1
|
Gao X, Tang X, Tu Z, Yu J, Bao Y, Long G, Sheu WC, Wu H, Liu J, Zhou J. Tertiary amine modification enables triterpene nanoparticles to target the mitochondria and treat glioblastoma via pyroptosis induction. Biomaterials 2025; 317:123035. [PMID: 39731842 PMCID: PMC11827167 DOI: 10.1016/j.biomaterials.2024.123035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
Glioblastoma (GBM), the most common primary brain tumor, lacks effective treatments. Emerging evidence suggests mitochondria as a promising therapeutic target, albeit successfully targeting represents a major challenge. Recently, we discovered a group of triterpenes that can self-assemble into nanoparticles (NPs) for cancer treatment. However, unmodified triterpene NPs lack affinity for mitochondria. In this study, using oleanolic acid (OA) as an example, we demonstrated that tertiary amine modification enabled triterpene NPs to selectively target the mitochondria through interaction with translocase of outer mitochondrial membrane 70 (TOM70) leading to effective killing of GBM cells via pyroptosis. We showed that the NPs could be engineered for preferentially penetrating brain tumors through surface conjugation of iRGD, and treatment with the resulting NPs significantly prolonged the survival of tumor-bearing mice. We found that the efficacy could be further improved by encapsulating lonidamine, a mitochondrial hexokinase inhibitor. Furthermore, the observed mitochondria targeting effect through tertiary amine modification could be extended to other triterpenes, including lupeol and glycyrrhetinic acid. Collectively, this study reveals a novel strategy for targeting the mitochondria through tertiary amine modification of triterpenes, offering a promising avenue for the effective treatment of GBM.
Collapse
Affiliation(s)
- Xingchun Gao
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Xiangjun Tang
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Zewei Tu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Jiang Yu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Youmei Bao
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Gretchen Long
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Wendy C Sheu
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Haoan Wu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Jia Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
2
|
Feigelman G, Simanovich E, Rahat MA. Serum EMMPRIN/CD147 promotes the lung pre-metastatic niche in a D2A1 mammary carcinoma mouse model. Front Immunol 2025; 16:1568578. [PMID: 40370456 PMCID: PMC12075191 DOI: 10.3389/fimmu.2025.1568578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Several types of cancer, including breast cancer, metastasize to the lung. However, before the disseminating tumor cells (DTCs) arrive there, the lung must be prepared as a hospitable environment for them, forming the pre-metastatic niche (PMN). It is now accepted that the primary tumor can release soluble mediators or extracellular vesicles that activate the PMN resident cells, recruit immune cells, promote angiogenesis, and remodel the extracellular matrix (ECM), even before the arrival of DTCs to the niche. However, not all the components of the tumor secretome are known. Here we demonstrate in a mouse model of breast cancer designed to generate lung PMN, that EMMPRIN, a multifunction protein and mediator of tumor-stroma cell interactions, is part of that secretome. To study the involvement of EMMPRIN in the generation of lung PMN, we knocked down its expression in D2A1 cells (D2A1-KD), treated the mice with the anti-EMMPRIN antibody developed in our lab (m161-pAb), or administered the recombinant EMMPRIN protein to healthy mice. We show that the primary tumor released elevated levels of EMMPRIN in mice implanted with paternal D2A1 cells (D2A1-WT), generating lung PMN by increasing VEGF, MMP-9 and TGFβ secretion, enhancing angiogenesis, activating fibroblasts, increasing neutrophils infiltration, and remodeling the ECM. These effects were inhibited in mice implanted with D2A1-KD cells or administered with m161-pAb. In healthy mice, the recombinant EMMRPIN recapitulated the effects of high EMMPRIN levels. Thus, EMMPRIN as part of the tumor secretome is sufficient to promote the lung PMN, and targeting it could potentially inhibit the metastatic cascade.
Collapse
Affiliation(s)
- Gabriele Feigelman
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
| | - Michal A. Rahat
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Ma J, Wei Y, Zhang X, Lin L, Bao Y, Cao H, Chen H, Yu J, Yang J, Zhang Y, Lan H, Li X, Qiong H, Yang D, Yu Y, Chen J, Zhang C, liu L, Chen L, Zhan R, Liu F. Enhanced EPR effects by tumour stromal cell mimicking nanoplatform on invasive pituitary adenoma. Mater Today Bio 2024; 24:100895. [PMID: 38179430 PMCID: PMC10765248 DOI: 10.1016/j.mtbio.2023.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Rapid advances in nanomedicine have enabled potential applications in cancer therapy. The enhanced permeability and retention (EPR) effect is the primary rationale for the passive targeting of nanoparticles in oncology. However, growing evidence indicates that the accumulation of nanomaterials via the EPR effect could be more efficient. Inspired by our clinical observation of the Gap Junction connecpion between folliculostellate cells and pituitary adenoma cells, we designed a novel drug delivery system that targets tumours by coating folliculostellate cell (FS) membranes onto PLGA nanoparticles (NPs). The resulting FSNPs, inheriting membrane proteins from the folliculostellate cell membrane, significantly enhanced the EPR effect compared to nanoparticles without cancer cell membranes. We further demonstrated that mitotane encapsulation improved the therapeutic efficacy of mitotane in both heterotopic and orthotopic pituitary adenoma models. Owing to its significant efficacy, our FS cell membrane-coated nanoplatforms has the potential to be translated into clinical applications for the treatment of invasive pituitary adenoma.
