1
|
Bloomer H, Dame HB, Parker SR, Oudin MJ. Neuronal mimicry in tumors: lessons from neuroscience to tackle cancer. Cancer Metastasis Rev 2025; 44:31. [PMID: 39934425 PMCID: PMC11813822 DOI: 10.1007/s10555-025-10249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/02/2025] [Indexed: 02/13/2025]
Abstract
Cellular plasticity and the ability to avoid terminal differentiation are hallmarks of cancer. Here, we review the evidence that tumor cells themselves can take on properties of neurons of the central nervous system, which can regulate tumor growth and metastasis. We discuss recent evidence that axon guidance molecules and regulators of electrical activity and synaptic transmission, such as ion channels and neurotransmitters, can drive the oncogenic and invasive properties of tumor cells from a range of cancers. We also review how FDA-approved treatments for neurological disorders are being tested in pre-clinical models and clinical trials for repurposing as anti-cancer agents, offering the potential for new therapies for cancer patients that can be accessed more quickly.
Collapse
Affiliation(s)
- Hanan Bloomer
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Haley B Dame
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Savannah R Parker
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
2
|
Lastraioli E, Iorio J, Piazza F, Capitani C, Santillo M, Duranti C, Bianchi S, Meattini I, Fraser SP, Djamgoz MBA, Becchetti A, Arcangeli A. Clinical relevance of macromolecular complexes involving integrins, potassium and sodium ion channels and the sodium/proton antiporter in human breast cancer. Cancer Cell Int 2025; 25:24. [PMID: 39865220 PMCID: PMC11765915 DOI: 10.1186/s12935-025-03653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K+ channel, the neonatal form of the Na+ channel NaV 1.5 (nNaV1.5) and the Na+/H+ antiporter NHE1 (NHE1/hERG1/β1/nNaV1.5 complex) has been recently described to be expressed and regulate relevant cancer related behaviors in Breast Cancer (BCa) cells. METHODS We analyzed the expression and impact on outcome of the genes encoding the four proteins forming the NHE1/hERG1/β1/nNaV1.5 complex (SLC9A1, KCNH2, ITGB1 and SCN5A) in public datasets. The corresponding proteins were also evaluated by immunohistochemistry and their expression was correlated with clinic-pathological and molecular characteristics and patients' survival. RESULTS The expression of KCNH2 and SCN5A was significantly correlated in primary BCa as occurs in the heart, although with a broader distribution, forming a functional network which also included ITGB1 and SLC9A1. The co-expression proteins emerged from the immunohistochemistry analysis. Interestingly, hERG1, nNav1.5 and the hERG1/β1 integrin complex associated with several clinical features, including molecular subtype and hormone receptor status. Moreover, hERG1 and the combination of hERG1 and nNav1.5 had impact on prognosis, contributing to identifying a group of patients with worse prognosis. CONCLUSIONS hERG1 and nNav1.5 channels along with β1 integrins and the NHE1 antiporter are co-expressed in BCa both at gene and protein levels, assembling into a macromolecular complex. The NHE1/hERG1/β1/nNaV1.5 complex can be considered a novel biomarker and potential target for therapy for BCa patients.
Collapse
Affiliation(s)
- Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy.
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Piazza
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy
- Department of Physics, University of Florence and Florence Section of INFN, Florence, Italy
| | - Chiara Capitani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michele Santillo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- MCK Therapeutics Srl, Pistoia, Italy
| | - Simonetta Bianchi
- Department of Health Sciences, Division of Pathological Anatomy, University of Florence, Florence, Italy
| | - Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Scott P Fraser
- Department of Life Sciences, Imperial College London, London, UK
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Mersin 10, Haspolat, TRNC, Turkey
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy
- MCK Therapeutics Srl, Pistoia, Italy
| |
Collapse
|
3
|
Zha Z, Ge F, Li N, Zhang S, Wang C, Gong F, Miao J, Chen W. Effects of Na V1.5 and Rac1 on the Epithelial-Mesenchymal Transition in Breast Cancer. Cell Biochem Biophys 2024:10.1007/s12013-024-01625-x. [PMID: 39673684 DOI: 10.1007/s12013-024-01625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
Breast cancer is a disease that seriously endangers the health of women. However, it is difficult to treat due to the emergence of metastasis and drug resistance. Exploring the metastasis mechanism of breast cancer is helpful to aim for the appropriate target. The epithelial-mesenchymal transition (EMT) is an important mechanism of breast cancer metastasis. Sodium channel 1.5(NaV1.5) and the GTPase Rac1 are factors related to the degree of malignancy of breast tumors. The expression of NaV1.5 and the activation of Rac1 are both involved in EMT. In addition, NaV1.5 can change the plasma membrane potential (Vm) by promoting the inflow of Na+ to depolarize the cell membrane, induce the activation of Rac1 and produce a cascade of reactions that lead to EMT in breast cancer cells; this sequence of events further induces the movement, migration and invasion of tumor cells and affects the prognosis of breast cancer patients. In this paper, the roles of NaV1.5 and Rac1 in EMT-mediated breast cancer progression were reviewed.
Collapse
Affiliation(s)
- Zhuocen Zha
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
- Oncology department, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou, 550000, China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Na Li
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Shijun Zhang
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Chenxi Wang
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Fuhong Gong
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Jingge Miao
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Wenlin Chen
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China.
| |
Collapse
|
4
|
Djamgoz MBA. Electrical excitability of cancer cells-CELEX model updated. Cancer Metastasis Rev 2024; 43:1579-1591. [PMID: 38976181 PMCID: PMC11554705 DOI: 10.1007/s10555-024-10195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
The normal functioning of every cell in the body depends on its bioelectric properties and many diseases are caused by genetic and/or epigenetic dysregulation of the underlying ion channels. Metastasis, the main cause of death from cancer, is a complex multi-stage process in which cells break away from a primary tumour, invade the surrounding tissues, enter the circulation by encountering a blood vessel and spread around the body, ultimately lodging in distant organs and reproliferating to form secondary tumours leading to devastating organ failure. Such cellular behaviours are well known to involve ion channels. The CELEX model offers a novel insight to metastasis where it is the electrical excitation of the cancer cells that is responsible for their aggressive and invasive behaviour. In turn, the hyperexcitability is underpinned by concomitant upregulation of functional voltage-gated sodium channels and downregulation of voltage-gated potassium channels. Here, we update the in vitro and in vivo evidence in favour of the CELEX model for carcinomas. The results are unequivocal for the sodium channel. The potassium channel arm is also broadly supported by existing evidence although these data are complicated by the impact of the channels on the membrane potential and consequent secondary effects. Finally, consistent with the CELEX model, we show (i) that carcinomas are indeed electrically excitable and capable of generating action potentials and (ii) that combination of a sodium channel inhibitor and a potassium channel opener can produce a strong, additive anti-invasive effect. We discuss the possible clinical implications of the CELEX model in managing cancer.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
5
|
Zhang X, Liu J, Zuo C, Peng X, Xie J, Shu Y, Ao D, Zhang Y, Ye Q, Cai J. Role of SIK1 in tumors: Emerging players and therapeutic potentials (Review). Oncol Rep 2024; 52:169. [PMID: 39422046 PMCID: PMC11544583 DOI: 10.3892/or.2024.8828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Salt‑induced kinase 1 (SIK1) is a serine/threonine protein kinase that is a member of the AMP‑activated protein kinase family. SIK is catalytically activated through its phosphorylation by the upstream kinase LKB1. SIK1 has been reported to be associated with numerous types of cancer. The present review summarizes the structure, regulatory factors and inhibitors of SIK1, and also describes how SIK1 is a signal regulatory factor that fulfills connecting roles in various signal regulatory pathways. Furthermore, the anti‑inflammatory effects of SIK1 during the early stage of tumor occurrence and its different regulatory effects following tumor occurrence, are summarized, and through collating the tumor signal regulatory mechanisms in which SIK1 participates, it has been demonstrated that SIK1 acts as a necessary node in cancer signal transduction. In conclusion, SIK1 is discussed independent of the SIKs family, its research results and recent progress in oncology are summarized in detail with a focus on SIK1, and its potential as a therapeutic target is highlighted, underscoring the need for SIK1‑targeted regulatory strategies in future cancer therapy.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jing Liu
