkers for diagnosis. MATERIALS AND METHODS The search process used PubMed, Cochrane Library, and Scopus databases to identify the relevant and related articles. Articles had to be published in English to be considered. RESULTS The increasing number of studies in recent years has revealed that the diversity of cancer-associated fibroblasts is far greater than previously acknowledged, which highlights the need for further research to better understand the various cancer-associated fibroblast subpopulations. Despite the huge diversity in pancreatic cancer, some common features can be noted to be shared among patients. Mutations involving CDKN2, P53, and K-RAS can be seen in a big number of patients, for example. Similarly, some patterns of genes and biomarkers expression and the level of their expression can help in predicting cancer behavior such as metastasis and drug resistance. The current trend in cancer research, especially with the advancement in technology, is to sequence everything in hopes of finding disease-related mutations. CONCLUSION Optimizing pancreatic cancer treatment requires clear classification, understanding CAF roles, and exploring stroma reshaping approaches.
Collapse
Affiliation(s)
- Othman Saleh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | - Hana Erekat
- School of medicine, University of Jordan, Amman
| | - Fatima Abdallh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | | | - Majd Dajani
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
6
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Vasileiadi S, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. A Current Synopsis of the Emerging Role of Extracellular Vesicles and Micro-RNAs in Pancreatic Cancer: A Forward-Looking Plan for Diagnosis and Treatment. Int J Mol Sci 2024; 25:3406. [PMID: 38542378 PMCID: PMC10969997 DOI: 10.3390/ijms25063406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 12/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, while it persists as the fourth most prevalent cause of cancer-related death in the United States of America. Although there are several novel therapeutic strategies for the approach of this intensely aggressive tumor, it remains a clinical challenge, as it is hard to identify in early stages, due to its asymptomatic course. A diagnosis is usually established when the disease is already in its late stages, while its chemoresistance constitutes an obstacle to the optimal management of this malignancy. The discovery of novel diagnostic and therapeutic tools is considered a necessity for this tumor, due to its low survival rates and treatment failures. One of the most extensively investigated potential diagnostic and therapeutic modalities is extracellular vesicles (EVs). These vesicles constitute nanosized double-lipid membraned particles that are characterized by a high heterogeneity that emerges from their distinct biogenesis route, their multi-variable sizes, and the particular cargoes that are embedded into these particles. Their pivotal role in cell-to-cell communication via their cargo and their implication in the pathophysiology of several diseases, including pancreatic cancer, opens new horizons in the management of this malignancy. Meanwhile, the interplay between pancreatic carcinogenesis and short non-coding RNA molecules (micro-RNAs or miRs) is in the spotlight of current studies, as they can have either a role as tumor suppressors or promoters. The deregulation of both of the aforementioned molecules leads to several aberrations in the function of pancreatic cells, leading to carcinogenesis. In this review, we will explore the role of extracellular vesicles and miRNAs in pancreatic cancer, as well as their potent utilization as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 11527 Athens, Greece;
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Sofia Vasileiadi
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|
7
|
Pal A, Ojha A, Ju J. Functional and Potential Therapeutic Implication of MicroRNAs in Pancreatic Cancer. Int J Mol Sci 2023; 24:17523. [PMID: 38139352 PMCID: PMC10744132 DOI: 10.3390/ijms242417523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The alarmingly low five-year survival rate for pancreatic cancer presents a global health challenge, contributing to about 7% of all cancer-related deaths. Late-stage diagnosis and high heterogeneity are the biggest hurdles in treating pancreatic cancer. Thus, there is a pressing need to discover novel biomarkers that could help in early detection as well as improve therapeutic strategies. MicroRNAs (miRNAs), a class of short non-coding RNA, have emerged as promising candidates with regard to both diagnostics and therapeutics. Dysregulated miRNAs play pivotal roles in accelerating tumor growth and metastasis, orchestrating tumor microenvironment, and conferring chemoresistance in pancreatic cancer. The differential expression profiles of miRNAs in pancreatic cancer could be utilized to explore novel therapeutic strategies. In this review, we also covered studies on recent advancements in various miRNA-based therapeutics such as restoring miRNAs with a tumor-suppressive function, suppressing miRNA with an oncogenic function, and combination with chemotherapeutic drugs. Despite several challenges in terms of specificity and targeted delivery, miRNA-based therapies hold the potential to revolutionize the treatment of pancreatic cancer by simultaneously targeting multiple signaling pathways.
Collapse
Affiliation(s)
- Amartya Pal
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Anushka Ojha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- The Northport Veteran’s Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
8
|
Fyfe J, Dye D, Razak NBA, Metharom P, Falasca M. Immune evasion on the nanoscale: Small extracellular vesicles in pancreatic ductal adenocarcinoma immunity. Semin Cancer Biol 2023; 96:36-47. [PMID: 37748738 DOI: 10.1016/j.semcancer.2023.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a type of cancer alarmingly expanding in our modern societies that is still proving to be very challenging to counteract. This disease constitutes a quintessential example of the multiple interactions existing between the tumour and its surrounding microenvironment. In particular, PDAC is characterized by a very immunosuppressive environment that favours cancer growth and makes this cancer type very resistant to immunotherapy. The primary tumour releases many factors that influence both the microenvironment and the immune landscape. Extracellular vesicles (EVs), recently identified as indispensable entities ensuring cell-to-cell communication in both physiological and pathological processes, seem to play a pivotal function in ensuring the delivery of these factors to the tumour-surrounding tissues. In this review, we summarize the present understanding on the crosstalk among tumour cells and the cellular immune microenvironment emphasizing the pro-malignant role played by extracellular vesicles. We also discuss how a greater knowledge of the roles of EVs in tumour immune escape could be translated into clinical applications.
Collapse
Affiliation(s)
- Jordan Fyfe
- Metabolic Signalling Group, Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Danielle Dye
- Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Norbaini Binti Abdol Razak
- Platelet Research Laboratory, Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Pat Metharom
- Platelet Research Laboratory, Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia; University of Parma, Department of Medicine and Surgery, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
9
|
Khan IA, Saraya A. Circulating MicroRNAs as Noninvasive Diagnostic and Prognostic Biomarkers in Pancreatic Cancer: A Review. J Gastrointest Cancer 2023; 54:720-730. [PMID: 36322366 DOI: 10.1007/s12029-022-00877-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Pancreatic cancer (PC) is one of the most lethal human cancers. Currently, most PC cases are diagnosed at an already advanced stage. Early detection of PC is critical to improving survival rates. Therefore, there is an urgent need to identify biomarkers for the early detection of PC. Recently, circulating miRNAs in whole blood and other body fluids have been reported as promising biomarkers for the early detection of various cancers, including PC. Furthermore, due to minimal invasiveness and technical availability, circulating miRNAs hold promise for further wide usage. As a potential novel molecular marker, circulating miRNAs not only represent promising noninvasive diagnostic and prognostic tools but could also improve the evaluation of tumor classification, metastasis, and curative effect. The purpose of this review is to outline the available information regarding circulating miRNAs as biomarkers for the early detection of PC.
Collapse
Affiliation(s)
- Imteyaz Ahmad Khan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
10
|
Ungefroren H, Konukiewitz B, Braun R, Wellner UF, Lehnert H, Marquardt JU. TAp73 Inhibits EMT and Cell Migration in Pancreatic Cancer Cells through Promoting SMAD4 Expression and SMAD4-Dependent Inhibition of ERK Activation. Cancers (Basel) 2023; 15:3791. [PMID: 37568607 PMCID: PMC10417771 DOI: 10.3390/cancers15153791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease due to early metastatic spread, late diagnosis and the lack of efficient therapies. A major driver of cancer progression and hurdle to successful treatment is transforming growth factor (TGF)-β. Recent data from pancreatic cancer mouse models showed that transcriptionally active p73 (TAp73), a p53 family member, inhibits tumor progression through promoting tumor suppressive canonical TGF-β/Smad signaling, while preventing non-canonical TGF-β signaling through extracellular signal-regulated kinases (ERK)1/2. Here, we studied whether this mechanism also operates in human PDAC. Using the PDAC-derived tumor cell lines PANC-1, HPAFII and L3.6pl, we showed that TAp73 induces the expression of the epithelial marker and invasion suppressor E-cadherin and the common-mediator Smad, SMAD4, while at the same time suppressing expression of the EMT master regulator SNAIL and basal and TGF-β1-induced activation of ERK1 and ERK2. Using dominant-negative and RNA interference-based inhibition of SMAD4 function, we went on to show that inhibition of ERK activation by TAp73 is mediated through SMAD4. Intriguingly, both SMAD4 and the α isoform of TAp73-but not the β isoform-interfered with cell migration, as shown by xCELLigence technology. Our findings highlighted the role of TAp73-SMAD4 signaling in tumor suppression of human PDAC and identified direct inhibition of basal and TGF-β-stimulated pro-invasive ERK activation as an underlying mechanism.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany;
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany;
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany; (R.B.); (U.F.W.)
| | - Björn Konukiewitz
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany;
| | - Rüdiger Braun
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany; (R.B.); (U.F.W.)
| | - Ulrich Friedrich Wellner
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany; (R.B.); (U.F.W.)
| | | | - Jens-Uwe Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany;
| |
Collapse
|
11
|
Dabbagh Ohadi MA, Aleyasin MS, Samiee R, Bordbar S, Maroufi SF, Bayan N, Hanaei S, Smith TR. Micro RNAs as a Diagnostic Marker between Glioma and Primary CNS Lymphoma: A Systematic Review. Cancers (Basel) 2023; 15:3628. [PMID: 37509289 PMCID: PMC10377645 DOI: 10.3390/cancers15143628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Differentiating glioma from primary central nervous system lymphoma (PCNSL) can be challenging, and current diagnostic measures such as MRI and biopsy are of limited efficacy. Liquid biopsies, which detect circulating biomarkers such as microRNAs (miRs), may provide valuable insights into diagnostic biomarkers for improved discrimination. This review aimed to investigate the role of specific miRs in diagnosing and differentiating glioma from PCNSL. A systematic search was conducted of PubMed, Scopus, Web of Science, and Embase for articles on liquid biopsies as a diagnostic method for glioma and PCNSL. Sixteen dysregulated miRs were identified with significantly different levels in glioma and PCNSL, including miR-21, which was the most prominent miR with higher levels in PCNSL, followed by glioma, including glioblastoma (GBM), and control groups. The lowest levels of miR-16 and miR-205 were observed in glioma, followed by PCNSL and control groups, whereas miR-15b and miR-301 were higher in both tumor groups, with the highest levels observed in glioma patients. The levels of miR-711 were higher in glioma (including GBM) and downregulated in PCNSL compared to the control group. This review suggests that using these six circulating microRNAs as liquid biomarkers with unique changing patterns could aid in better discrimination between glioma, especially GBM, and PCNSL.