Collapse
Affiliation(s)
- Junning Ma
- Zhejiang University School of Medicine, Zhe Jiang, 310003, China
- Department of Neurosurgery of Fifth affiliated Hospital, SunYat-Sen University Zhuhai, 519000, ZhuHai, China
- Department of Neurosurgery of First affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhe Jiang, 310003, China
- Sun Yat-Sen University, Guangzhou, 510275, China
- Department of Pathology& Pathophysiology and Department of Surgical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Zhe Jiang, 310003, China
| | - Yin Wei
- Zhejiang University School of Medicine, Zhe Jiang, 310003, China
| | - Xiaojian Zhang
- Department of Neurosurgery of Fifth affiliated Hospital, SunYat-Sen University Zhuhai, 519000, ZhuHai, China
- Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lu Lin
- Department of Neurosurgery of Fifth affiliated Hospital, SunYat-Sen University Zhuhai, 519000, ZhuHai, China
- Sun Yat-Sen University, Guangzhou, 510275, China
| | - Youmei Bao
- School of Medicine Yale University, New Haven, CT, 06510, USA
| | - Hui Cao
- Department of Neurosurgery of First affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhe Jiang, 310003, China
| | - Honghwei Chen
- Department of Neurosurgery of First affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhe Jiang, 310003, China
| | - Jianbo Yu
- Department of Neurosurgery of First affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhe Jiang, 310003, China
| | - Jiqi Yang
- Department of Neurosurgery of First affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhe Jiang, 310003, China
| | - Yue Zhang
- Department of Neurosurgery of Fifth affiliated Hospital, SunYat-Sen University Zhuhai, 519000, ZhuHai, China
- Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huimin Lan
- Department of Neurosurgery of Fifth affiliated Hospital, SunYat-Sen University Zhuhai, 519000, ZhuHai, China
- Sun Yat-Sen University, Guangzhou, 510275, China
| | - XueYang Li
- Department of Neurosurgery of Fifth affiliated Hospital, SunYat-Sen University Zhuhai, 519000, ZhuHai, China
- Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huang Qiong
- Zhejiang University School of Medicine, Zhe Jiang, 310003, China
| | - Dan Yang
- Zhejiang University School of Medicine, Zhe Jiang, 310003, China
| | - Yajun Yu
- Zhejiang University School of Medicine, Zhe Jiang, 310003, China
| | - Jingyao Chen
- Zhejiang University School of Medicine, Zhe Jiang, 310003, China
| | - Chengchen Zhang
- Zhejiang University School of Medicine, Zhe Jiang, 310003, China
| | - Li liu
- Zhejiang University School of Medicine, Zhe Jiang, 310003, China
| | - Lei Chen
- Department of Neurosurgery of Fifth affiliated Hospital, SunYat-Sen University Zhuhai, 519000, ZhuHai, China
- Sun Yat-Sen University, Guangzhou, 510275, China
| | - Renya Zhan
- Zhejiang University School of Medicine, Zhe Jiang, 310003, China
- Department of Neurosurgery of First affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhe Jiang, 310003, China
| | - Fei Liu
- Department of Neurosurgery of Fifth affiliated Hospital, SunYat-Sen University Zhuhai, 519000, ZhuHai, China
- Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
4
|
Wu H, Peng B, Mohammed FS, Gao X, Qin Z, Sheth KN, Zhou J, Jiang Z. Brain Targeting, Antioxidant Polymeric Nanoparticles for Stroke Drug Delivery and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107126. [PMID: 35306743 PMCID: PMC9167795 DOI: 10.1002/smll.202107126] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Ischemic stroke is a leading cause of death and disability and remains without effective treatment options. Improved treatment of stroke requires efficient delivery of multimodal therapy to ischemic brain tissue with high specificity. Here, this article reports the development of multifunctional polymeric nanoparticles (NPs) for both stroke treatment and drug delivery. The NPs are synthesized using an reactive oxygen species (ROS)-reactive poly (2,2'-thiodiethylene 3,3'-thiodipropionate) (PTT) polymer and engineered for brain penetration through both thrombin-triggered shrinkability and AMD3100-mediated targeted delivery. It is found that the resulting AMD3100-conjugated, shrinkable PTT NPs, or ASPTT NPs, efficiently accumulate in the ischemic brain tissue after intravenous administration and function as antioxidant agents for effective stroke treatment. This work shows ASPTT NPs are capable of efficient encapsulation and delivery of glyburide to achieve anti-edema and antioxidant combination therapy, resulting in therapeutic benefits significantly greater than those by either the NPs or glyburide alone. Due to their high efficiency in brain penetration and excellent antioxidant bioactivity, ASPTT NPs have the potential to be utilized to deliver various therapeutic agents to the brain for effective stroke treatment.
Collapse
Affiliation(s)
- Haoan Wu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Bin Peng
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Farrah S Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Xingchun Gao
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, Department of Bioengineering, Center for Advanced Pain Studies, University of Texas, Dallas-UTD, TX, 75080, USA
| | - Kevin N Sheth
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Zhaozhong Jiang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
- Integrated Science and Technology Center, Yale University, 600 West Campus Drive, West Haven, CT, 06516, USA
| |
Collapse
|
5
|
Bai S, Wang Z, Wang M, Li J, Wei Y, Xu R, Du J. Tumor-Derived Exosomes Modulate Primary Site Tumor Metastasis. Front Cell Dev Biol 2022; 10:752818. [PMID: 35309949 PMCID: PMC8924426 DOI: 10.3389/fcell.2022.752818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-derived exosomes (TDEs) are actively produced and released by tumor cells and carry messages from tumor cells to healthy cells or abnormal cells, and they participate in tumor metastasis. In this review, we explore the underlying mechanism of action of TDEs in tumor metastasis. TDEs transport tumor-derived proteins and non-coding RNA to tumor cells and promote migration. Transport to normal cells, such as vascular endothelial cells and immune cells, promotes angiogenesis, inhibits immune cell activation, and improves chances of tumor implantation. Thus, TDEs contribute to tumor metastasis. We summarize the function of TDEs and their components in tumor metastasis and illuminate shortcomings for advancing research on TDEs in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zunyun Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Minghua Wang
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Junai Li
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Yuan Wei
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Ruihuan Xu
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Juan Du
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
6
|
Molley TG, Jalandhra GK, Nemec SR, Tiffany AS, Patkunarajah A, Poole K, Harley BAC, Hung TT, Kilian KA. Heterotypic tumor models through freeform printing into photostabilized granular microgels. Biomater Sci 2021; 9:4496-4509. [PMID: 34008601 PMCID: PMC8282188 DOI: 10.1039/d1bm00574j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tissue microenvironment contains a complex assortment of multiple cell types, matrices, and vessel structures, which is difficult to reconstruct in vitro. Here, we demonstrate model tumor microenvironments formed through direct writing of vasculature channels and tumor cell aggregates, within a cell-laden microgel matrix. Photocrosslinkable microgels provide control over local and global mechanics, while enabling the integration of virtually any cell type. Direct writing of a Pluronic sacrificial ink into a stromal cell-microgel suspension is used to form vessel structures for endothelialization, followed by printing of melanoma aggregates. Tumor cells migrate into the prototype vessels as a function of spatial location, thereby providing a measure of invasive potential. The integration of perfusable channels with multiple spatially defined cell types provides new avenues for modelling development and disease, with scope for both fundamental research and drug development efforts.
Collapse
Affiliation(s)
- Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Gagan K Jalandhra
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Stephanie R Nemec
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Aleczandria S Tiffany
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amrutha Patkunarajah
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia. and School of Chemistry, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Zarychta E, Ruszkowska-Ciastek B, Bielawski K, Rhone P. Stromal Cell-Derived Factor 1α (SDF-1α) in Invasive Breast Cancer: Associations with Vasculo-Angiogenic Factors and Prognostic Significance. Cancers (Basel) 2021; 13:1952. [PMID: 33919589 PMCID: PMC8072989 DOI: 10.3390/cancers13081952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Tumour angiogenesis is critical for the progression of neoplasms. A prospective study was designed to examine the utility of stromal cell-derived factor 1α (SDF-1α) and selected vasculo-angiogenic parameters for estimating the probability of disease relapse in 84 primary, operable invasive breast cancer (IBrC) patients (40 (48%) with stage IA and 44 (52%) with stage IIA and IIB). (2) Methods: We explored the prognostic value of the plasma levels of SDF-1α, vascular endothelial growth factor A (VEGF-A), the soluble forms of VEGF receptors type 1 and 2, and the number of circulating endothelial progenitor cells (circulating EPCs) in breast cancer patients. The median follow-up duration was 58 months, with complete follow-up for the first event. (3) Results: According to ROC curve analysis, the optimal cut-off point for SDF-1α (for discriminating between patients at high and low risk of relapse) was 42 pg/mL, providing 57% sensitivity and 75% specificity. Kaplan-Meier curves for disease-free survival (DFS) showed that concentrations of SDF-1α lower than 42 pg/dL together with a VEGFR1 lower than 29.86 pg/mL were significantly associated with shorter DFS in IBrC patients (p = 0.0381). Patients with both SDF-1α lower than 42 pg/dL and a number of circulating EPCs lower than 9.68 cells/µL had significantly shorter DFS (p = 0.0138). (4) Conclusions: Our results imply the clinical usefulness of SDF-1α, sVEGFR1 and the number of circulating EPCs as prognostic markers for breast cancer in clinical settings.