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Chenyang Zuo
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jinyuan Xie
- Department of Joint Surgery and Sports Medicine, Jingmen Central Hospital, Jingmen, Hubei 448000, P.R. China
| | - Ya Shu
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Dongxu Ao
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yang Zhang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qingqing Ye
- Department of Breast Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jun Cai
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
6
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
7
|
Leslie TK, Tripp A, James AD, Fraser SP, Nelson M, Sajjaboontawee N, Capatina AL, Toss M, Fadhil W, Salvage SC, Garcia MA, Beykou M, Rakha E, Speirs V, Bakal C, Poulogiannis G, Djamgoz MBA, Jackson AP, Matthews HR, Huang CLH, Holding AN, Chawla S, Brackenbury WJ. A novel Na v1.5-dependent feedback mechanism driving glycolytic acidification in breast cancer metastasis. Oncogene 2024; 43:2578-2594. [PMID: 39048659 PMCID: PMC11329375 DOI: 10.1038/s41388-024-03098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Solid tumours have abnormally high intracellular [Na+]. The activity of various Na+ channels may underlie this Na+ accumulation. Voltage-gated Na+ channels (VGSCs) have been shown to be functionally active in cancer cell lines, where they promote invasion. However, the mechanisms involved, and clinical relevance, are incompletely understood. Here, we show that protein expression of the Nav1.5 VGSC subtype strongly correlates with increased metastasis and shortened cancer-specific survival in breast cancer patients. In addition, VGSCs are functionally active in patient-derived breast tumour cells, cell lines, and cancer-associated fibroblasts. Knockdown of Nav1.5 in a mouse model of breast cancer suppresses expression of invasion-regulating genes. Nav1.5 activity increases ATP demand and glycolysis in breast cancer cells, likely by upregulating activity of the Na+/K+ ATPase, thus promoting H+ production and extracellular acidification. The pH of murine xenograft tumours is lower at the periphery than in the core, in regions of higher proliferation and lower apoptosis. In turn, acidic extracellular pH elevates persistent Na+ influx through Nav1.5 into breast cancer cells. Together, these findings show positive feedback between extracellular acidification and the movement of Na+ into cancer cells which can facilitate invasion. These results highlight the clinical significance of Nav1.5 activity as a potentiator of breast cancer metastasis and provide further evidence supporting the use of VGSC inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Theresa K Leslie
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Aurelien Tripp
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Andrew D James
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Scott P Fraser
- Department of Life Sciences, Imperial College London, London, UK
| | - Michaela Nelson
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Nattanan Sajjaboontawee
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Alina L Capatina
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Michael Toss
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Wakkas Fadhil
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, UK
| | | | - Mar Arias Garcia
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Melina Beykou
- Division of Cancer Biology, Institute of Cancer Research, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Emad Rakha
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Valerie Speirs
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Chris Bakal
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | | | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Haspolat, TRNC, Mersin, Turkey
| | - Antony P Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hugh R Matthews
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Christopher L-H Huang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Andrew N Holding
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Sangeeta Chawla
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
8
|
Liu H, Weng J, Huang CLH, Jackson AP. Voltage-gated sodium channels in cancers. Biomark Res 2024; 12:70. [PMID: 39060933 PMCID: PMC11282680 DOI: 10.1186/s40364-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) initiate action potentials in electrically excitable cells and tissues. Surprisingly, some VGSC genes are aberrantly expressed in a variety of cancers, derived from "non-excitable" tissues that do not generate classic action potentials, showing potential as a promising pharmacological target for cancer. Most of the previous review articles on this topic are limited in scope, and largely unable to provide researchers with a comprehensive understanding of the role of VGSC in cancers. Here, we review the expression patterns of all nine VGSC α-subunit genes (SCN1A-11A) and their four regulatory β-subunit genes (SCN1B-4B). We reviewed data from the Cancer Genome Atlas (TCGA) database, complemented by an extensive search of the published papers. We summarized and reviewed previous independent studies and analyzed the VGSC genes in the TCGA database regarding the potential impact of VGSC on cancers. A comparison between evidence gathered from independent studies and data review was performed to scrutinize potential biases in prior research and provide insights into future research directions. The review supports the view that VGSCs play an important role in diagnostics as well as therapeutics of some cancer types, such as breast, colon, prostate, and lung cancer. This paper provides an overview of the current knowledge on voltage-gated sodium channels in cancer, as well as potential avenues for further research. While further research is required to fully understand the role of VGSCs in cancer, the potential of VGSCs for clinical diagnosis and treatment is promising.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
9
|
Zhu T, Zhao J, Liu J, Tian S, Li S, Yuan H. Advances in the role of ion channels in leukemia. Heliyon 2024; 10:e33452. [PMID: 39027429 PMCID: PMC11254732 DOI: 10.1016/j.heliyon.2024.e33452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Ion channels are widely present in cell membranes, serving as crucial pathways for the movement of ions enter and exit cells. Variations in the expression of ion channels are crucial for regulating cellular functions. Among the genes associated with leukemia, certain genes encode ion channels. When these ion channels experience dysfunction or changes in expression, they can impact the physiological functions and signal transduction of hematopoietic cells, thereby regulating leukemia cell proliferation, differentiation, invasion/migration, and apoptosis. This article will provide a comprehensive review of the research progress on the expression and function of various ion channels in leukemia, thoroughly exploring their roles and mechanisms in the onset and progression of the disease, providing new insights and ideas for identifying potential biomarkers and developing new treatment methods for leukemia, thereby promoting innovations in future leukemia diagnosis and therapy.
Collapse
Affiliation(s)
- Tianjie Zhu
- Central Hospital of Dalian University of Technology, Dalian, China
| | - Jingyuan Zhao
- Central Hospital of Dalian University of Technology, Dalian, China
| | - Jinnan Liu
- Central Hospital of Dalian University of Technology, Dalian, China
| | - Siyu Tian
- Central Hospital of Dalian University of Technology, Dalian, China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong Yuan
- Central Hospital of Dalian University of Technology, Dalian, China
| |
Collapse
|
10
|
Moreddu R. Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304110. [PMID: 37984883 PMCID: PMC10767462 DOI: 10.1002/advs.202304110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Bioelectricity is the electrical activity that occurs within living cells and tissues. This activity is critical for regulating homeostatic cellular function and communication, and disruptions of the same can lead to a variety of conditions, including cancer. Cancer cells are known to exhibit abnormal electrical properties compared to their healthy counterparts, and this has driven researchers to investigate the potential of harnessing bioelectricity as a tool in cancer diagnosis, prognosis, and treatment. In parallel, bioelectricity represents one of the means to gain fundamental insights on how electrical signals and charges play a role in cancer insurgence, growth, and progression. This review provides a comprehensive analysis of the literature in this field, addressing the fundamentals of bioelectricity in single cancer cells, cancer cell cohorts, and cancerous tissues. The emerging role of bioelectricity in cancer proliferation and metastasis is introduced. Based on the acknowledgement that this biological information is still hard to access due to the existing gap between biological findings and translational medicine, the latest advancements in the field of nanotechnologies for cellular electrophysiology are examined, as well as the most recent developments in micro- and nano-devices for cancer diagnostics and therapy targeting bioelectricity.