Collapse
Affiliation(s)
- Mohammad Amin Dabbagh Ohadi
- Department of Pediatric Neurological Surgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Mir Sajjad Aleyasin
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Reza Samiee
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Sanaz Bordbar
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Seyed Farzad Maroufi
- Department of Pediatric Neurological Surgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran
| | - Nikoo Bayan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Sara Hanaei
- Neurosurgery Department, Imam Khomeini Hospital Complex (IKHC), Tehran University of Medical Sciences, Tehran 1419733151, Iran
| | - Timothy R Smith
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
12
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Moghbeli M. Molecular mechanisms of microRNA-301a during tumor progression and metastasis. Pathol Res Pract 2023; 247:154538. [PMID: 37209575 DOI: 10.1016/j.prp.2023.154538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Cancer is known as one of the leading causes of human deaths globally. Late diagnosis is considered as one of the main reasons for the high mortality rate among cancer patients. Therefore, the introduction of early diagnostic tumor markers can improve the efficiency of therapeutic modalities. MicroRNAs (miRNAs) have a key role in regulation of cell proliferation and apoptosis. MiRNAs deregulation has been frequently reported during tumor progressions. Since, miRNAs have a high stability in body fluids; they can be used as the reliable non-invasive tumor markers. Here, we discussed the role of miR-301a during tumor progressions. MiR-301a mainly functions as an oncogene via the modulation of transcription factors, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. This review paves the way to suggest miR-301a as a non-invasive marker for the early tumor diagnosis. MiR-301a can also be suggested as an effective target in cancer therapy.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Han X, Li C, Ji Q, Zhang L, Xie X, Shang H, Ye H. SLC26A4-AS1 Aggravates AngII-induced Cardiac Hypertrophy by Enhancing SLC26A4 Expression. Arq Bras Cardiol 2023; 120:e20210933. [PMID: 37098982 PMCID: PMC10263427 DOI: 10.36660/abc.20210933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2022] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND It has been reported that solute carrier family 26 members 4 antisense RNA 1 (SLC26A4-AS1) is highly related to cardiac hypertrophy. OBJECTIVE This research aims to investigate the role and specific mechanism of SLC26A4-AS1 in cardiac hypertrophy, providing a novel marker for cardiac hypertrophy treatment. METHODS Angiotensin II (AngII) was infused into neonatal mouse ventricular cardiomyocytes (NMVCs) to induce cardiac hypertrophy. Gene expression was detected by quantitative real-time PCR (RT-qPCR). Protein levels were evaluated via western blot. Functional assays analyzed the role of SLC26A4-AS1. The mechanism of SLC26A4-AS1 was assessed by RNA-binding protein immunoprecipitation (RIP), RNA pull-down, and luciferase reporter assays. The P value <0.05 was identified as statistical significance. Student's t-test evaluated the two-group comparison. The difference between different groups was analyzed by one-way analysis of variance (ANOVA). RESULTS SLC26A4-AS1 is upregulated in AngII-treated NMVCs and promotes AngII-induced cardiac hypertrophy. SLC26A4-AS1 regulates its nearby gene solute carrier family 26 members 4 (SLC26A4) via functioning as a competing endogenous RNA (ceRNA) to modulate the microRNA (miR)-301a-3p and miR-301b-3p in NMVCs. SLC26A4-AS1 promotes AngII-induced cardiac hypertrophy via upregulating SLC26A4 or sponging miR-301a-3p/miR-301b-3p. CONCLUSION SLC26A4-AS1 aggravates AngII-induced cardiac hypertrophy via sponging miR-301a-3p or miR-301b-3p to enhance SLC26A4 expression.
Collapse
Affiliation(s)
- Xiaoliang Han
- Departamento de CardiologiaInstituto de Controle de Tuberculose de AnhuiHefeiAnhuiChinaDepartamento de Cardiologia, Anhui Provincial Chest Hospital, (Instituto de Controle de Tuberculose de Anhui), Hefei, Anhui – China
| | - Chao Li
- Departamento de CardiologiaHospital HefeiMedical University of AnhuiHefeiAnhuiChinaDepartamento de Cardiologia, the Second People’s Hospital of Hefei (Hospital Hefei afiliado à Medical University of Anhui), Hefei, Anhui – China
| | - Qinjiong Ji
- Departamento de CardiologiaInstituto de Controle de Tuberculose de AnhuiHefeiAnhuiChinaDepartamento de Cardiologia, Anhui Provincial Chest Hospital, (Instituto de Controle de Tuberculose de Anhui), Hefei, Anhui – China
| | - Ling Zhang
- Departamento de CardiologiaInstituto de Controle de Tuberculose de AnhuiHefeiAnhuiChinaDepartamento de Cardiologia, Anhui Provincial Chest Hospital, (Instituto de Controle de Tuberculose de Anhui), Hefei, Anhui – China
| | - Xiaofei Xie
- Departamento de CardiologiaInstituto de Controle de Tuberculose de AnhuiHefeiAnhuiChinaDepartamento de Cardiologia, Anhui Provincial Chest Hospital, (Instituto de Controle de Tuberculose de Anhui), Hefei, Anhui – China
| | - Huijuan Shang
- Departamento de CardiologiaInstituto de Controle de Tuberculose de AnhuiHefeiAnhuiChinaDepartamento de Cardiologia, Anhui Provincial Chest Hospital, (Instituto de Controle de Tuberculose de Anhui), Hefei, Anhui – China
| | - Hong Ye
- Departamento de CardiologiaInstituto de Controle de Tuberculose de AnhuiHefeiAnhuiChinaDepartamento de Cardiologia, Anhui Provincial Chest Hospital, (Instituto de Controle de Tuberculose de Anhui), Hefei, Anhui – China
| |
Collapse
|
14
|
Granda-Díaz R, Manterola L, Hermida-Prado F, Rodríguez R, Santos L, García-de-la-Fuente V, Fernández MT, Corte-Torres MD, Rodrigo JP, Álvarez-Teijeiro S, Lawrie CH, Garcia-Pedrero JM. Targeting oncogenic functions of miR-301a in head and neck squamous cell carcinoma by PI3K/PTEN and MEK/ERK pathways. Biomed Pharmacother 2023; 161:114512. [PMID: 36931033 DOI: 10.1016/j.biopha.2023.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Treatment of head and neck squamous cell carcinomas (HNSCC), the sixth most frequent cancer worldwide, remains challenging. miRNA dysregulation is closely linked to tumorigenesis and tumor progression, thus emerging as suitable targets for cancer treatment. Transcriptomic analysis of TCGA HNSCC dataset revealed that miR-301a expression levels significantly increased in primary tumors, as compared to patient-matched normal tissue. This prompted us to investigate its pathobiological role and potential as new therapeutic target using different preclinical HNSCC models. miR-301a overexpression in HNSCC-derived cell lines led to enhanced proliferation and invasion, whereas miR-301 inhibition reduced these effects. In vivo validation was performed using an orthotopic mouse model. Results concordantly showed that the mitotic counts, the percentage of infiltration depth and Ki67 proliferative index were significantly augmented in the subgroup of mice harboring miR-301a-overexpressing tumors. Further mechanistic characterization revealed PI3K/PTEN/AKT and MEK/ERK pathways as central signaling nodes responsible for mediating the oncogenic activity of miR-301a observed in HNSCC cells. Notably, pharmacological disruption of PI3K and ERK signals with BYL-719 and PD98059, respectively, was effective to completely revert/abolish miR-301a-promoted tumor cell growth and invasion. Altogether, these findings demonstrate that miR-301a dysregulation plays an oncogenic role in HNSCC, thus emerging as a candidate therapeutic target for this disease. Importantly, available PI3K and ERK inhibitors emerge as promising anti-tumor agents to effectively target miR-301a-mediated signal circuit hampering growth-promoting and pro-invasive functions.
Collapse
Affiliation(s)
- Rocío Granda-Díaz
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Lorea Manterola
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián, Spain
| | - Francisco Hermida-Prado
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - René Rodríguez
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Sarcomas and Experimental Therapies, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Laura Santos
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Vanessa García-de-la-Fuente
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - María Teresa Fernández
- Histopathology Unit, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - M Daniela Corte-Torres
- Biobank of Principado de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Juan P Rodrigo
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Charles H Lawrie
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, China.
| | - Juana M Garcia-Pedrero
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Fan L, He M, Mo W, Yao Q, He M, Jiang J. miR-204-5p Inhibits the Proliferation and Differentiation of Fetal Neural Stem Cells by Targeting Wingless-Related MMTV Integration Site 2 to Regulate the Ephrin-A2/EphA7 Pathway. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is mainly resulted from perinatal asphyxia, which can be repaired by NSCs. miR-204-5p is claimed to impact the activity NSCs. Our research will probe the miR-204-5p function in oxygen-glucose deprivation (OGD)-treated NSCs. miR-204-5p level
was enhanced and WNT2 level was reduced in HIE rats. Rat NSCs were stimulated with OGD condition under the managing of mimic or inhibitor of miR-204-5p. The declined cell viability, enhanced apoptosis, downregulated Tuj1 and GFAP levels, and shortened total neurite length were observed in
OGD-treated NSCs, which were further aggravated by the mimic and rescued by the inhibitor of miR-204-5p. Furthermore, the inactivated WNT2 and Ephrin-A2/EphA7 signaling pathway in OGD-stimulated NSCs was further repressed by the mimic and rescued by the inhibitor of miR-204-5p. In addition,
WNT2 was confirmed as the targeting of miR-204-5p. Lastly, the function of miR-204-5p mimic on the proliferation, apoptosis, differentiation, WNT2 and Ephrin-A2/EphA7 signaling pathway in OGD-stimulated NSCs was abolished by HLY78, an activator of Wnt signaling. Collectively, miR-204-5p repressed
the growth and differentiation of fetal NSCs by targeting WNT2 to regulate the Ephrin-A2/EphA7 pathway.
Collapse
|
16
|
Chen F, Zheng X, Liang W, Jiang C, Su D, Fu B. Long Noncoding RNA MIR600HG Binds to MicroRNA-125a-5p to Prevent Pancreatic Cancer Progression Via Mitochondrial Tumor Suppressor 1-Dependent Suppression of Extracellular Regulated Protein Kinases Signaling Pathway. Pancreas 2022; 51:1434-1443. [PMID: 37099789 DOI: 10.1097/mpa.0000000000002185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
OBJECTIVES Significance of long noncoding RNAs in pancreatic cancer (PC) progression has been documented. Here, we identified a novel long noncoding RNA MIR600HG in PC and its underlying mechanism during PC progression. METHODS Through bioinformatics analysis, we selected MIR600HG, microRNA-125a-5p (miR-125a-5p), and mitochondrial tumor suppressor 1 (MTUS1) as objects with their expression patterns assayed in the collected PC tissues and PC cells. Pancreatic cancer cells were manipulated with ectopic expression and deficiency of MIR600HG, miR-125a-5p, and/or MTUS1 for assaying cell biological processes in vitro and tumorigenesis in vivo. RESULTS MIR600HG and MTUS1 levels were downregulated and miR-125a-5p was upregulated in PC tissues and cells. MIR600HG could bind to miR-125a-5p, while miR-125a-5p negatively targeted MTUS1. MIR600HG resulted in suppression in malignant properties of PCs. All these changes could be reversed by miR-125a-5p elevation. In addition, miR-125a-5p targeted MTUS1 to activate the extracellular regulated protein kinases signaling pathway. In vivo experiment also verified the inhibitory role of MIR600HG in PC. CONCLUSIONS Taken together, MIR600HG acts as an inhibitor for PC progression by upregulating miR-125a-5p-mediated MTUS1 through extracellular regulated protein kinases pathway.