Collapse
Affiliation(s)
- Elżbieta Zarychta
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland; (B.R.-C.); (K.B.)
| | - Barbara Ruszkowska-Ciastek
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland; (B.R.-C.); (K.B.)
| | - Kornel Bielawski
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland; (B.R.-C.); (K.B.)
| | - Piotr Rhone
- Clinical Ward of Breast Cancer and Reconstructive Surgery, Oncology Centre Prof. F. Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| |
Collapse
|
8
|
Chen Y, Luan J, Jiang T, Cai D, Sun C, Wang X, Zhao X, Gou X. Knockdown of EMMPRIN (OX47) in MRMT-1 Carcinoma Cells Inhibits Tumor Growth and Decreases Cancer-Induced Bone Destruction and Pain. Cancer Res Treat 2020; 53:576-583. [PMID: 33138345 PMCID: PMC8053874 DOI: 10.4143/crt.2020.801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose Bone destruction and pain caused by cancer is one of the most devastating complications of cancer patients with bone metastases, and it seriously affects the quality of patients’ life. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a cell adhesion molecule with increased expression in a variety of tumors. This study focused to clarify the specific function of EMMPRIN in bone metastasis of breast cancer. Materials and Methods Adenovirus with shRNA-EMMPRIN was transfected into MRMT-1 rat breast carcinoma cells, and the MRMT-1 cells with different expression levels of EMMPRIN were implanted into the bone marrow cavity of rat tibia. Next, the effect of down-regulation of EMMPRIN was evaluated as follows: bone damage was detected by X-ray radiological and tartrate-resistant acid phosphatase staining; the tumor burden was evaluated by hematoxylin and eosin staining; the test of pain-related behaviors was assessed used the bilateral paw withdrawal mechanical threshold; and the levels of secretory factors in tumor conditioned medium were determined by using enzyme-linked immunosorbent assay. Results We found that down-regulation of EMMPRIN in tumor cells can simultaneously reduce tumor burden, relieve cancer-induced bone destruction and pain. Conclusion EMMPRIN is expected to be a therapeutic target for relieving bone metastasis of breast cancer and alleviating cancer-induced bone destruction and pain. The method of targeting EMMPRIN may be a promising strategy for the treatment of cancer in the future.
Collapse
Affiliation(s)
- Yanke Chen
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Jing Luan
- Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Ting Jiang
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Donghui Cai
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Chao Sun
- Department of Obstetrics, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Zhao
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
9
|
Chen Y, Jiang T, Zhang H, Gou X, Han C, Wang J, Chen AT, Ma J, Liu J, Chen Z, Jing X, Lei H, Wang Z, Bao Y, Baqri M, Zhu Y, Bindra RS, Hansen JE, Dou J, Huang C, Zhou J. LRRC31 inhibits DNA repair and sensitizes breast cancer brain metastasis to radiation therapy. Nat Cell Biol 2020; 22:1276-1285. [PMID: 33005030 PMCID: PMC7962994 DOI: 10.1038/s41556-020-00586-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
Breast cancer brain metastasis (BCBM) is a devastating disease. Radiation therapy remains the mainstay for treatment of this disease. Unfortunately, its efficacy is limited by the dose that can be safely applied. One promising approach to overcoming this limitation is to sensitize BCBMs to radiation by inhibiting their ability to repair DNA damage. Here, we report a DNA repair suppressor, leucine-rich repeat-containing protein 31 (LRRC31), that was identified through a genome-wide CRISPR screen. We found that overexpression of LRRC31 suppresses DNA repair and sensitizes BCBMs to radiation. Mechanistically, LRRC31 interacts with Ku70/Ku80 and the ataxia telangiectasia mutated and RAD3-related (ATR) at the protein level, resulting in inhibition of DNA-dependent protein kinase, catalytic subunit (DNA-PKcs) recruitment and activation, and disruption of the MutS homologue 2 (MSH2)-ATR module. We demonstrate that targeted delivery of the LRRC31 gene via nanoparticles improves the survival of tumour-bearing mice after irradiation. Collectively, our study suggests LRRC31 as a major DNA repair suppressor that can be targeted for cancer radiosensitizing therapy.
Collapse
Affiliation(s)
- Yanke Chen
- Department of Cell Biology and Genetics, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Ting Jiang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongyi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, USA.,Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Xingchun Gou
- Department of Neurosurgery, Yale University, New Haven, CT, USA.,Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Cong Han
- Department of Cell Biology and Genetics, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianhui Wang
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Ann T Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jun Ma
- Department of Radiology in the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Xintao Jing
- Department of Cell Biology and Genetics, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hong Lei
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Zhenzhen Wang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Youmei Bao
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Mehdi Baqri
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Yong Zhu
- School of Public Health, Yale University, New Haven, CT, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - James E Hansen
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - Chen Huang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University, Xi'an, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA. .,Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Zhang S, Deng G, Liu F, Peng B, Bao Y, Du F, Chen AT, Liu J, Chen Z, Ma J, Tang X, Chen Q, Zhou J. Autocatalytic Delivery of Brain Tumor-targeting, Size-shrinkable Nanoparticles for Treatment of Breast Cancer Brain Metastases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910651. [PMID: 32440263 PMCID: PMC7241433 DOI: 10.1002/adfm.201910651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 05/06/2023]
Abstract
Breast cancer brain metastases (BCBMs) represent a major cause of morbidity and mortality among patients with breast cancer. Chemotherapy, which is widely used to treat tumors outside of the brain, is often ineffective on BCBMs due to its inability to efficiently cross the blood-brain barrier (BBB). Although the BBB is partially disrupted in tumor lesions, it remains intact enough to prevent most therapeutics from entering the brain. Here, we report a nanotechnology approach that can overcome the BBB through synthesis of lexiscan-loaded, AMD3100-conjugated, shrinkable NPs, or LANPs. LANPs respond to neutrophil elastase-enriched tumor microenvironment by shrinking in size and disrupt the BBB in tumors through lexiscan-mediated modulation. LANPs recognize tumor cells through the interaction between AMD3100 and CXCR4, which are expressed in metastatic tumor cells. We demonstrate that the integration of tumor responsiveness, tumor targeting, and BBB penetration enables LANPs to penetrate metastatic lesions in the brain with high efficiency, and, when doxorubicin was encapsulated, LANPs effectively inhibited tumor growth and prolonged the survival of tumor-bearing mice. Due to their high efficiency in penetrating the BBB for BCBMs treatment, LANPs have the potential to be translated into clinical applications for improved treatment of patients with BCBMs.