Collapse
|
11
|
Feng S, Wei F, Shi H, Chen S, Wang B, Huang D, Luo L. Roles of salt‑inducible kinases in cancer (Review). Int J Oncol 2023; 63:118. [PMID: 37654200 PMCID: PMC10546379 DOI: 10.3892/ijo.2023.5566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Salt inducible kinases (SIKs) with three subtypes SIK1, SIK2 and SIK3, belong to the AMP‑activated protein kinase family. They are expressed ubiquitously in humans. Under normal circumstances, SIK1 regulates adrenocortical function in response to high salt or adrenocorticotropic hormone stimulation, SIK2 is involved in cell metabolism, controlling insulin signaling and gluconeogenesis and SIK3 coordinates with the mTOR complex, promoting cancer. The dysregulation of SIKs has been widely detected in various types of cancers. Based on most of the existing studies, SIK1 is mostly considered a tumor inhibitor, SIK2 and SIK3 are usually associated with tumor promotion. However, the functions of SIKs have shown contradictory in certain tumors, suggesting that SIKs cannot be simply classified as oncogenes or tumor suppressor genes. The present review provided a comprehensive summary of the roles of SIKs in the initiation and progression of different cancers, aiming to elucidate their clinical value and discuss potential strategies for targeting SIKs in cancer therapy.
Collapse
Affiliation(s)
- Shenghui Feng
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fangyi Wei
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haoran Shi
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shen Chen
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bangqi Wang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
Bian Y, Tuo J, He L, Li W, Li S, Chu H, Zhao Y. Voltage-gated sodium channels in cancer and their specific inhibitors. Pathol Res Pract 2023; 251:154909. [PMID: 37939447 DOI: 10.1016/j.prp.2023.154909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Voltage-gated sodium channels (VGSCs) participate in generating and spreading action potentials in electrically excited cells such as neurons and muscle fibers. Abnormal expression of VGSCs has been observed in various types of tumors, while they are either not expressed or expressed at a low level in the matching normal tissue. Hence, this abnormal expression suggests that VGSCs confer some advantage or viability on tumor cells, making them a valuable indicator for identifying tumor cells. In addition, overexpression of VGSCs increased the ability of cancer cells to metastasize and invade, as well as correlated with the metastatic behavior of different cancers. Therefore, blocking VGSCs presents a new strategy for the treatment of cancers. A portion of this review summarizes the structure and function of VGSCs and also describes the correlation between VGSCs and cancers. Most importantly, we provide an overview of current research on various subtype-selective VGSC inhibitors and updates on ongoing clinical studies.
Collapse
Affiliation(s)
- Yuan Bian
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiale Tuo
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Liangpeng He
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shangxiao Li
- School of Medical Devices, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, PR China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
13
|
Keleş D, Sipahi M, İnanç-Sürer Ş, Djamgoz MB, Oktay G. Tetracaine downregulates matrix metalloproteinase activity and inhibits invasiveness of strongly metastatic MDA-MB-231 human breast cancer cells. Chem Biol Interact 2023; 385:110730. [PMID: 37806380 DOI: 10.1016/j.cbi.2023.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Tetracaine, a long-acting amino ester-type local anesthetic, prevents the initiation and propagation of action potentials by reversibly blocking voltage-gated sodium channels (VGSCs). These channels, which are highly expressed in several carcinomas (e.g. breast, prostate, colon and lung cancers) have been implicated in promoting metastatic behaviours. Recent evidence suggests that local anesthetics can suppress cancer progression. In this paper, we aimed to explore whether tetracaine would reduce the invasive characteristics of breast cancer cells. In a comparative approach, we used two cell lines of contracting metastatic potential: MDA-MB-231 (strongly metastatic) and MCF-7 (weakly metastatic). Tetracaine (50 μM and 75 μM) did not affect the proliferation of both MDA-MB-231 and MCF-7 cells. Importantly, tetracaine suppressed the migratory, invasive, and adhesive capacities of MDA-MB-231 cells; there was no effect on the motility of MCF-7 cells. Tetracaine treatment also significantly decreased the expression and activity levels of MMP-2 and MMP-9, whilst increasing TIMP-2 expression in MDA-MB-231 cells. On the other hand, VGSC α/Nav1.5 and VGSC-β1 mRNA and protein expression levels were not affected. We conclude that tetracaine has anti-invasive effects on breast cancer cells and may be exploited clinically, for example, in surgery and/or in combination therapies.
Collapse
Affiliation(s)
- Didem Keleş
- Izmir University of Economics, Vocational School of Health Services, Medical Laboratory Techniques, 35330, Balcova, Izmir, Turkey; Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Murat Sipahi
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Şeniz İnanç-Sürer
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Mustafa Ba Djamgoz
- Imperial College London, Department of Life Sciences, South Kensington Campus, SW7 2AZ, London, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| | - Gülgün Oktay
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey.
| |
Collapse
|
14
|
Malcolm JR, Sajjaboontawee N, Yerlikaya S, Plunkett-Jones C, Boxall PJ, Brackenbury WJ. Voltage-gated sodium channels, sodium transport and progression of solid tumours. CURRENT TOPICS IN MEMBRANES 2023; 92:71-98. [PMID: 38007270 DOI: 10.1016/bs.ctm.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Sodium (Na+) concentration in solid tumours of different origin is highly dysregulated, and this corresponds to the aberrant expression of Na+ transporters. In particular, the α subunits of voltage gated Na+ channels (VGSCs) raise intracellular Na+ concentration ([Na+]i) in malignant cells, which influences the progression of solid tumours, predominantly driving cancer cells towards a more aggressive and metastatic phenotype. Conversely, re-expression of VGSC β subunits in cancer cells can either enhance tumour progression or promote anti-tumourigenic properties. Metastasis is the leading cause of cancer-related mortality, highlighting an important area of research which urgently requires improved therapeutic interventions. Here, we review the extent to which VGSC subunits are dysregulated in solid tumours, and consider the implications of such dysregulation on solid tumour progression. We discuss current understanding of VGSC-dependent mechanisms underlying increased invasive and metastatic potential of solid tumours, and how the complex relationship between the tumour microenvironment (TME) and VGSC expression may further drive tumour progression, in part due to the interplay of infiltrating immune cells, cancer-associated fibroblasts (CAFs) and insufficient supply of oxygen (hypoxia). Finally, we explore past and present clinical trials that investigate utilising existing VGSC modulators as potential pharmacological options to support adjuvant chemotherapies to prevent cancer recurrence. Such research demonstrates an exciting opportunity to repurpose therapeutics in order to improve the disease-free survival of patients with aggressive solid tumours.
Collapse
Affiliation(s)
- Jodie R Malcolm
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Nattanan Sajjaboontawee
- Department of Biology, University of York, Heslington, York, United Kingdom; York Biomedical Research Institute, University of York, Heslington, York, United Kingdom
| | - Serife Yerlikaya
- Department of Biology, University of York, Heslington, York, United Kingdom; Istanbul Medipol University, Research Institute for Health Sciences and Technologies, Istanbul, Turkey
| | | | - Peter J Boxall
- Department of Biology, University of York, Heslington, York, United Kingdom; York and Scarborough Teaching Hospitals NHS Foundation Trust, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, United Kingdom; York Biomedical Research Institute, University of York, Heslington, York, United Kingdom.
| |
Collapse
|
15
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Leslie TK, Brackenbury WJ. Sodium channels and the ionic microenvironment of breast tumours. J Physiol 2023; 601:1543-1553. [PMID: 36183245 PMCID: PMC10953337 DOI: 10.1113/jp282306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
Cancers of epithelial origin such as breast, prostate, cervical, gastric, colon and lung cancer account for a large proportion of deaths worldwide. Better treatment of metastasis, the main cause of cancer deaths, is therefore urgently required. Several of these tumours have been shown to have an abnormally high concentration of Na+ ([Na+ ]) and emerging evidence points to this accumulation being due to elevated intracellular [Na+ ]. This poses intriguing questions about the cellular mechanisms underlying Na+ dysregulation in cancer, and its pathophysiological significance. Elevated intracellular [Na+ ] may be due to alterations in activity of the Na+ /K+ -ATPase, and/or increased influx via Na+ channels and Na+ -linked transporters. Maintenance of the electrochemical Na+ gradient across the plasma membrane is vital to power many cellular processes that are highly active in cancer cells, including glucose and glutamine import. Na+ channels are also upregulated in cancer cells, which in turn promotes tumour growth and metastasis. For example, ENaC and ASICs are overexpressed in cancers, increasing invasion and proliferation. In addition, voltage-gated Na+ channels are also upregulated in a range of tumour types, where they promote metastatic cell behaviours via various mechanisms, including membrane potential depolarisation and altered pH regulation. Together, recent findings relating to elevated Na+ in the tumour microenvironment and how this may be regulated by several classes of Na+ channels provide a link between altered Na+ handling and poor clinical outcome. There are new opportunities to leverage this altered Na+ microenvironment for therapeutic benefit, as exemplified by several ongoing clinical trials.