Collapse
Affiliation(s)
- Fang Chen
- From the Intensive Care Unit, Affiliated Hospital of Zunyi Medical University
| | - Xiang Zheng
- Department of Medical Genetics, Zunyi Medical University, Zunyi, China
| | - Wenmei Liang
- From the Intensive Care Unit, Affiliated Hospital of Zunyi Medical University
| | - Chunxia Jiang
- From the Intensive Care Unit, Affiliated Hospital of Zunyi Medical University
| | - De Su
- From the Intensive Care Unit, Affiliated Hospital of Zunyi Medical University
| | - Bao Fu
- From the Intensive Care Unit, Affiliated Hospital of Zunyi Medical University
| |
Collapse
|
17
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Papanikolopoulos K, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Karamouzis MV. The Emerging Role of MicroRNAs and Autophagy Mechanism in Pancreatic Cancer Progression: Future Therapeutic Approaches. Genes (Basel) 2022; 13:1868. [PMID: 36292753 PMCID: PMC9602304 DOI: 10.3390/genes13101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Pancreatic cancer constitutes the fourth most frequent cause of death due to malignancy in the US. Despite the new therapeutic modalities, the management of pancreatic ductal adenocarcinoma (PDAC) is considered a difficult task for clinicians due to the fact that is usually diagnosed in already advanced stages and it is relatively resistant to the current chemotherapeutic agents. The molecular background analysis of pancreatic malignant tumors, which includes various epigenetic and genetic alterations, opens new horizons for the development of novel diagnostic and therapeutic strategies. The interplay between miRNAs, autophagy pathway, and pancreatic carcinogenesis is in the spotlight of the current research. There is strong evidence that miRNAs take part in carcinogenesis either as tumor inhibitors that combat the oncogene expression or as promoters (oncomiRs) by acting as oncogenes by interfering with various cell functions such as proliferation, programmed cell death, and metabolic and signaling pathways. Deregulation of the expression levels of various miRNAs is closely associated with tumor growth, progression, and dissemination, as well as low sensitivity to chemotherapeutic agents. Similarly, autophagy despite constituting a pivotal homeostatic mechanism for cell survival has a binary role in PDAC, either as an inhibitor or promoter of carcinogenesis. The emerging role of miRNAs in autophagy gets a great deal of attention as it opens new opportunities for the development of novel therapeutic strategies for the management of this aggressive and chemoresistant malignancy. In this review, we will shed light on the interplay between miRNAs and the autophagy mechanism for pancreatic cancer development and progression.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Eleni-Myrto Trifylli
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| | - Nikolaos Papadopoulos
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | | | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Christos Damaskos
- ‘N.S. Christeas’ Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
- Renal Transplantation Unit, ‘Laiko’ General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propaedeutic Surgery, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
18
|
Xu T, Luo Y, Xie HQ, Xia Y, Li Y, Chen Y, Guo Z, Xu L, Zhao B. Systematic identification of molecular mechanisms for aryl hydrocarbon receptor mediated neuroblastoma cell migration. ENVIRONMENT INTERNATIONAL 2022; 168:107461. [PMID: 35981476 DOI: 10.1016/j.envint.2022.107461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Tumor cell migration is affected by the aryl hydrocarbon receptor (AhR). However, the systematic molecular mechanisms underlying AhR-mediated migration of human neuroblastoma cells are not fully understood. To address this issue, we performed an integrative analysis of mRNA and microRNA (miR) expression profiles in human neuroblastoma SK-N-SH cells treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent agonist of AhR. The cell migration was increased in a time- and concentration- dependent manner, and was blocked by AhR antagonist (CH223191). A total of 4,377 genes were differentially expressed after 24-hour-treatment with 10-10 M TCDD, of which the upregulated genes were significantly enriched in cell migration-related biological pathways. Thirty-four upregulated genes, of which 25 were targeted by 78 differentially expressed miRs, in the axon guidance pathway were experimentally confirmed, and the putative dioxin-responsive elements were present in the promoter regions of most genes (79 %) and miRs (82 %) in this pathway. Furthermore, two promigratory genes (CFL2 and NRP1) induced by TCDD was reversed by blockade of AhR. In conclusion, AhR-mediated mRNA-miR networks in the axon guidance pathway may represent a potential molecular mechanism of dioxin-induced directional migration of human neuroblastoma cells.
Collapse
Affiliation(s)
- Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yali Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhiling Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Liu C, Jiang Y, Liu G, Guo Z, Jin Q, Long D, Zhou W, Qian K, Zhao H, Liu K. PPARGC1A affects inflammatory responses in photodynamic therapy (PDT)-treated inflammatory bowel disease (IBD). Biochem Pharmacol 2022; 202:115119. [PMID: 35667414 DOI: 10.1016/j.bcp.2022.115119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chronic inflammation of the gastrointestinal tract is a feature of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). Targeting inflammatory signaling represents promising strategy for IBD treatment regimens. METHODS Dextran sulfate sodium (DSS)-induced colitis model was established in mice. Histopathological examinations were conducted by H&E staining and IHC staining. IL-1β, IL-10, and TNF-α were tested by ELISA kits. TargetScan was used to predict miRNAs that target PPARGC1A and luciferase activity assay was performed to validate the predicted binding. RESULTS DSS-induced acute colitis model was successfully established in mice; photodynamic therapy (PDT) treatment partially improved DSS-induced colonic damages and cell inflammation. Microarray assays and integrative bioinformatics analysis identified PPARG coactivator 1 alpha (PPARGC1A) as a significantly differentially-expressed gene in PDT-treated IBD compared with non-treated IBD. PPARGC1A expression was downregulated in IBD clinical samples, DSS-induced colitis mice colons, and DSS-stimulated colonic epithelial cells, whereas partially upregulated by PDT treatment in DSS-stimulated cells. Single DSS stimulation significantly promoted cellular inflammation; PDT partially attenuated, whereas sh-PPARGC1A transduction further enhanced DSS effects on cancer cell inflammation. In colitis mice, DSS decreased PPRA-α and PPRA-γ proteins in mice colons; the in vivo effects of DSS were partially attenuated by PDT treatment, whereas amplified by sh-PPARGC1A transduction. Upstream miR-301a-3p targeted and inhibited PPARGC1A expression. CONCLUSIONS Collectively, PPARGC1A, which is downregulated in DSS-induced acute colitis and DSS-stimulated colonic epithelial cells, could be upregulated by PDT treatment. PPARGC1A knockdown could attenuate PDT therapeutic effects on DSS-induced acute colitis and DSS-stimulated colonic epithelial cells.
Collapse
Affiliation(s)
- Chao Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuhong Jiang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ganglei Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhushu Guo
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qianqian Jin
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dongju Long
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Weihan Zhou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ke Qian
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hua Zhao
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kuijie Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
20
|
Chen X, Zhu S, Chen SY, Wang JN, Sun LJ, Tao SM, Li XF, Li HD, Sun YY, Xu CH, Suo XG, Ji ML, Huang C, Meng XM, Li J. miR-301a-3p promotes hepatic stellate cells activation and liver fibrogenesis via regulating PTEN/PDGFR-β. Int Immunopharmacol 2022; 110:109034. [PMID: 35834952 DOI: 10.1016/j.intimp.2022.109034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 12/20/2022]
Abstract
Hepatic fibrosis is an essential pathology of multiple chronicliverdiseases. The aim of this study was to investigate the role of miR-301a-3p in hepatic fibrosis. We found that miR-301a-3p was upregulated in hepatic fibrosis patients and in culture-activated human hepatic stellate cells (HSCs). Interestingly, miR-301a-3p expression was increased in hepatic fibrosis progression mice while decreased in hepatic fibrosis recovery mice, indicating that miR-301a-3p may participate in the hepatic fibrosis pathology. Functionally, the effects of miR-301a-3p both on hepatic fibrosis progression and regression were assessed in vivo. Inhibiting miR-301a-3p amelioratedmouse liver fibrogenesis and collagen deposition and suppressed HSC activation and fibrogenic factor expression. Whereas, in hepatic fibrosis regression, upregulating miR-301a-3p impaired mouse hepatic fibrosis recovery by inducing HSC activation and triggering inflammation. Consistently, gain-of-function and loss-of-function analysis of miR-301a-3p were performed to evaluate its effects on human HSCs LX-2 cell. We found that suppressing miR-301a-3p inhibited LX-2 cell activation and proliferation, and induced LX-2 cell apoptosis, accompaniedby decreased fibrotic mediators expression. Collectively, these findings suggest miR-301a-3p drives liver fibrogenesis and HSC activation in hepatic fibrosis. Mechanistically, we demonstrated miR-301a-3p binds directly to phosphatase and tensin homolog (PTEN) by luciferase reporter analysis, pull-down, and RIP assay. Indicating that miR-301a-3p plays a critical rolein promotingliverfibrogenesis viamodulating the PTEN/platelet derived growth factor β (PDGFR-β) pathway. In conclusion, our findings demonstrate that miR-301a-3p expression is closely correlated with hepatic fibrosis pathology, and that enhancing miR-301a-3p maintains the HSC profibrogenic phenotype, triggers inflammatoryresponses, promotes fibrogenic factor production, and further exacerbates liver fibrogenesis. These findings suggest that miR-301a-3p may serve as a promising diagnostic and prognosis biomarker for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Si-Yu Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Li-Jiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Shan-Min Tao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Feng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Ying-Yin Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Chuan-Hui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
21
|
Wang Y, Du J, Liu Y, Yang S, Wang Q. microRNA-301a-3p is a potential biomarker in venous ulcers vein and gets involved in endothelial cell dysfunction. Bioengineered 2022; 13:14138-14158. [PMID: 35734851 PMCID: PMC9342147 DOI: 10.1080/21655979.2022.2083821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022] Open
Abstract
Venous ulcer is a common contributor to chronic venous insufficiency (CVI) of lower limbs, which seriously affects the life quality of patients. In this study, we researched the expression characteristics of microRNA-301a-3p (miR-301a-3p) in patients with CVI and investigated the impact of miR-301a-3p on the dysfunction of human umbilical vein endothelial cells (HUVECs). The plasma level of miR-301a-3p in normal controls, patients with varicose great saphenous vein, and patients with the venous ulcer of lower limbs were measured. We adopted Interleukin-1β (IL-1β), H2O2, and oxygen and glucose deprivation (OGD) to induce endothelial cell injury in vitro. In this way, we evaluated the influence of miR-301a-3p on HUVEC viability, apoptosis, inflammatory response, and oxidative stress. Our data showed that miR-301a-3p was substantially overexpressed in patients with lower limb venous ulcers. The viability of HUVECs decreased, and miR-301a-3p was up-regulated after IL-1β, H2O2, and OGD treatment. miR-301a-3p inhibition greatly ameliorated the dysfunction and cell damage of HUVECs, promoted IGF1/PI3K/Akt/PPARγ, and down-regulated NF-κB/MMPs. The phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002) or the peroxisome proliferator-activated receptor-γ (PPARγ) inhibitor (GW9661) reversed the anti-inflammatory, antioxidant, and anti-apoptotic effects mediated by miR-301a-3p down-regulation. The nuclear factor-κB (NF-κB) inhibitor lessened cell injury mediated by miR-301a-3p overexpression. In terms of the mechanism, miR-301a-3p targeted the 3'UTR of Insulin-like growth factor-1 (IGF1) and repressed the profile of IGF1. Thus, miR-301a-3p mediates venous endothelial cell damage by targeting IGF1 and regulating the IGF1/PI3K/Akt/PPARγ/NF-κB/MMPs pathway.