Collapse
Affiliation(s)
- Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Bin Peng
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Youmei Bao
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Fengyi Du
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Ann T Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Junning Ma
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Xiangjun Tang
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
11
|
Zhou Y, Zhang S, Chen Z, Bao Y, Chen AT, Sheu WC, Liu F, Jiang Z, Zhou J. Targeted Delivery of Secretory Promelittin via Novel Poly(lactone- co-β-amino ester) Nanoparticles for Treatment of Breast Cancer Brain Metastases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901866. [PMID: 32154067 PMCID: PMC7055583 DOI: 10.1002/advs.201901866] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/18/2019] [Indexed: 05/05/2023]
Abstract
Breast cancer brain metastases (BCBM) is a devastating disease with dismal prognosis. Although chemotherapy is widely used for clinical management of most tumors, it is often ineffective for BCBM. Therefore, alternative approaches for improved treatment of BCBM are in great demand. Here, an innovative gene therapy regimen is reported that is designed for effective treatment of BCBM. First, poly(lactone-co-β-amino ester) nanoparticles that are capable of efficient gene delivery are synthesized and are engineered for targeted delivery to BCBM through surface conjugation of AMD3100, which interacts with CXCR4 enriched in the tumor microenvironment. Next, an artificial gene, proMel, is designed for the expression of secretory promelittin protein, which has limited toxicity on its own but releases cytolytic melittin after activation by MMP-2 accumulated in tumors. It is demonstrated that delivery of the proMel via the AMD3100-conjugated nanoparticles effectively inhibits tumor progression in a BCBM mouse model. This study suggests a new direction to treat BCBM through targeted delivery of promelittin-mediated gene therapy.
Collapse
Affiliation(s)
- Yu Zhou
- Department of NeurosurgeryYale UniversityNew HavenCT06511USA
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Shenqi Zhang
- Department of NeurosurgeryYale UniversityNew HavenCT06511USA
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityHubei430060China
| | - Zeming Chen
- Department of NeurosurgeryYale UniversityNew HavenCT06511USA
| | - Youmei Bao
- Department of NeurosurgeryYale UniversityNew HavenCT06511USA
| | - Ann T. Chen
- Department of Biomedical EngineeringYale UniversityNew HavenCT06511USA
| | - Wendy C. Sheu
- Department of Biomedical EngineeringYale UniversityNew HavenCT06511USA
| | - Fuyao Liu
- Department of NeurosurgeryYale UniversityNew HavenCT06511USA
| | - Zhaozhong Jiang
- Department of Biomedical EngineeringYale UniversityNew HavenCT06511USA
| | - Jiangbing Zhou
- Department of NeurosurgeryYale UniversityNew HavenCT06511USA
- Department of Biomedical EngineeringYale UniversityNew HavenCT06511USA
| |
Collapse
|
12
|
Yang X, Ma C, Chen Z, Liu J, Liu F, Xie R, Zhao H, Deng G, Chen AT, Gong N, Yao L, Zuo P, Zhi K, Wang J, Gao X, Wang J, Fan L, Zhou J. Single small molecule-assembled nanoparticles mediate efficient oral drug delivery. NANO RESEARCH 2019; 12:2468-2476. [PMID: 35966168 PMCID: PMC9369969 DOI: 10.1007/s12274-019-2470-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oral drug delivery, which requires surviving the harsh environment in the gastrointestinal (GI) tract and penetrating the intestinal epithelium, has not been achieved using simple formulation nanoparticles (NPs). Medicinal natural products (MNPs) have been widely used in traditional medicine for disease management through oral consumption. However, most pharmacologically active compounds within MNPs do not have the properties suitable for oral applications. We hypothesize that some MNPs contain natural nanomaterials that can convert those compounds into oral formulations by forming NPs. After screening 66 MNPs, we identified five classes of small molecules that form NPs, many of which are capable of efficient drug encapsulation and GI penetration. We show that one of them, dehydrotrametenolic acid (DTA), is capable of mediating oral delivery for effective disease treatment. We determine that DTA NPs assemble through hydrogen bonding and penetrate the GI tract via apical sodium-dependent bile acid transporter. Our study reveals a novel class of single component, small molecule- assembled NPs for oral drug delivery, and suggests a novel approach to modernizing MNPs through nanomaterial discovery.
Collapse
Affiliation(s)
- Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Chao Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Rongbin Xie
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Ann T. Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Ningbo Gong
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lei Yao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Pengjian Zuo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Kangkang Zhi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jiacheng Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaobin Gao
- Department of Pathology, Yale University, New Haven, CT, 06510, USA
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Louzhen Fan
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
13
|
Deng G, Ma C, Zhao H, Zhang S, Liu J, Liu F, Chen Z, Chen AT, Yang X, Avery J, Zou P, Du F, Lim KP, Holden D, Li S, Carson RE, Huang Y, Chen Q, Kimberly WT, Simard JM, Sheth KN, Zhou J. Anti-edema and antioxidant combination therapy for ischemic stroke via glyburide-loaded betulinic acid nanoparticles. Theranostics 2019; 9:6991-7002. [PMID: 31660082 PMCID: PMC6815966 DOI: 10.7150/thno.35791] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Stroke is a deadly disease without effective pharmacotherapies, which is due to two major reasons. First, most therapeutics cannot efficiently penetrate the brain. Second, single agent pharmacotherapy may be insufficient and effective treatment of stroke requires targeting multiple complementary targets. Here, we set to develop single component, multifunctional nanoparticles (NPs) for targeted delivery of glyburide to the brain for stroke treatment. Methods: To characterize the brain penetrability, we radiolabeled glyburide, intravenously administered it to stroke- bearing mice, and determined its accumulation in the brain using positron emission tomography-computed tomography (PET/CT). To identify functional nanomaterials to improve drug delivery to the brain, we developed a chemical extraction approach and tested it for isolation of nanomaterials from E. ulmoides, a medicinal herb. To assess the therapeutic benefits, we synthesized glyburide-loaded NPs and evaluated them in stroke- bearing mice. Results: We found that glyburide has a limited ability to penetrate the ischemic brain. We identified betulinic acid (BA) capable of forming NPs, which, after intravenous administration, efficiently penetrate the brain and significantly reduce ischemia-induced infarction as an antioxidant agent. We demonstrated that BA NPs enhance delivery of glyburide, leading to therapeutic benefits significantly greater than those achieved by either glyburide or BA NPs. Conclusion: This study suggests a new direction to identify functional nanomaterials and a simple approach to achieving anti-edema and antioxidant combination therapy. The resulting glyburide- loaded BA NPs may be translated into clinical applications to improve clinical management of stroke.