Collapse
Affiliation(s)
- Theresa K. Leslie
- Department of BiologyUniversity of YorkHeslingtonYorkUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkHeslingtonYorkUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkUK
| |
Collapse
|
17
|
James AD, Unthank KP, Jones I, Sajjaboontawee N, Sizer RE, Chawla S, Evans GJO, Brackenbury WJ. Sodium regulates PLC and IP 3 R-mediated calcium signaling in invasive breast cancer cells. Physiol Rep 2023; 11:e15663. [PMID: 37017052 PMCID: PMC10074044 DOI: 10.14814/phy2.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Intracellular Ca2+ signaling and Na+ homeostasis are inextricably linked via ion channels and co-transporters, with alterations in the concentration of one ion having profound effects on the other. Evidence indicates that intracellular Na+ concentration ([Na+ ]i ) is elevated in breast tumors, and that aberrant Ca2+ signaling regulates numerous key cancer hallmark processes. The present study therefore aimed to determine the effects of Na+ depletion on intracellular Ca2+ handling in metastatic breast cancer cell lines. The relationship between Na+ and Ca2+ was probed using fura-2 and SBFI fluorescence imaging and replacement of extracellular Na+ with equimolar N-methyl-D-glucamine (0Na+ /NMDG) or choline chloride (0Na+ /ChoCl). In triple-negative MDA-MB-231 and MDA-MB-468 cells and Her2+ SKBR3 cells, but not ER+ MCF-7 cells, 0Na+ /NMDG and 0Na+ /ChoCl resulted in a slow, sustained depletion in [Na+ ]i that was accompanied by a rapid and sustained increase in intracellular Ca2+ concentration ([Ca2+ ]i ). Application of La3+ in nominal Ca2+ -free conditions had no effect on this response, ruling out reverse-mode NCX activity and Ca2+ entry channels. Moreover, the Na+ -linked [Ca2+ ]i increase was independent of membrane potential hyperpolarization (NS-1619), but was inhibited by pharmacological blockade of IP3 receptors (2-APB), phospholipase C (PLC, U73122) or following depletion of endoplasmic reticulum Ca2+ stores (cyclopiazonic acid). Thus, Na+ is linked to PLC/IP3 -mediated activation of endoplasmic reticulum Ca2+ release in metastatic breast cancer cells and this may have an important role in breast tumors where [Na+ ]i is perturbed.
Collapse
Affiliation(s)
- Andrew D. James
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | | | - Nattanan Sajjaboontawee
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | - Sangeeta Chawla
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Gareth J. O. Evans
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
18
|
Sarı C, Değirmencioğlu İ, Eyüpoğlu FC. Synthesis and characterization of novel Schiff base-silicon (IV) phthalocyanine complex for photodynamic therapy of breast cancer cell lines. Photodiagnosis Photodyn Ther 2023; 42:103504. [PMID: 36907257 DOI: 10.1016/j.pdpdt.2023.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Photodynamic therapy is an alternative anticancer treatment approach that promises high therapeutic efficacy. In this study, it is aimed to investigate the PDT-mediated anticancer effects of newly synthesized silicon phthalocyanine (SiPc) molecules on MDA-MB-231, MCF-7 breast cancer cell lines, and non-tumorigenic MCF-10A breast cell line. METHODS Novel bromo substituted Schiff base (3a), its nitro homolog (3b), and their silicon complexes (SiPc-5a and SiPc-5b) were synthesized. Their proposed structures were confirmed by FT-IR, NMR, UV-vis and MS instrumental techniques. MDA-MB-231, MCF-7 and MCF-10A cells were illuminated at a light wavelength of 680 nm for 10 min, giving a total irradiation dose of 10 j/cm2. MTT assay was used to determine the cytotoxic effects of SiPc-5a and SiPc-5b. Apoptotic cell death was analyzed using flow cytometry. Changes in the mitochondrial membrane potential were determined by TMRE staining. Intracellular ROS generation was observed microscopically using H2DCFDA dye. Colony formation assay and in vitro scratch assay were performed to analyze the clonogenic activity and cell motility. Transwell migration and matrigel invasion analyzes were conducted to observe changes in the migration and invasion status of the cells. RESULTS The combination of SiPc-5a and SiPc-5b with PDT exhibited cytotoxic effects on cancer cells and triggered cell death. SiPc-5a/PDT and SiPc-5b/PDT decreased mitochondrial membrane potential and increased intracellular ROS production. Statistically significant changes were detected in cancer cells' colony-forming ability and motility. SiPc-5a/PDT and SiPc-5b/PDT reduced cancer cells' migration and invasion capacities. CONCLUSION The present study identifies PDT-mediated antiproliferative, apoptotic, and anti-migratory characteristics of novel SiPc molecules. The outcomes of this study emphasize the anticancer properties of these molecules and suggest that they may be evaluated as drug-candidate molecules for therapeutic purposes.
Collapse
Affiliation(s)
- Ceren Sarı
- Department of Medical Biology, Institute of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - İsmail Değirmencioğlu
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Figen Celep Eyüpoğlu
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
19
|
Erdogan MA, Yuca E, Ashour A, Gurbuz N, Sencan S, Ozpolat B. SCN5A promotes the growth and lung metastasis of triple-negative breast cancer through EF2-kinase signaling. Life Sci 2023; 313:121282. [PMID: 36526045 DOI: 10.1016/j.lfs.2022.121282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Mumin Alper Erdogan
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Erkan Yuca
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ahmed Ashour
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Nilgun Gurbuz
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sevide Sencan
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Nanomedicine, Innovative Cancer Therapeutics, Dr. Marr and Roy Neil Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
21
|
Pellegrino M, Ricci E, Ceraldi R, Nigro A, Bonofiglio D, Lanzino M, Morelli C. From HDAC to Voltage-Gated Ion Channels: What's Next? The Long Road of Antiepileptic Drugs Repositioning in Cancer. Cancers (Basel) 2022; 14:cancers14184401. [PMID: 36139561 PMCID: PMC9497059 DOI: 10.3390/cancers14184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although in the last decades the clinical outcome of cancer patients considerably improved, the major drawbacks still associated with chemotherapy are the unwanted side effects and the development of drug resistance. Therefore, a continuous effort in trying to discover new tumor markers, possibly of diagnostic, prognostic and therapeutic value, is being made. This review is aimed at highlighting the anti-tumor activity that several antiepileptic drugs (AEDs) exert in breast, prostate and other types of cancers, mainly focusing on their ability to block the voltage-gated Na+ and Ca++ channels, as well as to inhibit the activity of histone deacetylases (HDACs), all well-documented tumor markers and/or molecular targets. The existence of additional AEDs molecular targets is highly suspected. Therefore, the repurposing of already available drugs as adjuvants in cancer treatment would have several advantages, such as reductions in dose-related toxicity CVs will be sent in a separate mail to the indicated address of combined treatments, lower production costs, and faster approval for clinical use. Abstract Cancer is a major health burden worldwide. Although the plethora of molecular targets identified in the last decades and the deriving developed treatments, which significantly improved patients’ outcome, the occurrence of resistance to therapies remains the major cause of relapse and mortality. Thus, efforts in identifying new markers to be exploited as molecular targets in cancer therapy are needed. This review will first give a glance on the diagnostic and therapeutic significance of histone deacetylase (HDAC) and voltage gated ion channels (VGICs) in cancer. Nevertheless, HDAC and VGICs have also been reported as molecular targets through which antiepileptic drugs (AEDs) seem to exert their anticancer activity. This should be claimed as a great advantage. Indeed, due to the slowness of drug approval procedures, the attempt to turn to off-label use of already approved medicines would be highly preferable. Therefore, an updated and accurate overview of both preclinical and clinical data of commonly prescribed AEDs (mainly valproic acid, lamotrigine, carbamazepine, phenytoin and gabapentin) in breast, prostate, brain and other cancers will follow. Finally, a glance at the emerging attempt to administer AEDs by means of opportunely designed drug delivery systems (DDSs), so to limit toxicity and improve bioavailability, is also given.