Collapse
Affiliation(s)
- Ying Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Jingchen Du
- Department of Vascular Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Yu Liu
- Department of Vascular Surgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China
| | - Shuhui Yang
- Department of Vascular Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Qingshan Wang
- Department of Vascular Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
22
|
Li W, Cui Y, Ma W, Wang M, Cai Y, Jiang Y. LncRNA RBPMS-AS1 promotes NRGN transcription to enhance the radiosensitivity of glioblastoma through the microRNA-301a-3p/CAMTA1 axis. Transl Oncol 2021; 15:101282. [PMID: 34800915 PMCID: PMC8605343 DOI: 10.1016/j.tranon.2021.101282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
RBPMS-AS1 and CAMTA1 are lowly expressed in GBM patients. RBPMS-AS1 and CAMTA1 enhance the radiosensitivity of GBM. miR-301a-3p diminishes the radiosensitivity of GBM. RBPMS-AS1 enhances CAMTA1 expression in GBM cells through sponging miR-301a-3p. CAMTA1 promotes NRGN transcription.
Objective Glioblastoma (GBM) is the most frequent brain malignancy with high incidence, and long noncoding RNAs (lncRNAs) exerts functions in GBM. In this research, we focused on the capabilities of lncRNA RBPMS-AS1 in radiosensitivity of GBM. Methods RBPMS-AS1 and CAMTA1 expression levels were determined in GBM tissues and cells. StarBase v3.0 database was searched for predicting miRNAs that simultaneously bound to RBPMS-AS1 and CAMTA1. pcDNA3.1-RBPMS-AS1, pcDNA3.1-CAMTA1, miR-301a-3p mimic, or pcDNA3.1-RBPMS-AS1/pcDNA3.1-CAMTA1 and miR-301a-3p mimic were transfected into GBM cells to test radiosensitivity, cell proliferation and apoptosis. The interactions of miR-301a-3p with RBPMS-AS1 and CAMTA1, as well as CAMTA1 and NRGN, were confirmed. In vivo imaging technology was utilized to detect tumor growth in orthotopic xenograft tumors, and Ki67 expression was tested in intracranial tumors. Results RBPMS-AS1 and CAMTA1 levels were reduced in GBM tissues and cells. miR-301a-3p had a binding site with both RBPMS-AS1 and CAMTA1 and it was the most significantly-upregulated one. Upregulation of RBPMS-AS1 or CAMTA1 enhanced the radiosensitivity and cell apoptosis while suppressing proliferation of GBM cells. Conversely, miR-301a-3p overexpression diminished the radiosensitivity and cell apoptosis while inducing proliferation of GBM cells. Overexpression of RBPMS-AS1 or CAMTA1 reversed the effects of overexpressed miR-301a-3p in GBM cells. Mechanistically, RBPMS-AS1 enhanced CAMTA1 expression in GBM cells through sponging miR-301a-3p, and CAMTA1 promoted NRGN expression. In animal experiments, overexpressed RBPMS-AS1 inhibited tumor growth and the positive expression of Ki67 both before and after radiation therapy. Conclusion RBPMS-AS1 promotes NRGN transcription through the miR-301a-3p/CAMTA1 axis and enhances the radiosensitivity of GBM.
Collapse
Affiliation(s)
- Wenyang Li
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yan Cui
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Wenjia Ma
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Ming Wang
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yang Cai
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yugang Jiang
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
23
|
Fathi M, Ghafouri-Fard S, Abak A, Taheri M. Emerging roles of miRNAs in the development of pancreatic cancer. Biomed Pharmacother 2021; 141:111914. [PMID: 34328099 DOI: 10.1016/j.biopha.2021.111914] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 01/02/2023] Open
Abstract
Pancreatic cancer is a fatal cancer which is expected to exceed breast cancer as the third foremost source of cancer mortality by 2025. This cancer has been associated with several somatic genetic aberrations including mutations in the KRAS, CDKN2A/p16, TP53, and SMAD4. In addition, epigenetic alterations have been shown to affect development of this cancer. miRNAs are among the mostly appreciated epigenetic factors in this regard. Several oncomiRs such as miR-212, miR 506, miR-196b, miR-221-3p, miR-301a-3p, miR-23a and miR-29a have been found to promote proliferation of pancreatic cancer cells and block apoptotic pathways in these cells. On the other hand, miR-451a, miR-506, miR-142, miR-216b, miR-519d-3p, miR-1181, miR-340, miR-143-3p, miR-203a-3p, miR-455, miR-15a, miR-135a and miR-202 are among tumor suppressor miRNAs that modulate proliferation and cell cycle transition in these cells. In the current paper, we will discuss the role of oncomiRs and tumor suppressor miRNAs in the evolution of pancreatic cancer. Moreover, we will summarize the application of miRNAs as diagnostic and prognostic markers in pancreatic cancer. These studies have shown the ability of miRNAs to be served as non-invasive markers for pancreatic cancer.
Collapse
Affiliation(s)
- Mohadeseh Fathi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Gershanov S, Toledano H, Pernicone N, Fichman S, Michowiz S, Pinhasov A, Goldenberg-Cohen N, Listovsky T, Salmon-Divon M. Differences in RNA and microRNA Expression Between PTCH1- and SUFU-mutated Medulloblastoma. Cancer Genomics Proteomics 2021; 18:335-347. [PMID: 33893086 DOI: 10.21873/cgp.20264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIM Germline mutations in PTCH1 or SUFU in the sonic hedgehog (SHH) pathway cause Gorlin's syndrome with increased risk of developing SHH-subgroup medulloblastoma. Gorlin's syndrome precludes the use of radiotherapy (a standard component of treatment) due to the development of multiple basal cell carcinomas. Also, current SHH inhibitors are ineffective against SUFU-mutated medulloblastoma, as they inhibit upstream genes. In this study, we aimed to detect differences in the expression of genes and microRNAs between SUFU- and PTCH1-mutated SHH medulloblastomas which may hint at new treatment directions. PATIENTS AND METHODS We sequenced RNA and microRNA from tumors of two patients with germline Gorlin's syndrome - one having PTCH1 mutation and one with SUFU mutation - followed by bioinformatics analysis to detect changes in genes and miRNAs expression in these two tumors. Expression changes were validated using qRT-PCR. Ingenuity pathway analysis was performed in search for targetable pathways. RESULTS Compared to the PTCH1 tumor, the SUFU tumor demonstrated lower expression of miR-301a-3p and miR-181c-5p, matrix metallopeptidase 11 (MMP11) and OTX2, higher expression of miR-7-5p and corresponding lower expression of its targeted gene, connexin 30 (GJB6). We propose mechanisms to explain the phenotypic differences between the two types of tumors, and understand why PTCH1 and SUFU tumors tend to relapse locally (rather than metastatically as in other medulloblastoma subgroups). CONCLUSION Our results help towards finding new treatable molecular targets for these types of medulloblastomas.
Collapse
Affiliation(s)
- Sivan Gershanov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Helen Toledano
- Department of Pediatric Oncology, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nomi Pernicone
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Suzana Fichman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Pathology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Shalom Michowiz
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Pediatric Neurosurgery, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Nitza Goldenberg-Cohen
- Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel.,The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Medical Center, Petah-Tikva, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar Listovsky
- Department of Molecular Biology, Ariel University, Ariel, Israel; .,Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Ariel University, Ariel, Israel; .,Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
25
|
Wang Y, Gao L, Li Z, Ma X. MicroRNA-301a-3p promotes diabetic retinopathy via regulation of six-transmembrane epithelial antigen of prostate 4. Inflamm Res 2021; 70:445-457. [PMID: 33609142 DOI: 10.1007/s00011-020-01431-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE AND DESIGN Diabetic retinopathy (DR) is one of the most serious microvascular complications of diabetes mellitus (DM). MicroRNAs (miRNAs) have been discovered to play a crucial role in DR, but the mechanisms underlying the effects of miR-301a-3p on DR are poorly understood. This paper was designed to explore the possible role of miR-301a-3p in DR. METHODS The diabetic rat model was established by a single intraperitoneal injection of streptozotocin (STZ). The effects of miR-301a-3p on the biological functions of HRECs were determined through a series of experiments in vitro/vivo. RESULTS The results revealed that interference with miR-301a-3p could decrease the expressions of inflammatory factors and apoptosis in the retinal tissue of DR. Furthermore, it can alleviate the oxidative stress in DR serum, reduce VEGF expression, increase endothelial cell marker expression, and inhibit (High Glucose) HG-induced apoptosis of HRECs. Six-transmembrane epithelial antigen of prostate 4 (STEAP4) was the target of miR-301a-3p. All the effects of miR-301a-3p in DR model were reversed by STEAP4 inhibitor. CONCLUSION miR-301a-3p promotes diabetic retinopathy via regulation of STEAP4. The findings in this study may provide a vital reference for the drug research and development in DR treatment.
Collapse
Affiliation(s)
- Yingmin Wang
- Department of Nursing, Xingtai Medical College, Hebei, 054000, China
| | - Lijuan Gao
- Department of Clinical, Xingtai Medical College, Hebei, 054000, China
| | - Zhili Li
- Department of Physiology, Hebei University of Chinese Medicine, Xingyuan Road No. 3, Hebei, 050200, China.
| | - Xingyou Ma
- Department of Clinical Medicine, Second Affiliated Hospital of Xingtai Medical College, Hebei, 054000, China
| |
Collapse
|
26
|
Crosstalk between miRNAs and signaling pathways involved in pancreatic cancer and pancreatic ductal adenocarcinoma. Eur J Pharmacol 2021; 901:174006. [PMID: 33711308 DOI: 10.1016/j.ejphar.2021.174006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/19/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer-related deaths worldwide with 5-year survival rates below 8%. Most patients with PC and pancreatic ductal adenocarcinoma (PDAC) die after relapse and cancer progression as well as resistance to treatment. Pancreatic tumors contain a high desmoplastic stroma that forms a rigid mass and has a potential role in tumor growth and metastasis. PC initiates from intraepithelial neoplasia lesions leading to invasive cancer through various pathways. These lesions harbor particular changes in signaling pathways involved in the tumorigenesis process. These events affect both the epithelial cells, including the tumor and the surrounding stroma, and eventually lead to the formation of complex signaling networks. Genetic studies of PC have revealed common molecular features such as the presence of mutations in KRAS gene in more than 90% of patients, as well as the inactivation or deletion mutations of some tumor suppressor genes including TP53, CDKN2A, and SMAD4. In recent years, studies have also identified different roles of microRNAs in PC pathogenesis as well as their importance in PC diagnosis and treatment, and their involvement in various signaling pathways. In this study, we discussed the most common pathways involved in PC and PDAC as well as their role in tumorigenesis and progression. Furthermore, the miRNAs participating in the regulation of these signaling pathways in PC progression are summarized in this study. Therefore, understanding more about pathways involved in PC can help with the development of new and effective therapies in the future.