Collapse
Affiliation(s)
- Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chao Ma
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Haitian Zhao
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Ann T. Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Xin Yang
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jonathan Avery
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Pan Zou
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Fengyi Du
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Keun-poong Lim
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Daniel Holden
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Richard E. Carson
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Yiyun Huang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - W. Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kevin N. Sheth
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
14
|
Ma J, Zhang S, Liu J, Liu F, Du F, Li M, Chen AT, Bao Y, Suh HW, Avery J, Deng G, Zhou Y, Wu P, Sheth K, Wang H, Zhou J. Targeted Drug Delivery to Stroke via Chemotactic Recruitment of Nanoparticles Coated with Membrane of Engineered Neural Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902011. [PMID: 31290245 PMCID: PMC11089900 DOI: 10.1002/smll.201902011] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/17/2019] [Indexed: 05/18/2023]
Abstract
Cell membrane coating has recently emerged as a promising biomimetic approach to engineering nanoparticles (NPs) for targeted drug delivery. However, simple cell membrane coating may not meet the need for efficient drug delivery to the brain. Here, a novel molecular engineering strategy to modify the surface of NPs with a cell membrane coating for enhanced brain penetration is reported. By using poly(lactic-co-glycolic) acid NPs as a model, it is shown that delivery of NPs to the ischemic brain is enhanced through surface coating with the membrane of neural stem cells (NSCs), and the delivery efficiency can be further increased using membrane isolated from NSCs engineered for overexpression of CXCR4. It is found that this enhancement is mediated by the chemotactic interaction of CXCR4 with SDF-1, which is enriched in the ischemic microenvironment. It is demonstrated that the resulting CXCR4-overexpressing membrane-coated NPs, termed CMNPs, significantly augment the efficacy of glyburide, an anti-edema agent, for stroke treatment. The study suggests a new approach to improving drug delivery to the ischemic brain and establishes a novel formulation of glyburide that can be potentially translated into clinical applications to improve management of human patients with stroke.
Collapse
Affiliation(s)
- Junning Ma
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Fenyi Du
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Miao Li
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Ann T Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Youmei Bao
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Hee Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Jonathan Avery
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Yu Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Peng Wu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Kevin Sheth
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Haijun Wang
- Department of Neurosurgery, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
15
|
Medeiros B, Allan AL. Molecular Mechanisms of Breast Cancer Metastasis to the Lung: Clinical and Experimental Perspectives. Int J Mol Sci 2019; 20:E2272. [PMID: 31071959 PMCID: PMC6540248 DOI: 10.3390/ijms20092272] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women worldwide, and >90% of breast cancer-related deaths are associated with metastasis. Breast cancer spreads preferentially to the lung, brain, bone and liver; termed organ tropism. Current treatment methods for metastatic breast cancer have been ineffective, compounded by the lack of early prognostic/predictive methods to determine which organs are most susceptible to developing metastases. A better understanding of the mechanisms that drive breast cancer metastasis is crucial for identifying novel biomarkers and therapeutic targets. Lung metastasis is of particular concern as it is associated with significant patient morbidity and a mortality rate of 60-70%. This review highlights the current understanding of breast cancer metastasis to the lung, including discussion of potential new treatment approaches for development.
Collapse
Affiliation(s)
- Braeden Medeiros
- London Regional Cancer Program, London Health Sciences Centre, Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada.
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, Departments of Anatomy & Cell Biology and Oncology, Western University, London, ON N6A 5W9, Canada.
| |
Collapse
|
16
|
Sugyo A, Tsuji AB, Sudo H, Koizumi M, Ukai Y, Kurosawa G, Kurosawa Y, Saga T, Higashi T. Efficacy Evaluation of Combination Treatment Using Gemcitabine and Radioimmunotherapy with 90Y-Labeled Fully Human Anti-CD147 Monoclonal Antibody 059-053 in a BxPC-3 Xenograft Mouse Model of Refractory Pancreatic Cancer. Int J Mol Sci 2018; 19:ijms19102979. [PMID: 30274301 PMCID: PMC6213240 DOI: 10.3390/ijms19102979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/06/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
The poor prognosis of pancreatic cancer requires the development of more effective therapy. CD147 expresses in pancreatic cancer with high incidence and has a crucial role in invasion and metastasis. We developed a fully human monoclonal antibody (059-053) with high affinity for CD147. Here we evaluated the efficacy of combined treatment using radioimmunotherapy (RIT) with 90Y-labeled 059-053 and gemcitabine in a BxPC-3 xenograft mouse model. Expression of CD147 and matrix metalloproteinase-2 (MMP2) in BxPC-3 tumors was evaluated. In vitro and in vivo properties of 059-053 were evaluated using 111In-labeled 059-053 and a pancreatic cancer model BxPC-3. Tumor volume and body weight were periodically measured in mice receiving gemcitabine, RIT, and both RIT and gemcitabine (one cycle and two cycles). High expression of CD147 and MMP2 was observed in BxPC-3 tumors and suppressed by 059-053 injection. Radiolabeled 059-053 bound specifically to BxPC-3 cells and accumulated highly in BxPC-3 tumors but low in major organs. Combined treatment using RIT with gemcitabine (one cycle) significantly suppressed tumor growth and prolonged survival with tolerable toxicity. The two-cycle regimen had the highest anti-tumor effect, but was not tolerable. Combined treatment with 90Y-labeled 059-053 and gemcitabine is a promising therapeutic option for pancreatic cancer.
Collapse
Affiliation(s)
- Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Mitsuru Koizumi
- Department of Nuclear Medicine, Cancer Institute Hospital, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| | - Yoshinori Ukai
- Research and Development Division, Perseus Proteomics Inc., 4-7-6 Komaba, Meguro-ku, Tokyo 153-0041, Japan.
| | - Gene Kurosawa
- Innovation Center for Advanced Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Yoshikazu Kurosawa
- Innovation Center for Advanced Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Tsuneo Saga
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Diagnostic Radiology, Kyoto University Hospital, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
17
|
Feng Q, Guo P, Wang J, Zhang X, Yang HC, Feng JG. High expression of SDF-1 and VEGF is associated with poor prognosis in patients with synovial sarcomas. Exp Ther Med 2018; 15:2597-2603. [PMID: 29456663 DOI: 10.3892/etm.2018.5684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 03/17/2017] [Indexed: 01/18/2023] Open
Abstract
Stromal cell-derived factor-1 (SDF-1) predicts poor clinical outcomes of certain types of cancer. Furthermore, vascular endothelial growth factor (VEGF) promotes the growth and metastasis of solid tumors. The aim of the present study was to examine the expression of SDF-1 and VEGF in patients with synovial sarcoma and to determine their expression is correlated with unfavorable outcomes. Levels of SDF-1 and VEGF proteins were evaluated in 54 patients with synovial sarcoma using immunohistochemical and immunofluorescence staining. Potential associations between the expression of SDF-1 and VEGF and various clinical parameters were analyzed using Pearson's χ2 test and the Spearman-rho test. Additionally, univariate and multivariate Cox regression analyses were used to identify potential prognostic factors, and the Kaplan-Meier method was used to analyze the overall survival rates of patients. Low SDF-1 and VEGF expression was detected in 20.4% (11/54) and 22.2% (12/54) of patients with synovial sarcoma; moderate expression was detected in 35.2% (19/54) and 37.0% (20/54) of patients and high expression was detected in 44.4% (24 of 54) and 40.7% (22 of 54) of patients, respectively. Levels of SDF-1 and VEGF proteins were significantly associated with histological grade (P<0.05), metastasis (P<0.05) and American Joint Committee on Cancer staging (P<0.05). In addition, levels of SDF-1 and VEGF expression were positively correlated with each other (P<0.001). Univariate analysis also indicated that VEGF expression was associated with shorter overall survival rates in (P<0.05), whereas multivariate analysis demonstrated that SDF-1 expression was associated with shorter patient survival rates (P<0.05). Finally, both SDF-1 and VEGF expression were associated with various characteristics of synovial sarcoma. Therefore, SDF-1 expression may be a potential independent prognostic indicator in patients with synovial sarcomas.