Collapse
Affiliation(s)
| | | | | | | | | | - Marilena Lanzino
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| | - Catia Morelli
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| |
Collapse
|
22
|
Sharudin NA, Murtadha Noor Din AH, Azahar II, Azlan MM, Yaacob NS, Sarmiento ME, Dominguez AA, Mokhtar NF. Invasion and Metastasis Suppression by Anti-Neonatal Nav1.5 Antibodies in Breast Cancer. Asian Pac J Cancer Prev 2022; 23:2953-2964. [PMID: 36172657 PMCID: PMC9810324 DOI: 10.31557/apjcp.2022.23.9.2953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Detectable neonatal Nav1.5 (nNav1.5) expression in tumour breast tissue positive for lymph node metastasis and triple-negative subtype serves as a valid tumour-associated antigen to target and prevent breast cancer invasion and metastasis. Therapeutic antibodies against tumour antigens have become the predominant class of new drugs in cancer therapy because of their fewer adverse effects and high specificity. OBJECTIVE This study was designed to investigate the therapeutic and anti-metastatic potential of the two newly obtained anti-nNav1.5 antibodies, polyclonal anti-nNav1.5 (pAb-nNav1.5) and monoclonal anti-nNav1.5 (mAb-nNav1.5), on breast cancer invasion and metastasis. METHODS MDA-MB-231 and 4T1 cells were used as in vitro models to study the effect of pAb-nNav1.5 (59.2 µg/ml) and mAb-nNav1.5 (10 µg/ml) (24 hours treatment) on cell invasion. 4T1-induced mammary tumours in BALB/c female mice were used as an in vivo model to study the effect of a single dose of intravenous pAb-nNav1.5 (1 mg/ml) and mAb-nNav1.5 (1 mg/ml) on the occurrence of metastasis. Real-time PCR and immunofluorescence staining were conducted to assess the effect of antibody treatment on nNav1.5 mRNA and protein expression, respectively. The animals' body weight, organs, lesions, and tumour mass were also measured and compared. RESULTS pAb-nNav1.5 and mAb-nNav1.5 treatments effectively suppressed the invasion of MDA-MB-231 and 4T1 cells in the 3D spheroid invasion assay. Both antibodies significantly reduced nNav1.5 gene and protein expression in these cell lines. Treatment with pAb-nNav1.5 and mAb-nNav1.5 successfully reduced mammary tumour tissue size and mass and prevented lesions in vital organs of the mammary tumour animal model whilst maintaining the animal's healthy weight. mRNA expression of nNav1.5 in mammary tumour tissues was only reduced by mAb-nNav1.5. CONCLUSION Overall, this work verifies the uniqueness of targeting nNav1.5 in breast cancer invasion and metastasis prevention, but more importantly, humanised versions of mAb-nNav1.5 may be valuable passive immunotherapeutic agents to target nNav1.5 in breast cancer.
Collapse
Affiliation(s)
- Nur Aishah Sharudin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Ahmad Hafiz Murtadha Noor Din
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Irfan Irsyad Azahar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mawaddah Mohd Azlan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Maria Elena Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Armando Acosta Dominguez
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia. ,For Correspondence:
| |
Collapse
|
23
|
James AD, Leslie TK, Kaggie JD, Wiggins L, Patten L, Murphy O'Duinn J, Langer S, Labarthe MC, Riemer F, Baxter G, McLean MA, Gilbert FJ, Kennerley AJ, Brackenbury WJ. Sodium accumulation in breast cancer predicts malignancy and treatment response. Br J Cancer 2022; 127:337-349. [PMID: 35462561 PMCID: PMC9296657 DOI: 10.1038/s41416-022-01802-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer remains a leading cause of death in women and novel imaging biomarkers are urgently required. Here, we demonstrate the diagnostic and treatment-monitoring potential of non-invasive sodium (23Na) MRI in preclinical models of breast cancer. METHODS Female Rag2-/- Il2rg-/- and Balb/c mice bearing orthotopic breast tumours (MDA-MB-231, EMT6 and 4T1) underwent MRI as part of a randomised, controlled, interventional study. Tumour biology was probed using ex vivo fluorescence microscopy and electrophysiology. RESULTS 23Na MRI revealed elevated sodium concentration ([Na+]) in tumours vs non-tumour regions. Complementary proton-based diffusion-weighted imaging (DWI) linked elevated tumour [Na+] to increased cellularity. Combining 23Na MRI and DWI measurements enabled superior classification accuracy of tumour vs non-tumour regions compared with either parameter alone. Ex vivo assessment of isolated tumour slices confirmed elevated intracellular [Na+] ([Na+]i); extracellular [Na+] ([Na+]e) remained unchanged. Treatment with specific inward Na+ conductance inhibitors (cariporide, eslicarbazepine acetate) did not affect tumour [Na+]. Nonetheless, effective treatment with docetaxel reduced tumour [Na+], whereas DWI measures were unchanged. CONCLUSIONS Orthotopic breast cancer models exhibit elevated tumour [Na+] that is driven by aberrantly elevated [Na+]i. Moreover, 23Na MRI enhances the diagnostic capability of DWI and represents a novel, non-invasive biomarker of treatment response with superior sensitivity compared to DWI alone.
Collapse
Affiliation(s)
- Andrew D James
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | | | - Joshua D Kaggie
- Department of Radiology & NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | - Lewis Patten
- Department of Mathematics, University of York, York, UK
| | | | - Swen Langer
- Bioscience Technology Facility, Department of Biology, University of York, York, UK
| | | | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital Bergen, Bergen, Norway
| | - Gabrielle Baxter
- Department of Radiology & NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Mary A McLean
- Department of Radiology & NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Fiona J Gilbert
- Department of Radiology & NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Aneurin J Kennerley
- York Biomedical Research Institute, University of York, York, UK
- Department of Chemistry, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
24
|
Anti-invasive effects of minoxidil on human breast cancer cells: combination with ranolazine. Clin Exp Metastasis 2022; 39:679-689. [PMID: 35643818 PMCID: PMC9338910 DOI: 10.1007/s10585-022-10166-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
A plethora of ion channels have been shown to be involved systemically in the pathophysiology of cancer and ion channel blockers can produce anti-metastatic effects. However, although ion channels are known to frequently function in concerted action, little is known about possible combined effects of ion channel modulators on metastatic cell behaviour. Here, we investigated functional consequences of pharmacologically modulating ATP-gated potassium (KATP) channel and voltage-gated sodium channel (VGSC) activities individually and in combination. Two triple-negative human breast cancer cell lines were used: MDA-MB-231 and MDA-MB-468, the latter mainly for comparison. Most experiments were carried out on hypoxic cells. Electrophysiological effects were studied by whole-cell patch clamp recording. Minoxidil (a KATP channel opener) and ranolazine (a blocker of the VGSC persistent current) had no effect on cell viability and proliferation, alone or in combination. In contrast, invasion was significantly reduced in a dose-dependent manner by clinical concentrations of minoxidil and ranolazine. Combining the two drugs produced significant additive effects at concentrations as low as 0.625 μM ranolazine and 2.5 μM minoxidil. Electrophysiologically, acute application of minoxidil shifted VGSC steady-state inactivation to more hyperpolarised potentials and slowed recovery from inactivation, consistent with inhibition of VGSC activation. We concluded (i) that clinically relevant doses of minoxidil and ranolazine individually could inhibit cellular invasiveness dose dependently and (ii) that their combination was additionally effective. Accordingly, ranolazine, minoxidil and their combination may be repurposed as novel anti-metastatic agents.