Collapse
|
27
|
Mohapatra S, Pioppini C, Ozpolat B, Calin GA. Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer 2021; 20:24. [PMID: 33522932 PMCID: PMC7849140 DOI: 10.1186/s12943-021-01313-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Noncoding RNA (ncRNA) transcripts that did not code proteins but regulate their functions were extensively studied for the last two decades and the plethora of discoveries have instigated scientists to investigate their dynamic roles in several diseases especially in cancer. However, there is much more to learn about the role of ncRNAs as drivers of malignant cell evolution in relation to macrophage polarization in the tumor microenvironment. At the initial stage of tumor development, macrophages have an important role in directing Go/No-go decisions to the promotion of tumor growth, immunosuppression, and angiogenesis. Tumor-associated macrophages behave differently as they are predominantly induced to be polarized into M2, a pro-tumorigenic type when recruited with the tumor tissue and thereby favoring the tumorigenesis. Polarization of macrophages into M1 or M2 subtypes plays a vital role in regulating tumor progression, metastasis, and clinical outcome, highlighting the importance of studying the factors driving this process. A substantial number of studies have demonstrated that ncRNAs are involved in the macrophage polarization based on their ability to drive M1 or M2 polarization and in this review we have described their functions and categorized them into oncogenes, tumor suppressors, Juggling tumor suppressors, and Juggling oncogenes.
Collapse
Affiliation(s)
- Swati Mohapatra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| | - Carlotta Pioppini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Life Science Plaza, Suite: LSP9.3012, 2130 W, Holcombe Blvd, Ste. 910, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Exosomes derived from miR-301a-3p-overexpressing adipose-derived mesenchymal stem cells reverse hypoxia-induced erectile dysfunction in rat models. Stem Cell Res Ther 2021; 12:87. [PMID: 33494812 PMCID: PMC7836493 DOI: 10.1186/s13287-021-02161-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Background Erectile dysfunction (ED) has often been observed in patients with obstructive sleep apnea (OSA). Research on adipose-derived mesenchymal stem cell (ADSC)-derived exosomes has shown that they have significant therapeutic effects in many diseases including ED. Methods In this study, ED was induced in Sprague Dawley (SD) rats using chronic intermittent hypoxia (CIH) exposure. CIH-mediated influences were then measured in the corpus cavernous smooth muscle cells (CCSMCs). Results Our data showed that miR-301a-3p-enriched exosome treatment significantly recovered erectile function in rats and CCSMCs by promoting autophagy and inhibiting apoptosis. The treatment also significantly recovered the level of alpha smooth muscle actin (α-SMA) in rats and CCSMCs. Bioinformatics predicted that phosphatase and tensin homolog (PTEN) and Toll-like receptor 4 (TLR4) might be targets of miR-301a-3p. Conclusions Our results indicate that PTEN-overexpression vectors or TLR4-overexpression vectors reverse the therapeutic effects achieved by miR-301a-3p in CCSMCs indicating that PTEN/hypoxia-inducible factor-1 alpha (HIF-1α) and TLR4 signaling pathways play key roles in the progression of ED. The findings in this study suggest that miR-301a-3p should be considered a new therapeutic target for treating ED associated with OSA. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02161-8.
Collapse
|
29
|
Sun J, Ma Q, Shu C, Xiong J, Li B, Wu J, Zhang S, Li J, Liu J, Wang J. MicroRNA‑301a/ZNRF3/wnt/β‑catenin signal regulatory crosstalk mediates glioma progression. Int J Oncol 2021; 58:45-56. [PMID: 33367931 PMCID: PMC7721082 DOI: 10.3892/ijo.2020.5145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/23/2020] [Indexed: 12/03/2022] Open
Abstract
MicroRNA (miR)‑mediated mRNA and multiple signaling pathway dysregulations have been extensively implicated in several cancer types, including gliomas. Although previous studies have reported that miR‑301a acts as an oncogene, the underlying mechanisms of miR‑301a in the initiation and progression of glioma remain unknown. The present study aimed to investigate the involvement of miR‑301a‑mediated signaling pathway dysregulation in glioma. The results identified that miR‑301a was significantly upregulated in gliomas and was associated with a poor prognosis based on The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. Moreover, zinc and ring finger 3 (ZNRF3) exerted a critical role in the miR‑301a‑mediated effects on the malignant phenotype, such as by affecting proliferation and apoptosis. Mechanistically, the TOP/FOP luciferase assay, western blotting and immunofluorescence results demonstrated that miR‑301a knockdown inhibited the wnt/β‑catenin signaling pathway, at least partially via ZNRF3, while ZNRF3 was a direct functional target of miR‑301a, as indicated by luciferase reporter assay and western blot analysis. Furthermore, ZNRF3 could in turn repress miR‑301a expression, which was dependent on the wnt pathway. Collectively, the present study identified a novel miR‑301a/ZNRF3/wnt/β‑catenin signaling feedback loop that serves critical roles in glioma tumorigenesis, and that may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Jikui Sun
- School of Medicine, Nankai University, Tianjin 300071
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350
| | - Quanfeng Ma
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350
| | - Chang Shu
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350
| | - Jinbiao Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, 300052
| | - Banban Li
- Department of Hematology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Jingchao Wu
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350
| | - Shusheng Zhang
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350
| | - Jialin Li
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350
| | - Jun Liu
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350
| | - Jinhuan Wang
- School of Medicine, Nankai University, Tianjin 300071
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350
| |
Collapse
|
30
|
Ye Z, Liu D, Liu D, Lv Y, Zhang Y, Zhang J, Bao J, Yuan X, Hou J, Li L. Immune Infiltration of CD8+ T Cells in Patients With Diabetic Pancreatic Cancer Reduces the Malignancy of Cancer Tissues: An In Silico Study. Front Endocrinol (Lausanne) 2021; 12:826667. [PMID: 35145483 PMCID: PMC8821103 DOI: 10.3389/fendo.2021.826667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Although the functional damage of the diabetic pancreas can affect the postoperative recovery of pancreatic cancer patients, there is no significant difference in the prognosis of pancreatic cancer patients with a history of diabetes and ordinary pancreatic cancer patients. There is still no practical theory to explain this phenomenon. MATERIALS AND METHOD The mRNA expression profile data of 141 cases and 51 cases with clinical data of diabetes status were obtained from the TCGA database and the GEO database, respectively. The CRA001160 data set was obtained in the TISCH database. The Seurat was used to process single-cell expression profile sequencing data. The Cibersortx was used to construct a feature matrix of single-cell sequencing data and to deconvolve Bulk-RNAseq data to obtain each pancreatic cancer patients' tumour invasion score. TIDE was used to assess the immune escape potential of the tumour. MiRNet was used to construct the miRNA-mRNA regulatory network. RESULT Compared with regular pancreatic cancer patients, the immune-related signal transduction pathways in diabetic pancreatic cancer patients are in an activated state. In patients with diabetic pancreatic cancer, the infiltration score of CD8+ T cells is high, and the infiltration score of corresponding malignant tumour cells is low. The Bayesian classifier can distinguish diabetic pancreatic cancer patients from non-diabetic pancreatic cancer patients based on 10 signature genes. The miRNA-mRNA regulatory network suggests that regulation by miRNA can influence mRNA expression and thus prognostic survival of pancreatic cancer patients. CONCLUSION The activation of inflammatory-related signalling pathways in diabetic pancreatic cancer patients increases the immune infiltration of CD8+ T cells in cancer patients and reduces the development of malignant tumour tissues. The expression of 10 signature genes allowed the diagnosis of diabetic and non-diabetic pancreatic cancer patients. The miRNA-mRNA regulatory network may be the main cause of the differences in the tumour inflammatory microenvironment between the two groups of patients. These findings help us further understand the immune microenvironment of patients with diabetic pancreatic cancer.
Collapse
Affiliation(s)
- Zheng Ye
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Delin Liu
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dechen Liu
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yinqi Lv
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yidi Zhang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jun Zhang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiantong Bao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuelu Yuan
- Department of Endocrinology, Yixing Second People’s Hospital, Wuxi, China
| | - Jiaying Hou
- Department of Endocrinology, Changji Branch, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Ling Li,
| |
Collapse
|
31
|
Xiao B, Zhang L, Liu H, Fang H, Wang C, Huang B, Liu X, Zhou X, Wang Y. Oncolytic Adenovirus CD55-Smad4 Suppresses Cell Proliferation, Metastasis, and Tumor Stemness in Colorectal Cancer by Regulating Wnt/β-Catenin Signaling Pathway. Biomedicines 2020; 8:593. [PMID: 33322272 PMCID: PMC7763845 DOI: 10.3390/biomedicines8120593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
During the past few decades, colorectal cancer (CRC) incidence and mortality have significantly increased, and CRC has become the leading cause of cancer-related death worldwide. Thus, exploring novel effective therapies for CRC is imperative. In this study, we investigated the effect of oncolytic adenovirus CD55-Smad4 on CRC cell growth. Cell viability assay, animal experiments, flow cytometric analysis, cell migration, and invasion assays, and Western blotting were used to detect the proliferation, apoptosis, migration, and invasion of CRC cells. The oncolytic adenovirus CD55-Smad4 was successfully constructed and effectively suppressed CRC cell proliferation in vivo and in vitro. Notably, CD55-Smad4 activated the caspase signaling pathway, inducing the apoptosis of CRC cells. Additionally, the generated oncolytic adenovirus significantly suppressed migration and invasion of CRC cells by overexpressing Smad4 and inhibiting Wnt/β-catenin/epithelial-mesenchymal transition (EMT) signaling pathway. Moreover, CRC cells treated with CD55-Smad4 formed less and smaller spheroid colonies in serum-free culture than cells in control groups, suggesting that CD55-Smad4 suppressed the stemness of CRC cells by inhibiting the Wnt/β-catenin pathway. Together, the results of this study provide valuable information for the development of a novel strategy for cancer-targeting gene-virotherapy and provide a deeper understanding of the critical significance of Smad4 in gene therapy of CRC.
Collapse
Affiliation(s)
- Boduan Xiao
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.X.); (L.Z.); (H.L.); (H.F.); (C.W.); (B.H.); (X.L.); (X.Z.)
| | - Leilei Zhang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.X.); (L.Z.); (H.L.); (H.F.); (C.W.); (B.H.); (X.L.); (X.Z.)
| | - Huihui Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.X.); (L.Z.); (H.L.); (H.F.); (C.W.); (B.H.); (X.L.); (X.Z.)
| | - Huiling Fang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.X.); (L.Z.); (H.L.); (H.F.); (C.W.); (B.H.); (X.L.); (X.Z.)
| | - Chunming Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.X.); (L.Z.); (H.L.); (H.F.); (C.W.); (B.H.); (X.L.); (X.Z.)
| | - Biao Huang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.X.); (L.Z.); (H.L.); (H.F.); (C.W.); (B.H.); (X.L.); (X.Z.)
| | - Xinyuan Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.X.); (L.Z.); (H.L.); (H.F.); (C.W.); (B.H.); (X.L.); (X.Z.)