Collapse
Affiliation(s)
- Qi Feng
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Peng Guo
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jin Wang
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiaoyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hui-Chai Yang
- Department of Pathology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jian-Gang Feng
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
18
|
Kusunoki M, Sata E, Nishio K, Tanaka T, Nishida T, Sugano N, Sato S, Asano M. Acid-electrolyzed functional water induces extracellular matrix metalloproteinase inducer, a possible novel alarmin, secretion from oral squamous cell carcinoma cell lines. Int J Med Sci 2018; 15:1365-1372. [PMID: 30275765 PMCID: PMC6158666 DOI: 10.7150/ijms.26186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/30/2018] [Indexed: 11/05/2022] Open
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN) secretion was induced in the oral squamous cell carcinoma cell line HSC3 cell by acid-electrolyzed functional water (FW) stimulation. Augmented EMMPRIN secretion was not under transcriptional control; rather, it was derived from the intracellular storages. EMMPRIN secretion was also induced under oxidative stress and accompanied by the release of lactate dehydrogenase (LDH). The molecules released from cells undergoing necrosis are called as alarmins, and the secretion of IL-1α, a typical alarmin, was induced by FW stimulation and oxidative stress. Intracellular localization was examined by cell fractionation. A significant amount of EMMPRIN was localized in the triton X-100 and DNase sensitive fractions; the levels were drastically reduced following FW treatment. The function of the released EMMPRIN was examined using the monocytic cell line THP1. Culture supernatant derived from FW-treated HSC3 cells induced the expression of matrix metalloproteinases (MMPs) 1, 2, 8, 9, 13, and 14, platelet-derived growth factor, and interleukin-8. In contrast, vascular endothelial growth factor expression was reduced. Induction of these factors was abolished following eliminating of EMMPRIN by immunoprecipitation. These results indicate that EMMPRIN might be considered as a type of alarmin that transduces danger signals to the surrounding cells.
Collapse
Affiliation(s)
- Masafumi Kusunoki
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Eri Sata
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kensuke Nishio
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Takayoshi Tanaka
- Maxillofacial Prosthetic Clinic, Nihon University School of Dentistry, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Tetsuya Nishida
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Naoyuki Sugano
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Immunology and Pathobiology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| |
Collapse
|
19
|
Abu El-Asrar AM, Ahmad A, Alam K, Siddiquei MM, Mohammad G, Hertogh GD, Mousa A, Opdenakker G. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a potential biomarker of angiogenesis in proliferative diabetic retinopathy. Acta Ophthalmol 2017; 95:697-704. [PMID: 27860331 DOI: 10.1111/aos.13284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Extracellular matrix metalloproteinase inducer (EMMPRIN) promotes angiogenesis through matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) production. We investigated the expression levels of EMMPRIN and correlated these levels with VEGF, MMP-1 and MMP-9 in proliferative diabetic retinopathy (PDR). In addition, we examined the expression of EMMPRIN in the retinas of diabetic rats and the effect of EMMPRIN on the induction of angiogenesis regulatory factors in human retinal microvascular endothelial cells (HRMECs). METHODS Vitreous samples from 40 PDR and 19 non-diabetic patients, epiretinal membranes from 12 patients with PDR, retinas of rats and HRMECs were studied by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, Western blot analysis, zymography analysis and RT-PCR. RESULTS We showed a significant increase in the expression of EMMPRIN, VEGF, MMP-1 and MMP-9 in vitreous samples from PDR patients compared with non-diabetic controls (p < 0.0001; p = 0.001; p = 0.009; p < 0.0001, respectively). Significant positive correlations were found between the levels of EMMPRIN and the levels of VEGF (r = 0.38; p = 0.003), MMP-1 (r = 0.36; p = 0.005) and MMP-9 (r = 0.46; p = 0.003). In epiretinal membranes, EMMPRIN was expressed in vascular endothelial cells and stromal cells. Significant increase of EMMPRIN mRNA was detected in rat retinas after induction of diabetes. EMMPRIN induced hypoxia-inducible factor-1α, VEGF and MMP-1 expression in HRMEC. CONCLUSIONS These results suggest that EMMPRIN/MMPs/VEGF pathway is involved in PDR angiogenesis.
Collapse
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - Kaiser Alam
- Department of Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | | | - Ghulam Mohammad
- Department of Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry; University of Leuven, KU Leuven; Leuven Belgium
| | - Ahmed Mousa
- Department of Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - Ghislain Opdenakker
- Laboratory of Immunobiology; Rega Institute for Medical Research; Department of Microbiology and Immunology; University of Leuven; KU Leuven; Leuven Belgium
| |
Collapse
|
20
|
Lin SC, Hsiao KY, Chang N, Hou PC, Tsai SJ. Loss of dual-specificity phosphatase-2 promotes angiogenesis and metastasis via up-regulation of interleukin-8 in colon cancer. J Pathol 2017; 241:638-648. [PMID: 28026024 DOI: 10.1002/path.4868] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 11/14/2016] [Accepted: 12/22/2016] [Indexed: 01/12/2023]
Abstract
Dual-specificity phosphatase 2 (DUSP2) is a negative regulator of mitogen-activated protein kinases. Our previous study showed that DUSP2 expression is down-regulated in many human cancers and loss of DUSP2 promotes cancer progression; however, the underlying mechanism remains largely uncharacterized. Herein, we found that loss of DUSP2 induces angiogenesis, while forced expression of DUSP2 inhibits microvessel formation in xenografted mouse tumours. Genome-wide screening of expression profiles, and meta-analysis of clinical data, identified that the level of interleukin-8 (IL-8) correlated negatively with that of DUSP2, suggesting that it may be a downstream target of DUSP2. Molecular characterization revealed that DUSP2 inversely regulates IL-8 expression, mediated by ERK1/2 and C/EBPα-dependent transcriptional regulation. Further study showed that hypoxia-induced IL-8 expression in cancer cells is also mediated via down-regulation of DUSP2. Treatment with the IL-8 receptor inhibitor reparixin or knockdown of IL-8 in cancer cells abolished angiogenesis induced by loss of DUSP2. Functionally, knockdown of DUSP2 enhanced tumour growth and metastasis, which were abolished by treatment with reparixin or knockdown of IL-8 in an orthotopic mouse model. Taken together, our results demonstrate that hypoxia inhibits DUSP2 expression in colon cancer, leading to up-regulation of IL-8, which facilitates angiogenesis and tumour metastasis. Our findings suggest that blocking hypoxia-DUSP2-IL-8 signalling may be a plausible approach for therapeutic intervention in cancer. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shih-Chieh Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Yang Hsiao
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ning Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chi Hou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
21
|
Mi YJ, Chen H, Guo N, Sun MY, Zhao ZH, Gao XC, Wang XL, Zhang RS, Zhou JB, Gou XC. Inhibition of PirB Activity by TAT-PEP Improves Mouse Motor Ability and Cognitive Behavior. Front Aging Neurosci 2017; 9:199. [PMID: 28676756 PMCID: PMC5476690 DOI: 10.3389/fnagi.2017.00199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/02/2017] [Indexed: 01/07/2023] Open
Abstract
Paired immunoglobulin-like receptor B (PirB), a functional receptor for myelin-associated inhibitory proteins, plays an important role in axon regeneration in injured brains. However, its role in normal brain function with age has not been previously investigated. Therefore in this study, we examined the expression level of PirB in the cerebral cortex, hippocampus and cerebellum of mice at 1 month, 3 months and 18 months of age. The results showed that the expression of PirB increased with age. We further demonstrated that overexpression of PirB inhibited neurite outgrowth in PC12 cells, and this inhibitory activity of PirB could be reversed by TAT-PEP, which is a recombinant soluble PirB ectodomain fused with TAT domain for blood-brain barrier penetration. In vivo study, intraperitoneal administration of TAT-PEP was capable of enhancing motor capacity and spatial learning and memory in mice, which appeared to be mediated through regulation of brain-derived neurotrophic factor (BDNF) secretion. Our study suggests that PirB is associated with aging and TAT-PEP may be a promising therapeutic agent for modulation of age-related motor and cognitive dysfunctions.