Collapse
|
25
|
Djamgoz MBA. Ion Transporting Proteins and Cancer: Progress and Perspectives. Rev Physiol Biochem Pharmacol 2022; 183:251-277. [PMID: 35018530 DOI: 10.1007/112_2021_66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion transporting proteins (ITPs) comprise a wide range of ion channels, exchangers, pumps and ionotropic receptors many of which are expressed in tumours and contribute dynamically to the different components and stages of the complex cancer process, from initiation to metastasis. In this promising major field of biomedical research, several candidate ITPs have emerged as clinically viable. Here, we consider a series of general issues concerning the oncological potential of ITPs focusing on voltage-gated sodium channels as a 'case study'. First, we outline some key properties of 'cancer' as a whole. These include epigenetics, stemness, metastasis, heterogeneity, neuronal characteristics and bioelectricity. Cancer specificity of ITP expression is evaluated in relation to tissue restriction, splice variance, functional specificity and macro-molecular complexing. As regards clinical potential, diagnostics is covered with emphasis on enabling early detection. For therapeutics, we deal with molecular approaches, drug repurposing and combinations. Importantly, we emphasise the need for carefully designed clinical trials. We highlight also the area of 'social responsibility' and the need to involve the public (cancer patients and healthy individuals) in the work of cancer research professionals as well as clinicians. In advising patients how best to manage cancer, and live with it, we offer the following four principles: Awareness and prevention, early detection, specialist, integrated care, and psychological support. Finally, we highlight four key prerequisites for commercialisation of ITP-based technologies against cancer. We conclude that ITPs offer significant potential as regards both understanding the intricacies of the complex process of cancer and for developing much needed novel therapies.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK. .,Biotechnology Research Centre, Cyprus International University, Nicosia, Mersin, Turkey.
| |
Collapse
|
26
|
Xu P, Zhang S, Tan L, Wang L, Yang Z, Li J. Local Anesthetic Ropivacaine Exhibits Therapeutic Effects in Cancers. Front Oncol 2022; 12:836882. [PMID: 35186766 PMCID: PMC8851418 DOI: 10.3389/fonc.2022.836882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
Despite the significant progress in cancer treatment, new anticancer therapeutics drugs with new structures and/or mechanisms are still in urgent need to tackle many key challenges. Drug repurposing is a feasible strategy in discovering new drugs among the approved drugs by defining new indications. Recently, ropivacaine, a local anesthetic that has been applied in clinical practice for several decades, has been found to possess inhibitory activity and sensitizing effects when combined with conventional chemotherapeutics toward cancer cells. While its full applications and the exact targets remain to be revealed, it has been indicated that its anticancer potency was mediated by multiple mechanisms, such as modulating sodium channel, inducing mitochondria-associated apoptosis, cell cycle arrest, inhibiting autophagy, and/or regulating other key players in cancer cells, which can be termed as multi-targets/functions that require more in-depth studies. In this review, we attempted to summarize the research past decade of using ropivacaine in suppressing cancer growth and sensitizing anticancer drugs both in-vitro and in-vivo, and tried to interpret the underlying action modes. The information gained in these findings may inspire multidisciplinary efforts to develop/discover more novel anticancer agents via drug repurposing.
Collapse
Affiliation(s)
- Peng Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaobo Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Tan
- Department of Anesthesiology, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Lei Wang
- Department of Anesthesiology, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Zhongwei Yang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Massó-Vallés D, Beaulieu ME, Jauset T, Giuntini F, Zacarías-Fluck MF, Foradada L, Martínez-Martín S, Serrano E, Martín-Fernández G, Casacuberta-Serra S, Castillo Cano V, Kaur J, López-Estévez S, Morcillo MÁ, Alzrigat M, Mahmoud L, Luque-García A, Escorihuela M, Guzman M, Arribas J, Serra V, Larsson LG, Whitfield JR, Soucek L. MYC Inhibition Halts Metastatic Breast Cancer Progression by Blocking Growth, Invasion, and Seeding. CANCER RESEARCH COMMUNICATIONS 2022; 2:110-130. [PMID: 36860495 PMCID: PMC9973395 DOI: 10.1158/2767-9764.crc-21-0103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/31/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
MYC's role in promoting tumorigenesis is beyond doubt, but its function in the metastatic process is still controversial. Omomyc is a MYC dominant negative that has shown potent antitumor activity in multiple cancer cell lines and mouse models, regardless of their tissue of origin or driver mutations, by impacting on several of the hallmarks of cancer. However, its therapeutic efficacy against metastasis has not been elucidated yet. Here we demonstrate for the first time that MYC inhibition by transgenic Omomyc is efficacious against all breast cancer molecular subtypes, including triple-negative breast cancer, where it displays potent antimetastatic properties both in vitro and in vivo. Importantly, pharmacologic treatment with the recombinantly produced Omomyc miniprotein, recently entering a clinical trial in solid tumors, recapitulates several key features of expression of the Omomyc transgene, confirming its clinical applicability to metastatic breast cancer, including advanced triple-negative breast cancer, a disease in urgent need of better therapeutic options. Significance While MYC role in metastasis has been long controversial, this manuscript demonstrates that MYC inhibition by either transgenic expression or pharmacologic use of the recombinantly produced Omomyc miniprotein exerts antitumor and antimetastatic activity in breast cancer models in vitro and in vivo, suggesting its clinical applicability.
Collapse
Affiliation(s)
- Daniel Massó-Vallés
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marie-Eve Beaulieu
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Toni Jauset
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fabio Giuntini
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Mariano F. Zacarías-Fluck
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Laia Foradada
- Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandra Martínez-Martín
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Erika Serrano
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Génesis Martín-Fernández
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | | | | | - Jastrinjan Kaur
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | | | - Miguel Ángel Morcillo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Loay Mahmoud
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Antonio Luque-García
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Marta Escorihuela
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Marta Guzman
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Joaquín Arribas
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Violeta Serra
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Jonathan R. Whitfield
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Laura Soucek
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Corresponding Author: Laura Soucek, Vall d'Hebron Institute of Oncology (VHIO), C/ Natzaret, 115-117, CELLEX Centre, Barcelona 08035, Spain. Phone: 349-3254-3450; E-mail:
| |
Collapse
|
28
|
Discovering the Triad between Nav1.5, Breast Cancer, and the Immune System: A Fundamental Review and Future Perspectives. Biomolecules 2022; 12:biom12020310. [PMID: 35204811 PMCID: PMC8869595 DOI: 10.3390/biom12020310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Nav1.5 is one of the nine voltage-gated sodium channel-alpha subunit (VGSC-α) family members. The Nav1.5 channel typically carries an inward sodium ion current that depolarises the membrane potential during the upstroke of the cardiac action potential. The neonatal isoform of Nav1.5, nNav1.5, is produced via VGSC-α alternative splicing. nNav1.5 is known to potentiate breast cancer metastasis. Despite their well-known biological functions, the immunological perspectives of these channels are poorly explored. The current review has attempted to summarise the triad between Nav1.5 (nNav1.5), breast cancer, and the immune system. To date, there is no such review available that encompasses these three components as most reviews focus on the molecular and pharmacological prospects of Nav1.5. This review is divided into three major subsections: (1) the review highlights the roles of Nav1.5 and nNav1.5 in potentiating the progression of breast cancer, (2) focuses on the general connection between breast cancer and the immune system, and finally (3) the review emphasises the involvements of Nav1.5 and nNav1.5 in the functionality of the immune system and the immunogenicity. Compared to the other subsections, section three is pretty unexploited; it would be interesting to study this subsection as it completes the triad.