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiumei Zhou
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.X.); (L.Z.); (H.L.); (H.F.); (C.W.); (B.H.); (X.L.); (X.Z.)
| | - Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.X.); (L.Z.); (H.L.); (H.F.); (C.W.); (B.H.); (X.L.); (X.Z.)
| |
Collapse
|
32
|
MiRNAs directly targeting the key intermediates of biological pathways in pancreatic cancer. Biochem Pharmacol 2020; 189:114357. [PMID: 33279497 DOI: 10.1016/j.bcp.2020.114357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic Cancer (PC) is a severe form of malignancy all over the world. Delayed diagnosis and chemoresistance are the major factors contributing to its poor prognosis and high mortality rate. The genetic and epigenetic regulations of biological pathways further complicate the progression and chemotherapy response to this cancer. MicroRNAs (MiRNAs) involvement has been observed in all types of cancers including PC. The understanding and categorization of miRNAs according to their specific targets are very important to develop early diagnostic and therapeutic interventions. The current review, emphasizing recent research findings, has categorized miRNAs that directly target the potential onco-factors that act as central converging signal-nodes in five major cancer-related pathways i.e., MAPK/ERK, JAK/STAT, Wnt/β-catenin, AKT/mTOR, and TGFβ in PC. The therapeutic perspectives of miRNAs in PC have also been discussed. This will help to understand the interplay of various miRNAs within foremost signaling pathways and develop a multifactorial approach to treat difficult-to-treat PC.
Collapse
|
33
|
Zhang N, Liu JF. MicroRNA (MiR)-301a-3p regulates the proliferation of esophageal squamous cells via targeting PTEN. Bioengineered 2020; 11:972-983. [PMID: 32970954 PMCID: PMC8291791 DOI: 10.1080/21655979.2020.1814658] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human esophageal carcinoma (EC) is a common cancer, which leads to many deaths worldwide every year. Our study aimed to explore the mechanism of miR-301a-3p regulating the proliferation of esophageal squamous cell carcinoma (ESCC) cells. We had collected ESCC tissues and adjacent normal esophageal tissues from 47 patients. The relative levels of miR-301a-3p/U6 in ESCC tissues and cells were analyzed by real-time PCR. And we measured the relative protein levels of PTEN, BCL-2, BAX, and p-AKT/AKT by Western blot. Eca-109 cell proliferation was detected by MTT assay and colony formation. Compared with adjacent normal esophageal tissues, the relative level of miR-301a-3p/U6 was elevated in ESCC tissues. MiR-301a-3p could facilitate ESCC cell proliferation. And miR-301a-3p directly bind to PTEN 3ʹ-UTR and negatively regulated PTEN protein expression. Moreover, silencing PTEN could reversed inhibited proliferation of Eca-109 cells induced by miR-301a-3p inhibitor, while overexpression PTEN could reversed enhanced proliferation of Eca-109 cells induced by miR-301a-3p mimic. Taken together, miR-301a-3p promoted ESCC cell proliferation by supressing PTEN.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University , Shijiazhuang, China
| | - Jun Feng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University , Shijiazhuang, China
| |
Collapse
|
34
|
Xia X, Wang S, Ni B, Xing S, Cao H, Zhang Z, Yu F, Zhao E, Zhao G. Hypoxic gastric cancer-derived exosomes promote progression and metastasis via MiR-301a-3p/PHD3/HIF-1α positive feedback loop. Oncogene 2020; 39:6231-6244. [PMID: 32826951 DOI: 10.1038/s41388-020-01425-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/19/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Abstract
Hypoxic tumor microenvironment(TME) is a universal feature in solid carcinoma and is associated with unfavorable prognosis. Tumor-derived exosomes are now significantly implicating in mediating cellular communication and interactions in TME. The aim of this study was to identify exosomal miR-301a-3p involved in gastric cancer(GC) progression and metastasis. Here, we found hypoxia promote GC exosomes release and miR-301a-3p expression in an HIF-1α-dependent manner. In hypoxic TME, enriched miR-301a-3p could be transmitted between GC cells via exosomes and then contributed to inhibit HIF-1α degradation through targeting PHD3, that were capable to hydroxylate HIF-1α subunits to ubiquitinate degradation. This synergistical positive feedback loop between HIF-1α and miR-301a-3p facilitated GC proliferation, invasion, migration, and epithelial-mesenchymal transition. In clinical samples, we further discovered circulating exosomal miR-301a-3p in serum was positively related with peritoneal metastasis. Collectively, these data indicate that GC cells could generate miR-301a-3p-rich exosomes in the hypoxic TME, which then help to HIF-1α accumulation and promote GC malignant behaviors and metastasis. Exosomal miR-301a-3p/HIF-1α signaling axis may serve as a promising predictor and potential therapeutic target of GC with metastasis.
Collapse
Affiliation(s)
- Xiang Xia
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuchang Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shunpeng Xing
- Department of Critical Care, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fengrong Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Enhao Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Xu X, Xia Y, Ma J, Li W, Niu N, Li X, Tao H, Xu J, He X. Upregulation of miRNA‑301a‑3p promotes tumor progression in gastric cancer by suppressing NKRF and activating NF‑κB signaling. Int J Oncol 2020; 57:522-532. [PMID: 32468020 PMCID: PMC7307585 DOI: 10.3892/ijo.2020.5072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNA‑301a (miRNA/miR‑301a) and nuclear factor (NF)‑κB signaling play important roles in tumor invasion, migration and progression. However, the role of miRNA‑301a‑3p in human gastric cancer (GC), and specifically in the activation of NF‑κB signaling, remains unclear. The aim of the present study was to investigate miRNA‑301a‑3p expression in GC progression and the molecular mechanisms as regards the regulation of NF‑κB signaling. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to detect miRNA‑301a‑3p expression in GC and paired normal tissues. The association between the expression of miRNA‑301a‑3p and patient pathological parameters and the prognosis of GC was statistically analyzed using an in situ hybridization (ISH) assay. An MTS assay and a Transwell assay were performed to evaluate the effects of miRNA‑301a‑3p on the proliferation, invasion and migration of GC cells. RT‑qPCR and western blot analysis were used to analyze the association between miRNA‑301a‑3p and nuclear factor‑κB repressing factor (NKRF) expression and the corresponding downstream NF‑κB signaling molecules. A luciferase assay was used to verify the target effect of miRNA‑301a‑3p and NKRF. It was found that miRNA‑301a‑3p expression was significantly higher in 30 cases of primary GC compared with matched normal tissues. Additionally, the ISH assay indicated that the high expression of miRNA‑301a‑3p in GC was associated with tumor invasion depth, lymph node metastasis, lymph node invasion and tumor metastasis stage. Patients whose tumors had a higher miRNA‑301a‑3p expression level exhibited a poorer prognosis. The in vitro assay indicated that miRNA‑301a‑3p affected the proliferative and invasive ability of GC cells by targeting the expression of NKRF, which then affected NF‑κB signaling. Therefore, it was hypothesize that miRNA‑301a‑3p promotes GC progression and affects the prognosis of patients with GC by targeting NKRF, which in turn, directly influences NF‑κB activation.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058
- Key Laboratory of Gastroenterology of Zhejiang Province
| | - Yingjie Xia
- Key Laboratory of Gastroenterology of Zhejiang Province
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014
| | - Weijun Li
- Department of General Surgery, People's Hospital of Xianju, Taizhou, Zhejiang 317300, P.R. China
| | - Nan Niu
- Key Laboratory of Gastroenterology of Zhejiang Province
| | - Xiao Li
- Key Laboratory of Gastroenterology of Zhejiang Province
| | - Houquan Tao
- Key Laboratory of Gastroenterology of Zhejiang Province
| | - Ji Xu
- Key Laboratory of Gastroenterology of Zhejiang Province
| | - Xujun He
- Key Laboratory of Gastroenterology of Zhejiang Province
| |
Collapse
|
36
|
Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS NANO 2020; 14:7760-7782. [PMID: 32571007 PMCID: PMC7325519 DOI: 10.1021/acsnano.0c04006] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 05/04/2023]
Abstract
The current global health threat by the novel coronavirus disease 2019 (COVID-19) requires an urgent deployment of advanced therapeutic options available. The role of nanotechnology is highly relevant to counter this "virus" nano enemy. Nano intervention is discussed in terms of designing effective nanocarriers to counter the conventional limitations of antiviral and biological therapeutics. This strategy directs the safe and effective delivery of available therapeutic options using engineered nanocarriers, blocking the initial interactions of viral spike glycoprotein with host cell surface receptors, and disruption of virion construction. Controlling and eliminating the spread and reoccurrence of this pandemic demands a safe and effective vaccine strategy. Nanocarriers have potential to design risk-free and effective immunization strategies for severe acute respiratory syndrome coronavirus 2 vaccine candidates such as protein constructs and nucleic acids. We discuss recent as well as ongoing nanotechnology-based therapeutic and prophylactic strategies to fight against this pandemic, outlining the key areas for nanoscientists to step in.
Collapse
Affiliation(s)
- Gaurav Chauhan
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
| | - Marc J. Madou
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
- Department of Mechanical and Aerospace
Engineering, University of California
Irvine, Engineering Gateway 4200, Irvine,
California 92697, United States
| | - Sourav Kalra
- Department of Pharmaceutical Technology
(Process Chemistry), National Institute of Pharmaceutical
Education and Research, Sector 67, S.A.S. Nagar,
Punjab 160062, India
| | - Vianni Chopra
- Institute of Nano Science
and Technology, Habitat Centre, Phase 10 Mohali,
160062 Punjab, India
| | - Deepa Ghosh
- Institute of Nano Science
and Technology, Habitat Centre, Phase 10 Mohali,
160062 Punjab, India
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
| |
Collapse
|
37
|
Hu H, Zhang Q, Chen W, Wu T, Liu S, Li X, Luo B, Zhang T, Yan G, Lu H, Lu Z. MicroRNA-301a promotes pancreatic cancer invasion and metastasis through the JAK/STAT3 signaling pathway by targeting SOCS5. Carcinogenesis 2020; 41:502-514. [PMID: 31233116 DOI: 10.1093/carcin/bgz121] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer is one of the most lethal digestive malignant tumors. We had previously found that microRNA-301a (miR-301a) is a oncogenic microRNA whose recognized conduce to nuclear factor-kappa B (NF-κB) activation in pancreatic cancer, yet the underlying mechanisms of miR-301a in promoting pancreatic cancer invasion and migration is obscure. In this work we found that high expression of miR-301a in human pancreatic cancer patients is related to poor survival. Overexpression of miR-301a enhances pancreatic cancer cell invasion, angiogenesis and migration, whereas inhibition of miR-301a suppresses pancreatic cancer cell invasion and reduces orthotopic pancreatic tumor growth and metastasis. Furthermore, suppressor of cytokine signaling 5 (SOCS5) is identified as a target gene of miR-301a. We found that miR-301a suppressed the expression of SOCS5 leads to janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) activation and is related to poor overall survival of pancreatic cancer patients. Taken together, our data show for the first time that the feedback loop between miR-301a and JAK/STAT3 pathway may play a significant role in pancreatic cancer invasion and metastasis. Targeting the loop may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Hui Hu
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Weiqun Chen
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Research Institute of Wuhan, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangwei Wu
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiyi Liu
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Research Institute of Wuhan, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyi Li
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Luo
- Department of Pathology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianzhu Zhang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ge Yan
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hongda Lu
- Cancer Research Institute of Wuhan, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Oncology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongxin Lu
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Cancer Research Institute of Wuhan, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Wang J, Li X, Zhong M, Wang Y, Zou L, Wang M, Gong X, Wang X, Zhou C, Ma X, Liu M. miR-301a Suppression within Fibroblasts Limits the Progression of Fibrosis through the TSC1/mTOR Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:217-228. [PMID: 32585629 PMCID: PMC7321782 DOI: 10.1016/j.omtn.2020.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 01/06/2023]
Abstract
Pulmonary fibrosis has been characterized by abnormal proliferation of fibroblasts and massive deposition of the extracellular matrix, which results from a complex interplay of chronic injury and inflammatory responses. MicroRNA-301a (miR-301a) is activated by multiple inflammatory stimulators, contributing to multiple tumorigenesis and autoimmune diseases. This study showed that miR-301a was overexpressed in a bleomycin-induced murine model of pulmonary fibrosis and patients with idiopathic pulmonary fibrosis (IPF). In addition, miR-301a was activated by transforming growth factor β (TGF-β) and interleukin 6 (IL-6) in normal and IPF fibroblasts, which was markedly reversed by the signal transducer and activator of transcription 3 (STAT3) inhibitor. The genetic ablation of miR-301a in mice reduced bleomycin-induced lung fibrosis, and the downregulation of miR-301a restrained proliferation and activation of fibroblasts. Furthermore, this study demonstrated that TSC1 was a functional target of miR-301a in fibroblasts, and the negative regulation of TSC1 by miR-301a promoted the severity of pulmonary fibrosis through the mammalian target of rapamycin (mTOR) signaling pathway. The blocking of miR-301a by the intravenous injection of antagomiR-301a inhibited the proliferation of fibroblasts and the structural destruction of lung tissues in the bleomycin-induced lung fibrosis mouse model. The findings revealed the crucial role of the miR-301a/TSC1/mTOR axis in the pathogenesis of pulmonary fibrosis, suggesting that miR-301a might serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Jiexuan Wang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xun Li
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Mingtian Zhong
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Yansheng Wang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Liming Zou
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Miaomiao Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Xiaoli Gong
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Xinjie Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Chengzhi Zhou
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Xiaodong Ma
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China.