Collapse
Affiliation(s)
- Ya-Jing Mi
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Hai Chen
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China.,Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Na Guo
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Meng-Yi Sun
- Department of Neurosurgery, School of Medicine, Yale UniversityNew Haven, CT, United States
| | - Zhao-Hua Zhao
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Xing-Chun Gao
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Xiao-Long Wang
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Rui-San Zhang
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Jiang-Bing Zhou
- Department of Neurosurgery, School of Medicine, Yale UniversityNew Haven, CT, United States
| | - Xing-Chun Gou
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China.,Department of Neurosurgery, School of Medicine, Yale UniversityNew Haven, CT, United States
| |
Collapse
|
22
|
Chen XW, Yu TJ, Zhang J, Li Y, Chen HL, Yang GF, Yu W, Liu YZ, Liu XX, Duan CF, Tang HL, Qiu M, Wang CL, Zheng H, Yue J, Guo AM, Yang J. CYP4A in tumor-associated macrophages promotes pre-metastatic niche formation and metastasis. Oncogene 2017; 36:5045-5057. [PMID: 28481877 PMCID: PMC5582214 DOI: 10.1038/onc.2017.118] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/13/2022]
Abstract
Tumor-associated macrophages (TAMs) play an essential role in metastasis. However, what enables TAMs to have a superior capacity to establish pre-metastatic microenvironment in distant organs is unclear. Here we have begun to uncover the effects of cytochrome P450 (CYP) 4A in TAMs on lung pre-metastatic niche formation and metastasis. CYP4A+ TAM infiltration was positively associated with metastasis, pre-metastatic niche formation and poor prognosis in breast cancer patients. The pharmacological inhibition of CYP4A reduced lung pre-metastatic niche formation (evidenced by a decrease in vascular endothelial growth factor receptor 1 positive (VEGFR1+) myeloid cell recruitment and pro-metastatic protein expression) and metastatic burden, accompanied with TAM polarization away from the M2 phenotype in spontaneous metastasis models of 4T1 breast cancer and B16F10 melanoma. Co-implantation of 4T1 cells with CYP4A10high macrophages promoted lung pre-metastatic niche formation and metastasis. Depletion of TAMs disrupted lung pre-metastatic niches and thereby prevented metastasis. Treatment with the CM from CYP4A10high M2 macrophages (M2) increased pre-metastatic niche formation and metastatic burden in the lungs, whereas CYP4A inhibition attenuated these effects. In vitro TAM polarization away from the M2 phenotype induced by CYP4A inhibition decreased VEGFR1+ myeloid cell migration and fibronectin expression, accompanied with downregulation of STAT3 signaling. Conversely, overexpression of CYP4A or exogenous addition of 20-hydroxyeicosatetraenoic acid promoted M2 polarization and cytokine production of macrophages and thereby enhanced migration of VEGFR1+ myeloid cells, which were reversed by siRNA or pharmacological inhibition of STAT3. Importantly, a combined blocking M2 macrophage-derived factors TGF-β, VEGF and SDF-1 abolished VEGFR1+ myeloid cell migration and fibroblast activation induced by CYP4A. In summary, CYP4A in TAMs is crucial for lung pre-metastatic niche formation and metastasis, and may serve as a potential therapeutic target in human cancer.
Collapse
Affiliation(s)
- X W Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - T J Yu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - J Zhang
- Animal Experimental Center of Wuhan University, Wuhan, China
| | - Y Li
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - H L Chen
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - G F Yang
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - W Yu
- Department of Oncology, The First College of Clinical Medicine, China Three Gorges University, Yichang, China
| | - Y Z Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - X X Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - C F Duan
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - H L Tang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - M Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - C L Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - H Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - J Yue
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - A M Guo
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - J Yang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Li H, Wu D, Shi S, Xu Y, Wei L, Liu J, Liu Y. Expression and clinical significance of CD147 in renal cell carcinoma: a meta-analysis. Oncotarget 2017; 8:51331-51344. [PMID: 28881651 PMCID: PMC5584252 DOI: 10.18632/oncotarget.17376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/21/2017] [Indexed: 01/02/2023] Open
Abstract
Objective To assess clinical significance of CD147 in renal cell carcinoma. Methods Collect case-control studies which focus on CD147's expression in renal cell carcinoma. Trails were retrieved from CBM, CNKI, Wan-fang database, PubMed, Cochrane Library and Embase. According to the inclusion and exclusion criteria, data extraction and quality assessment were done by two researchers independently, and outcomes were pooled with Revman5.3 and STATA14.0. Results A total of 11 studies were confirmed, among which renal cell carcinoma 887 cases, non-cancer 505cases. As for the positive rate of CD147, there are statistical differences among survival, renal cell carcinoma tissue vs. non-cancer tissues [OR= 8.19, P= 0.0002], with vs. without lymph node metastases [OR= 6.52, P= 0.001], clinical stage III~IV vs. II~I [OR= 4.07, P< 0.00001], histopathological stage III~IV vs. II [OR= 3.01, P= 0.002], histopathological stage III~IV vs. I [OR= 7.50, P< 0.00001], tumor size [OR= 5.01, P= 0.0007]. No significant difference was tested among different age, gender, histological types and Position of cancer. Conclusion As shown in our results, CD 147 may participate the whole course of carcinogenesis of renal cell carcinoma, which might be valuable for the diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Hui Li
- Reproductive Department, Xiangya Hospital, Central South University, Changsha, China
| | - Dongwen Wu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shupeng Shi
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yadong Xu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ling Wei
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jing Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yanting Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
24
|
Song Z, Zhang X, Ye X, Feng C, Yang G, Lu Y, Lin Y, Dong C. High Expression of Stromal Cell-Derived Factor 1 (SDF-1) and NF-κB Predicts Poor Prognosis in Cervical Cancer. Med Sci Monit 2017; 23:151-157. [PMID: 28074045 PMCID: PMC5244828 DOI: 10.12659/msm.899319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background SDF-1 and NF-κB are associated with the prognosis of a wide range of cancers, but their value in cervical cancer remains controversial. The aim of this study was to investigate the expression of SDF-1and NF-κB in cervical cancer and their significance in clinical prognosis. Material/Methods The expression of SDF-1and NF-κB in 105 formalin-fixed, paraffin-embedded cervical cancer tissues and the adjacent tissues was examined by immunohistochemistry (IHC). The results were semi-quantitatively scored and analyzed by chi-square test. The overall survival times (OS) were collected by follow-up and analyzed by Kaplan-Meier analysis. Results The expression level of both SDF-1and NF-κB in cervical cancer are higher than that in the adjacent tissues (P<0.05). SDF-1 expression are correlated with tumor size and FIGO histology grade (P<0.05). NF-κB expression are correlated with tumor size and FIGO histology grade, and lymph node metastasis (LNM) status (P<0.05). The patients with a positive expression of SDF-1or NF-κB tended to have much shorter survival time than patients with negative expression. In addition, multivariate Cox regression analysis demonstrated that SDF-1 expression and lymph node metastasis are independent predictors of the OS in cervical cancer patients. Conclusions The expression of SDF-1 is significantly associated with tumor size and FIGO histology grade. The expression of NF-κB is significantly associated with tumor size, FIGO histology grade, and lymph node metastasis. The positive SDF-1or NF-κB expression is significantly correlated with poor prognosis. These may be valuable biomarkers for the prognosis and the potential therapeutic targets of cervical cancer.