Collapse
|
29
|
Fnu G, Weber GF. Alterations of Ion Homeostasis in Cancer Metastasis: Implications for Treatment. Front Oncol 2022; 11:765329. [PMID: 34988012 PMCID: PMC8721045 DOI: 10.3389/fonc.2021.765329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
We have previously reported that metastases from all malignancies are characterized by a core program of gene expression that suppresses extracellular matrix interactions, induces vascularization/tissue remodeling, activates the oxidative metabolism, and alters ion homeostasis. Among these features, the least elucidated component is ion homeostasis. Here we review the literature with the goal to infer a better mechanistic understanding of the progression-associated ionic alterations and identify the most promising drugs for treatment. Cancer metastasis is accompanied by skewing in calcium, zinc, copper, potassium, sodium and chloride homeostasis. Membrane potential changes and water uptake through Aquaporins may also play roles. Drug candidates to reverse these alterations are at various stages of testing, with some having entered clinical trials. Challenges to their utilization comprise differences among tumor types and the involvement of multiple ions in each case. Further, adverse effects may become a concern, as channel blockers, chelators, or supplemented ions will affect healthy and transformed cells alike.
Collapse
Affiliation(s)
- Gulimirerouzi Fnu
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| | - Georg F Weber
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| |
Collapse
|
30
|
Voltage-Gated Sodium Channels as Potential Biomarkers and Therapeutic Targets for Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13215437. [PMID: 34771603 PMCID: PMC8582439 DOI: 10.3390/cancers13215437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Voltage-gated sodium channels are membrane proteins that change conformation in response to depolarization of the membrane potential, allowing sodium ions to flow into cells. While voltage-gated sodium channels are normally studied in terms of neuron impulses and skeletal or cardiac muscle contraction, abnormal ion channel expression is a feature of many cancer cells. The aim of our study was to assess the expression of voltage-gated sodium channels in ovarian cancer cells. We found that ovarian cancer cells generally express lower levels of voltage-gated sodium channels than normal cells and that two voltage-gated sodium channels, SCN8A and SCN1B, were prognostic biomarkers for ovarian cancer overall survival. In vitro studies suggested that drugs that block voltage-gated sodium channels, such as certain anti-epileptic drugs and local anesthetics, might sensitize ovarian cancer cells to chemotherapy. These findings suggest that voltage-gated sodium channels may be interesting targets for ovarian cancer therapy. Abstract Abnormal ion channel expression distinguishes several types of carcinoma. Here, we explore the relationship between voltage-gated sodium channels (VGSC) and epithelial ovarian cancer (EOC). We find that EOC cell lines express most VGSC, but at lower levels than fallopian tube secretory epithelial cells (the cells of origin for most EOC) or control fibroblasts. Among patient tumor samples, lower SCN8A expression was associated with improved overall survival (OS) (median 111 vs. 52 months; HR 2.04 95% CI: 1.21–3.44; p = 0.007), while lower SCN1B expression was associated with poorer OS (median 45 vs. 56 months; HR 0.69 95% CI 0.54–0.87; p = 0.002). VGSC blockade using either anti-epileptic drugs or local anesthetics (LA) decreased the proliferation of cancer cells. LA increased cell line sensitivity to platinum and taxane chemotherapies. While lidocaine had similar additive effects with chemotherapy among EOC cells and fibroblasts, bupivacaine showed a more pronounced impact on EOC than fibroblasts when combined with either carboplatin (ΔAUC −37% vs. −16%, p = 0.003) or paclitaxel (ΔAUC −37% vs. −22%, p = 0.02). Together, these data suggest VGSC are prognostic biomarkers in EOC and may inform new targets for therapy.
Collapse
|
31
|
Fraser SP, Tesi A, Bonito B, Ka Ming Hui M, Arcangeli A, Djamgoz MB. Potassium Channel Blockage and Invasiveness of Strongly Metastatic Prostate and Breast Cancer Cells. Bioelectricity 2021. [DOI: 10.1089/bioe.2020.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Scott P. Fraser
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
| | - Alessandra Tesi
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Benedetta Bonito
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marcus Ka Ming Hui
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mustafa B.A. Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, North Cyprus, Turkey
| |
Collapse
|
32
|
Fraser SP, Onkal R, Theys M, Bosmans F, Djamgoz MBA. Neonatal Na V 1.5: Pharmacological distinctiveness of a cancer-related voltage-gated sodium channel splice variant. Br J Pharmacol 2021; 179:473-486. [PMID: 34411279 DOI: 10.1111/bph.15668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Voltage-gated sodium (NaV ) channels are expressed de novo in carcinomas where their activity promotes invasiveness. Breast and colon cancer cells express the neonatal splice variant of NaV 1.5 (nNaV 1.5) which has several amino acid substitutions in the domain I voltage-sensor compared to its adult counterpart (aNaV 1.5). This study aimed to determine whether nNaV 1.5 could be distinguished pharmacologically from aNaV 1.5. EXPERIMENTAL APPROACH Cells expressing either nNaV 1.5 or aNaV 1.5 were exposed to small-molecule inhibitors, an antibody or natural toxins, and changes in electrophysiological parameters were measured. Stable expression in EBNA cells and transient expression in Xenopus laevis oocytes were used. Currents were recorded by whole-cell patch clamp and two-electrode voltage-clamp, respectively. KEY RESULTS Several clinically-used blockers of Nav channels (lidocaine, procaine, phenytoin, mexiletine, ranolazine and riluzole) could not distinguish between nNaV 1.5 or aNaV 1.5. On the other hand, two tarantula toxins (HaTx and ProTx-II) and a polyclonal antibody (NESOpAb) preferentially inhibited currents elicited by either nNaV 1.5 or aNaV 1.5 by binding to the spliced region of the channel. Furthermore, the amino acid residue at position 211 (aspartate in aNaV 1.5/lysine in nNaV 1.5), i.e. the charge reversal in the spliced region of the channel, played a key role in the selectivity especially in the antibody binding. CONCLUSION AND IMPLICATIONS We conclude that the cancer-related nNaV 1.5 channel can be distinguished pharmacologically from its nearest neighbour, aNaV 1.5. Thus, it may be possible to design small molecules as anti-metastatic drugs for non-toxic therapy of nNaV 1.5-expressing carcinomas.
Collapse
Affiliation(s)
- Scott P Fraser
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, London, UK
| | - Rustem Onkal
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, London, UK.,Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| | - Margaux Theys
- Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, London, UK.,Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
33
|
Lastraioli E, Fraser SP, Guzel RM, Iorio J, Bencini L, Scarpi E, Messerini L, Villanacci V, Cerino G, Ghezzi N, Perrone G, Djamgoz MBA, Arcangeli A. Neonatal Nav1.5 Protein Expression in Human Colorectal Cancer: Immunohistochemical Characterization and Clinical Evaluation. Cancers (Basel) 2021; 13:3832. [PMID: 34359733 PMCID: PMC8345135 DOI: 10.3390/cancers13153832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022] Open
Abstract
Voltage-gated Na+ channels (VGSCs) are expressed widely in human carcinomas and play a significant role in promoting cellular invasiveness and metastasis. However, human tissue-based studies and clinical characterization are lacking. In several carcinomas, including colorectal cancer (CRCa), the predominant VGSC is the neonatal splice variant of Nav1.5 (nNav1.5). The present study was designed to determine the expression patterns and clinical relevance of nNav1.5 protein in human CRCa tissues from patients with available clinicopathological history. The immunohistochemistry was made possible by the use of a polyclonal antibody (NESOpAb) specific for nNav1.5. The analysis showed that, compared with normal mucosa, nNav1.5 expression occurred in CRCa samples (i) at levels that were significantly higher and (ii) with a pattern that was more delineated (i.e., apical/basal or mixed). A surprisingly high level of nNav1.5 protein expression also occurred in adenomas, but this was mainly intracellular and diffuse. nNav1.5 showed a statistically significant association with TNM stage, highest expression being associated with TNM IV and metastatic status. Interestingly, nNav1.5 expression co-occurred with other biomarkers associated with metastasis, including hERG1, KCa3.1, VEGF-A, Glut1, and EGFR. Finally, univariate analysis showed that nNav1.5 expression had an impact on progression-free survival. We conclude (i) that nNav1.5 could represent a novel clinical biomarker ('companion diagnostic') useful to better stratify CRCa patients and (ii) that since nNav1.5 expression is functional, it could form the basis of anti-metastatic therapies including in combination with standard treatments.