| | - Ming Liu
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
39
|
Zhang KD, Hu B, Cen G, Yang YH, Chen WW, Guo ZY, Wang XF, Zhao Q, Qiu ZJ. MiR-301a transcriptionally activated by HIF-2α promotes hypoxia-induced epithelial-mesenchymal transition by targeting TP63 in pancreatic cancer. World J Gastroenterol 2020; 26:2349-2373. [PMID: 32476798 PMCID: PMC7243651 DOI: 10.3748/wjg.v26.i19.2349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/20/2010] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the deadliest cancers worldwide. PC metastasis involves a complex set of events, including epithelial-mesenchymal transition (EMT), that increase tumor cell invasiveness. Recent evidence has shown that hypoxia is a major EMT regulator in pancreatic cancer cells and facilitates metastasis; however, the mechanisms remain elusive. AIM To investigate the role of miR-301a in hypoxia-induced EMT in PC cells. METHODS Real-time PCR and Western blot analysis were used to detect the expression of miR-301a and EMT markers in PDAC cells cultured in hypoxic and normoxic conditions. Western blot analysis was used to detect the expression of EMT markers in PDAC cells with miR-301a overexpression. Wound healing assay and Transwell assay were used to detect the migration capabilities of PDAC cells with miR-301a overexpression and knockout. Luciferase assay was used to detect the miR-301a promoter and the 3' untranslated region activity of TP63. Orthotopic PC mouse models were used to study the role of miR-301a in metastasis of PDAC cells in vivo. In situ hybridization assay was used to detect the expression of miR-301a in PDAC patient samples (adjacent paratumor and paired tumor tissues). . RESULTS Hypoxic environment could directly promote the EMT of PC cells. The expression level of miR-301a was increased in a HIF2α dependent manner in hypoxia-cultured CFPAC-1 and BxPC-3 cells. Overexpression of miR-301a enhanced the hypoxia-induced EMT of PC cells, while knocking out miR-301a result in the suppression of hypoxia-induced EMT. TP63 was a direct target of miR-301a and involved in the metastatic process of PC cells. Furthermore, miR-301a upregulation facilitated PDAC distant metastasis and lymph node metastasis in vivo. Additionally, miR-301a overexpression was indicative of aggressive clinicopathological behaviors and poor prognosis. CONCLUSION The newly identified HIF-2α-miR301a-TP63 signaling pathway may play a crucial role in hypoxia-induced EMT in PDAC cells.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Hypoxia/genetics
- Cell Line, Tumor
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockout Techniques
- Humans
- Kaplan-Meier Estimate
- Male
- Mice
- MicroRNAs/analysis
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Pancreas/pathology
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Prognosis
- Promoter Regions, Genetic/genetics
- Signal Transduction/genetics
- Transcription Factors/genetics
- Tumor Suppressor Proteins/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kun-Dong Zhang
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Bin Hu
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Gang Cen
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Yu-Han Yang
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Wei-Wei Chen
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Zeng-Ya Guo
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Xiao-Feng Wang
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Qian Zhao
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology and Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zheng-Jun Qiu
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| |
Collapse
|
40
|
Zhao F, Wei C, Cui MY, Xia QQ, Wang SB, Zhang Y. Prognostic value of microRNAs in pancreatic cancer: a meta-analysis. Aging (Albany NY) 2020; 12:9380-9404. [PMID: 32420903 PMCID: PMC7288910 DOI: 10.18632/aging.103214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The prognostic impact of microRNA (miRNA) expression levels in pancreatic cancer (PC) has been estimated for years, but the outcomes are controversial and heterogeneous. Therefore, we comprehensively reviewed the evidence collected on miRNA expression in PC to determine this effect. RESULTS PC patients with high miR-21 (HR=2.61, 95%CI=1.68-4.04), miR-451a (HR=2.23, 95%CI=1.23-4.04) or miR-1290 (HR=1.43, 95%CI=1.04-1.95) levels in blood had significantly poorer OS (P<0.05). Furthermore, PC patients with high miR-10b (HR=1.73, 95%CI=1.09-2.76), miR-17-5p (HR=1.91, 95%CI=1.30-2.80), miR-21 (HR=1.90, 95%CI=1.61-2.25), miR-23a (HR=2.18, 95%CI=1.52-3.13), miR-155 (HR=2.22, 95%CI=1.27-3.88), miR-203 (HR=1.65, 95%CI=1.14-2.40), miR-221 (HR=1.72, 95%CI=1.08-2.74), miR-222 levels (HR=1.72, 95%CI=1.02-2.91) or low miR-29c (HR=1.39, 95%CI=1.08-1.79), miR-126 (HR=1.55, 95%CI=1.23-1.95), miR-218 (HR=2.62, 95%CI=1.41-4.88) levels in tissues had significantly shorter OS (P<0.05). CONCLUSIONS In summary, blood miR-21, miR-451a, miR-1290 and tissue miR-10b, miR-17-5p, miR-21, miR-23a, miR-29c, miR-126, miR-155, miR-203, miR-218, miR-221, miR-222 had significant prognostic value. METHODS We searched PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews to recognize eligible studies, and 57 studies comprising 5445 PC patients and 15 miRNAs were included to evaluate the associations between miRNA expression levels and overall survival (OS) up to June 1, 2019. Summary hazard ratios (HR) with 95% confidence intervals (CI) were calculated to assess the effect.
Collapse
Affiliation(s)
- Fei Zhao
- , Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chao Wei
- College of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Meng-Ying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang-Qiang Xia
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Shuai-Bin Wang
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Zhang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
41
|
Dardare J, Witz A, Merlin JL, Gilson P, Harlé A. SMAD4 and the TGFβ Pathway in Patients with Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E3534. [PMID: 32429474 PMCID: PMC7278913 DOI: 10.3390/ijms21103534] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death worldwide. PDAC is an aggressive disease with an 11-month median overall survival and a five-year survival of less than 5%. Incidence of PDAC is constantly increasing and is predicted to become the second leading cause of cancer in Western countries within a decade. Despite research and therapeutic development, current knowledge about PDAC molecular mechanisms still needs improvements and it seems crucial to identify novel therapeutic targets. Genomic analyses of PDAC revealed that transforming growth factor β (TGFβ) signaling pathways are modified and the SMAD4 gene is altered in 47% and 60% of cases, respectively, highlighting their major roles in PDAC development. TGFβ can play a dual role in malignancy depending on the context, sometimes as an inhibitor and sometimes as an inducer of tumor progression. TGFβ signaling was identified as a potent inducer of epithelial-to-mesenchymal transition (EMT), a process that confers migratory and invasive properties to epithelial cells during cancer. Therefore, aberrant TGFβ signaling and EMT are linked to promoting PDAC aggressiveness. TGFβ and SMAD pathways were extensively studied but the mechanisms leading to cancer promotion and development still remain unclear. This review aims to describe the complex role of SMAD4 in the TGFβ pathway in patients with PDAC.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre Harlé
- Université de Lorraine, CNRS UMR7039 CRAN, Service de Biopathologie, Institut de Cancérologie de Lorraine, 54519 Vandoeuvre-lès-Nancy, France; (J.D.); (A.W.); (J.-L.M.); (P.G.)
| |
Collapse
|
42
|
Integration of Bioinformatics Resources Reveals the Therapeutic Benefits of Gemcitabine and Cell Cycle Intervention in SMAD4-Deleted Pancreatic Ductal Adenocarcinoma. Genes (Basel) 2019; 10:genes10100766. [PMID: 31569425 PMCID: PMC6827004 DOI: 10.3390/genes10100766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer. The five-year survival rate of PDAC is very low (less than 8%), which is associated with the late diagnosis, high metastatic potential, and resistance to therapeutic agents. The identification of better prognostic or therapeutic biomarker may have clinical benefits for PDAC treatment. SMAD4, a central mediator of transforming growth factor beta (TGFβ) signaling pathway, is considered a tumor suppressor gene. SMAD4 inactivation is frequently found in PDAC. However, its role in prognosis and therapeutics of PDAC is still unclear. In this study, we applied bioinformatics approaches, and integrated publicly available resources, to investigate the role of SMAD4 gene deletion in PDAC. We found that SMAD4 deletion was associated with poorer disease-free, but not overall, survival in PDAC patients. Cancer hallmark enrichment and pathway analysis suggested that the upregulation of cell cycle-related genes in SMAD4-deleted PDAC. Chemotherapy response profiling of PDAC cell lines and patient-derived organoids revealed that SMAD4-deleted PDAC was sensitive to gemcitabine, the first-line treatment for PDAC, and specific cell cycle-targeting drugs. Taken together, our study provides an insight into the prognostic and therapeutic roles of SMAD4 gene deletion in PDAC, and SMAD4 gene copy numbers may be used as a therapeutic biomarker for PDAC treatment.
Collapse
|
43
|
Abstract
Gap junction (GJ) is concerned with cell growth, differentiation, immune response, as well as many physiological and pathological processes. Cx43, as an important GJ protein, is associated with a variety of diseases. This study investigated the effect of miR-301a-3p in bacterial meningitis by targeting the Cx43 gene. The negative correlation between Cx43 and miR-301a-3p was because of the abnormal expression of related genes. MiR-301a-3p agomir was transfected into astrocytes for higher expression; CCK8 assay and flow cytometry showed that the high expression of miR-301a-3p would inhibit apoptosis and induces proliferation of astrocytes, whereas miR-301a-3p antagomir would inhibit proliferation and induce apoptosis. Bioinformatics analysis showed that Cx43 was the target gene of miR-301a-3p, and dual-luciferase assay and experiments repeated showed that miR-301a-3p regulated the expression of Cx43 on the 3'-untranslated region seed region. Therefore, miR-301a-3p played a biological role in the development of bacterial meningitis by regulating the expression of the target gene Cx43.