Collapse
Affiliation(s)
- Zhiwang Song
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Xia Zhang
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Xiaojuan Ye
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Chan Feng
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Guang Yang
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Yonglin Lu
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Yun Lin
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Chunyan Dong
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| |
Collapse
|
25
|
Malinovskaya NA, Komleva YK, Salmin VV, Morgun AV, Shuvaev AN, Panina YA, Boitsova EB, Salmina AB. Endothelial Progenitor Cells Physiology and Metabolic Plasticity in Brain Angiogenesis and Blood-Brain Barrier Modeling. Front Physiol 2016; 7:599. [PMID: 27990124 PMCID: PMC5130982 DOI: 10.3389/fphys.2016.00599] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022] Open
Abstract
Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB) development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons). Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alla B. Salmina
- Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| |
Collapse
|
26
|
Jiyuan L, Jian P, Chengge H, Yunlong W, Zhengwen L, Xiufa T. [Exploratory study on influence of biopsy to biological behavior of Tca8113 transplanted tumor]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:626-631. [PMID: 28318166 DOI: 10.7518/hxkq.2016.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE We established an animal model of nude mice with Tca8113 tumor and cut some tissue for biopsy. We also determined the biological behavior and mechanisms of the tumor. METHODS The mice were divided into two groups randomly. Mice in both groups were injected with Tca8113 cells into their tongues. The survival condition, growth of primary focus, and metastasis were observed. Hematoxylin and eosin staining and immunohistochemistry were performed on nuclear factor κB (NF-κB), matrix metallopeptidase 9 (MMP-9), vascular endothelial growth factor (VEGF), stromal cell-derived factor 1 (SDF-1), and Ki67 to determine their distributions within the tumor. Cytokeratin staining was also performed to detect micrometastasis in the submandibular lymph nodes. RESULTS The emerging rate of tumor was 97.92%. The weight and survival time of the experimental group were lower than that of the control group, whereas the metastasis ratio was higher. The expression of NF-κB, MMP-9, SDF-1, and MMP-9 in tumors was higher in the experimental group than that in the control group. The expression of NF-κB, MMP-9, VEGF, and SDF-1 was relevant. The microvessel density of the experimental group was higher than that in the control group. CONCLUSIONS Biopsy can affect the biological behavior of tongue tumor and can promote growth of primary focus and metastasis.
Collapse
Affiliation(s)
- Liu Jiyuan
- State Key Laboratory of Oral Diseases, Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Pan Jian
- State Key Laboratory of Oral Diseases, Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hua Chengge
- State Key Laboratory of Oral Diseases, Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wu Yunlong
- State Key Laboratory of Oral Diseases, Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Luo Zhengwen
- State Key Laboratory of Oral Diseases, Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tang Xiufa
- State Key Laboratory of Oral Diseases, Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Chin AR, Wang SE. Cancer Tills the Premetastatic Field: Mechanistic Basis and Clinical Implications. Clin Cancer Res 2016; 22:3725-33. [PMID: 27252414 DOI: 10.1158/1078-0432.ccr-16-0028] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023]
Abstract
A growing body of work has shown that cancer metastasis is not a random spontaneous event; rather, it is the culmination of a cascade of priming steps through which a subpopulation of the tumor cells acquires invasive traits while readying a permissive environment, termed the "premetastatic niche," in which distant metastases can occur. Signals from the primary tumor mobilize and adapt immune cells as well as directly communicating with distant niche cells to induce a broad spectrum of adaptations in target organs, including the induction of angiogenesis, inflammation, extracellular matrix remodeling, and metabolic reprogramming. Together, these interactions facilitate the formation of a premetastatic niche composed of a variable mix of resident and recruited immune cells, endothelial cells, and stromal cells connected through a complex signaling network that we are only beginning to understand. Here, we summarize the latest findings on how cancer induces and guides the formation of this premetastatic niche as well as potential prognostic markers and therapeutic targets that may lead to a better understanding and effective treatment of metastatic disease. Clin Cancer Res; 22(15); 3725-33. ©2016 AACR.
Collapse
Affiliation(s)
- Andrew R Chin
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California. City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, California
| | - Shizhen Emily Wang
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California.
| |
Collapse
|
28
|
Xu R, Pisapia D, Greenfield JP. Malignant Transformation in Glioma Steered by an Angiogenic Switch: Defining a Role for Bone Marrow-Derived Cells. Cureus 2016; 8:e471. [PMID: 26973806 PMCID: PMC4772998 DOI: 10.7759/cureus.471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Low-grade gliomas, such as pilocytic astrocytoma and subependymoma, are often characterized as benign tumors due to their relative circumscription radiologically and typically non-aggressive biologic behavior. In contrast, low-grades that are by their nature diffusely infiltrative, such as diffuse astrocytomas and oligodendrogliomas, have the potential to transform into malignant high-grade counterparts and, given sufficient time, invariably do so. These high-grade gliomas carry very poor prognoses and are largely incurable, warranting a closer look at what causes this adverse transition. A key characteristic that distinguishes low- and high-grade gliomas is neovascularization: it is absent in low-grade gliomas, but prolific in high-grade gliomas, providing the tumor with ample blood supply for exponential growth. It has been well described in the literature that bone marrow-derived cells (BMDCs) may contribute to the angiogenic switch that is responsible for malignant transformation of low-grade gliomas. In this review, we will summarize the current literature on BMDCs and their known contribution to angiogenesis-associated tumor growth in gliomas.
Collapse
Affiliation(s)
- Raymond Xu
- Neurological Surgery, Weill Cornell Medical College
| | | | - Jeffrey P Greenfield
- Neurological Surgery, Weill Cornell Medical College ; New York Presbyterian Hospital
| |
Collapse
|