Collapse
|
44
|
Hu J, Ruan J, Liu X, Xiao C, Xiong J. MicroRNA-301a-3p suppressed the progression of hepatocellular carcinoma via targeting VGLL4. Pathol Res Pract 2018; 214:2039-2045. [PMID: 30322806 DOI: 10.1016/j.prp.2018.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/23/2018] [Accepted: 09/11/2018] [Indexed: 11/28/2022]
Abstract
Dysregulation of microRNAs (miRNAs) is involved in a variety of biological process including tumorigenesis. miR-301a-3p has been reported to be an onco-miRNA in various types of cancer, like breast cancer, malignant melanoma, and pancreatic cancer. However, the role of miR-301a-3p in hepatocellular carcinoma (HCC) remains largely incomplete. In the present study, we found that miR-301a-3p was upregulated in HCC tissues and cell lines, and higher miR-301a-3p expression predicted poor prognosis in HCC patients. We also demonstrated that miR-301a-3p overexpression enhanced the ability of proliferation, invasion, and chemoresistance in HCC cell lines, and conversely, silencing miR-301a-3p expression induced the opposite effects. VGLL4, as the direct target of miR-301a-3p, was predicted by bioinformatic websites and confirmed by western blot, RT-PCR, and luciferase reporter assay. Enforced VGLL4 expression rescued the effects of miR-301a-3p mimics on cell proliferation, invasion and chemoresistance. Moreover, we found miR-301a-3p modulated the transcription activity of TEADs. Collectively, our findings suggested that the miR-301a-3p-VGLL4 signaling axis might be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jinhua Hu
- Department of Oncology, The People's Hospital of Xinyu City, Xinyu, Jiangxi Province, 338000, China; Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jiugen Ruan
- Department of Radiology, The People's Hospital of Xinyu City, Xinyu, Jiangxi Province, 338000, China
| | - Xiaohong Liu
- Department of Oncology, The People's Hospital of Xinyu City, Xinyu, Jiangxi Province, 338000, China
| | - Chijin Xiao
- Department of Oncology, The People's Hospital of Xinyu City, Xinyu, Jiangxi Province, 338000, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
45
|
Zhang L, Zhang Y, Zhu H, Sun X, Wang X, Wu P, Xu X. Overexpression of miR‐301a‐3p promotes colorectal cancer cell proliferation and metastasis by targeting deleted in liver cancer‐1 and runt‐related transcription factor 3. J Cell Biochem 2018; 120:6078-6089. [PMID: 30362160 DOI: 10.1002/jcb.27894] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Liuliu Zhang
- Department of Medical Oncology Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Yi Zhang
- Pathology Department Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Huayun Zhu
- Department of Medical Oncology Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Xiaofeng Sun
- Department of Medical Oncology Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Xiaohua Wang
- Department of Medical Oncology Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Pingping Wu
- Department of Medical Oncology Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Xinyu Xu
- Pathology Department Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
46
|
Zhong M, Huang Z, Wang L, Lin Z, Cao Z, Li X, Zhang F, Wang H, Li Y, Ma X. Malignant Transformation of Human Bronchial Epithelial Cells Induced by Arsenic through STAT3/miR-301a/SMAD4 Loop. Sci Rep 2018; 8:13291. [PMID: 30185897 PMCID: PMC6125593 DOI: 10.1038/s41598-018-31516-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/20/2018] [Indexed: 01/12/2023] Open
Abstract
Arsenic is a well-known of human carcinogen and miR-301a is an oncogenic microRNA, which links to oncogenesis, however, little is understood about its contribution to arsenic-induced cellular transformation and tumorigenesis. Here, we investigated the role of miR-301a during arsenic-induced cellular transformation and tumor formation. miR-301a was found to be upregulated during arsenic-induced BEAS-2B transformation and the overexpression of miR-301a was dependent on IL-6/STAT3 signaling. Inhibition of miR-301a leads to reduction of cell proliferation, colony formation and cell migration. By using dual luciferase assay, SMAD4 was confirmed to be a direct target of miR-301a in BEAS-2B cells and upregulation of SMAD4 is involved the restraining cell growth and migration. In addition, reducing of miR-301a expression enhances doxorubicin-induced cellular apoptosis of transformed BEAS-2B through up-regulating SMAD4. Furthermore, we demonstrated that downregulation of miR-301a in BEAS-2B attenuates tumor growth in the xenograft model by targeting SMAD4. Of note, the level of miR-301a expression correlated inversely with SMAD4 expression in clinical specimens of human lung cancer. Our findings ascertain that miR-301a is an oncogenic miRNA, which targets SMAD4 to establish an essential mechanism for arsenic-induced carcinogenesis, IL-6/STAT3/miR-301a/SMAD4 signaling pathways.
Collapse
Affiliation(s)
- Mingtian Zhong
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhujuan Huang
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lei Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhanwen Lin
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Zhi Cao
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xun Li
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Fengxue Zhang
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hongqi Wang
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Xiaodong Ma
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
47
|
Zhang X, Liu L, Deng X, Li D, Cai H, Ma Y, Jia C, Wu B, Fan Y, Lv Z. MicroRNA 483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene 2018; 38:699-715. [PMID: 30171257 PMCID: PMC6756112 DOI: 10.1038/s41388-018-0447-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023]
Abstract
Anaplastic thyroid cancer (ATC) is associated with poor prognosis and is often untreatable. MicroRNA 483-3p (miR-483) and partitioning-defective 3 (Pard3), a member of the Pard family, have functions and regulatory mechanisms in ATC. The abnormal regulation of miR-483 may play an important role in tumorigenesis, and Par3 is known to regulate cell polarity, cell migration, and cell division. Tumor proliferation promoted by the regulation of miRNA expression can be regulated in thyroid cancer by upregulating transforming growth factor-β1 (TGF-β1), which is thought to interact with Pard3. When compared with adjacent non-tumor tissues, we found that miR-483 was upregulated and Pard3 was downregulated in 80 thyroid tumor samples. Disease-free survival was decreased when expression of miR-483 was upregulated and Pard3 expression was downregulated. Cell growth, migration, and invasion were induced by overexpression of miR-483. However, knockdown of miR-483 resulted in a loss of cell invasion and viability, both in vitro and in vivo. The expression of Pard3 was increased by the inhibition of miR-483, but TGF-β1-induced cell migration and invasion were decreased by miR-483 inhibition. A dual-luciferase reporter assay determined that Pard3 expression was downregulated when targeted with miR-483. The epithelial–mesenchymal transition (EMT), as well as Tiam1-Rac signaling, was induced by TGF-β1, which was decreased by the overexpression of Pard3. Pard3 decreased the inhibition of EMT and Tiam-Rac1 signaling, which resulted from transfection of ATC cells with miR-483. Overall, the results showed that downregulation of Pard3 resulted in increased cell invasion and EMT in ATC, which was promoted by treatment with miR-483. These findings suggest novel therapeutic targets and treatment strategies for this disease.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Lin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Xianzhao Deng
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Yushui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Bo Wu
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Youben Fan
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China. .,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China.
| |
Collapse
|
48
|
Luo G, Xia X, Wang X, Zhang K, Cao J, Jiang T, Zhao Q, Qiu Z. miR-301a plays a pivotal role in hypoxia-induced gemcitabine resistance in pancreatic cancer. Exp Cell Res 2018; 369:120-128. [PMID: 29772221 DOI: 10.1016/j.yexcr.2018.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 02/06/2023]
Abstract
Hypoxia is a hallmark of pancreatic cancer (PC) and is associated with gemcitabine resistance. However, the mechanisms underlying hypoxia-induced gemcitabine resistance in PC remain greatly unknown. Our previous work showed that miR-301a, a hypoxia-sensitive miRNA, is involved in PC metastasis under hypoxia via regulation of its target gene P63. Here, we showed that miR-301a was upregulated in a NF-κB independent manner and promoted gemcitabine resistance under hypoxic conditions in vitro. In addition, TAp63, a member of the P63 family, reversed hypoxia-induced gemcitabine resistance by promoting degradation of HIF-1α. Furthermore, we proved that TAp63 was a functional downstream target of miR-301a and mediated the biological properties of miR-301a in PC. Taken together, these findings indicate that miR-301a exerts as a critical regulator involved in hypoxia-induced gemcitabine resistance in PC and may have potentials to be a therapeutic target for PC patients.
Collapse
Affiliation(s)
- Guangtao Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Xiang Xia
- Department of General Surgery, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaofeng Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Kundong Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Jun Cao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Tao Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Qian Zhao
- Department of Pathophysiology Key Laboratory of Cell Differentiation and Apoptosis and National Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China.
| |
Collapse
|
49
|
Yu Y, Feng X, Cang S. A two-microRNA signature as a diagnostic and prognostic marker of pancreatic adenocarcinoma. Cancer Manag Res 2018; 10:1507-1515. [PMID: 29942152 PMCID: PMC6005310 DOI: 10.2147/cmar.s158712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background and aim Some cancer-specific miRNAs are dysregulated in pancreatic adenocarcinoma (PAAD) and involved in cell autophagy, differentiation, proliferation, migration, invasion, and malignant transformation. The aim of our study was to determine a panel of new diagnostic and prognostic biomarkers for PAAD. Methods We conducted a comprehensive analysis of global miRNA-expression profiles and corresponding prognosis information of 168 PAAD patients from the Cancer Genome Atlas data set. A total of 16 differentially expressed miRNAs were identified as aberrantly expressed in PAAD, and six of these were evaluated for use as diagnostic markers for PAAD. Next, we confirmed a two-miRNA signature significantly associated with PAAD patient diagnosis and outcome prediction. Results The panel of two miRNAs showed outstanding diagnostic performance, with sensitivity of 100% and specificity of 87.5%. Finally, we divided the PAAD patients into high-risk and low-risk groups based on the expression profile of the two miRNAs. Kaplan–Meier analysis demonstrated that patients in the high-risk group had significantly worse prognosis than patients in the low-risk group. Univariate and multivariate Cox regression analysis showed that the two-miRNA signature was an independent prognostic factor for the overall survival of PAAD patients. Conclusion Taken together, the two-miRNA signature may serve as an accurate and sensitive biomarker for diagnosis and PAAD-outcome prediction, facilitating the diagnosis and potentially improving treatment outcome of PAAD.
Collapse
Affiliation(s)
- Yang Yu
- Department of Oncology, Henan Province People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Xiao Feng
- Department of Oncology, Henan Province People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Shundong Cang
- Department of Oncology, Henan Province People's Hospital, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
50
|
Baranwal S, Rawat SG, Gupta P. miR-301, Pleiotropic MicroRNA in Regulation of Inflammatory Bowel Disease and Colitis-Associated Cancer. Front Immunol 2018; 9:522. [PMID: 29599779 PMCID: PMC5862795 DOI: 10.3389/fimmu.2018.00522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Somesh Baranwal
- Department of Biochemistry and Microbial Science, School of Basic and Applied Science, Central University of Punjab, Bathinda, India
| | - Shiv Govind Rawat
- Department of Biochemistry and Microbial Science, School of Basic and Applied Science, Central University of Punjab, Bathinda, India
| | - Pooja Gupta
- College of Agriculture, Guru Kashi University, Talwandi Sabo, India
| |
Collapse
|