Collapse
Affiliation(s)
- Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, viale GB Morgagni 50, 50134 Florence, Italy; (E.L.); (J.I.); (L.M.); (A.A.)
| | - Scott P. Fraser
- Department of Life Sciences, South Kensington Campus, Imperial College London, London SW7 2AZ, UK; (S.P.F.); (R.M.G.)
| | - R. Mine Guzel
- Department of Life Sciences, South Kensington Campus, Imperial College London, London SW7 2AZ, UK; (S.P.F.); (R.M.G.)
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, viale GB Morgagni 50, 50134 Florence, Italy; (E.L.); (J.I.); (L.M.); (A.A.)
| | - Lapo Bencini
- Department of Oncology, Division of Oncologic Surgery and Robotics, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy; (L.B.); (G.C.); (N.G.)
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P Maroncelli 40, 47014 Meldola, Italy;
| | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence, viale GB Morgagni 50, 50134 Florence, Italy; (E.L.); (J.I.); (L.M.); (A.A.)
| | - Vincenzo Villanacci
- Institute of Pathology, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy;
| | - Giulia Cerino
- Department of Oncology, Division of Oncologic Surgery and Robotics, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy; (L.B.); (G.C.); (N.G.)
| | - Niccolo’ Ghezzi
- Department of Oncology, Division of Oncologic Surgery and Robotics, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy; (L.B.); (G.C.); (N.G.)
| | - Giuseppe Perrone
- Pathology Unit, Campus Bio-Medico University, via A del Portillo 200, 00128 Rome, Italy;
| | - Mustafa B. A. Djamgoz
- Department of Life Sciences, South Kensington Campus, Imperial College London, London SW7 2AZ, UK; (S.P.F.); (R.M.G.)
- Cyprus International University, Biotechnology Research Centre, Haspolat, Mersin 10, Cyprus
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, viale GB Morgagni 50, 50134 Florence, Italy; (E.L.); (J.I.); (L.M.); (A.A.)
| |
Collapse
|
34
|
Lopez-Charcas O, Pukkanasut P, Velu SE, Brackenbury WJ, Hales TG, Besson P, Gomora JC, Roger S. Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. iScience 2021; 24:102270. [PMID: 33817575 PMCID: PMC8010468 DOI: 10.1016/j.isci.2021.102270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - William J. Brackenbury
- Department of Biology, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Tim G. Hales
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, the University of Dundee, DD1 9SY, Dundee, UK
| | - Pierre Besson
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Juan Carlos Gomora
- Instituto de Fisiología Celular, Circuito Exterior s/n Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico City, 04510 México
| | - Sébastien Roger
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
35
|
Koltai T, Reshkin SJ, Carvalho TMA, Cardone RA. Targeting the Stromal Pro-Tumoral Hyaluronan-CD44 Pathway in Pancreatic Cancer. Int J Mol Sci 2021; 22:3953. [PMID: 33921242 PMCID: PMC8069142 DOI: 10.3390/ijms22083953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. Present-day treatments have not shown real improvements in reducing the high mortality rate and the short survival of the disease. The average survival is less than 5% after 5 years. New innovative treatments are necessary to curtail the situation. The very dense pancreatic cancer stroma is a barrier that impedes the access of chemotherapeutic drugs and at the same time establishes a pro-proliferative symbiosis with the tumor, thus targeting the stroma has been suggested by many authors. No ideal drug or drug combination for this targeting has been found as yet. With this goal in mind, here we have explored a different complementary treatment based on abundant previous publications on repurposed drugs. The cell surface protein CD44 is the main receptor for hyaluronan binding. Many malignant tumors show over-expression/over-activity of both. This is particularly significant in pancreatic cancer. The independent inhibition of hyaluronan-producing cells, hyaluronan synthesis, and/or CD44 expression, has been found to decrease the tumor cell's proliferation, motility, invasion, and metastatic abilities. Targeting the hyaluronan-CD44 pathway seems to have been bypassed by conventional mainstream oncological practice. There are existing drugs that decrease the activity/expression of hyaluronan and CD44: 4-methylumbelliferone and bromelain respectively. Some drugs inhibit hyaluronan-producing cells such as pirfenidone. The association of these three drugs has never been tested either in the laboratory or in the clinical setting. We present a hypothesis, sustained by hard experimental evidence, suggesting that the simultaneous use of these nontoxic drugs can achieve synergistic or added effects in reducing invasion and metastatic potential, in PDAC. A non-toxic, low-cost scheme for inhibiting this pathway may offer an additional weapon for treating pancreatic cancer.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Rosa A. Cardone
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| |
Collapse
|
36
|
Altamura C, Greco MR, Carratù MR, Cardone RA, Desaphy JF. Emerging Roles for Ion Channels in Ovarian Cancer: Pathomechanisms and Pharmacological Treatment. Cancers (Basel) 2021; 13:668. [PMID: 33562306 PMCID: PMC7914442 DOI: 10.3390/cancers13040668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer (OC) is the deadliest gynecologic cancer, due to late diagnosis, development of platinum resistance, and inadequate alternative therapy. It has been demonstrated that membrane ion channels play important roles in cancer processes, including cell proliferation, apoptosis, motility, and invasion. Here, we review the contribution of ion channels in the development and progression of OC, evaluating their potential in clinical management. Increased expression of voltage-gated and epithelial sodium channels has been detected in OC cells and tissues and shown to be involved in cancer proliferation and invasion. Potassium and calcium channels have been found to play a critical role in the control of cell cycle and in the resistance to apoptosis, promoting tumor growth and recurrence. Overexpression of chloride and transient receptor potential channels was found both in vitro and in vivo, supporting their contribution to OC. Furthermore, ion channels have been shown to influence the sensitivity of OC cells to neoplastic drugs, suggesting a critical role in chemotherapy resistance. The study of ion channels expression and function in OC can improve our understanding of pathophysiology and pave the way for identifying ion channels as potential targets for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
| | - Maria Raffaella Greco
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
| |
Collapse
|
37
|
Sodium ion channels as potential therapeutic targets for cancer metastasis. Drug Discov Today 2021; 26:1136-1147. [PMID: 33545383 DOI: 10.1016/j.drudis.2021.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022]
Abstract
Is it possible to develop drugs for the treatment of a specific type of metastatic cancer by targeting sodium ion channels?
Collapse
|
38
|
Rajaratinam H, Rasudin NS, Al Astani TAD, Mokhtar NF, Yahya MM, Wan Zain WZ, Asma-Abdullah N, Mohd Fuad WE. Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer. Oncol Lett 2021; 21:108. [PMID: 33376541 PMCID: PMC7751336 DOI: 10.3892/ol.2020.12369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/05/2020] [Indexed: 11/06/2022] Open
Abstract
Neonatal Nav1.5 (nNav1.5) is the alternative splice variant of Nav1.5 and it has been widely associated with the progression of breast cancer. The immunological context of nNav1.5 with respect to breast cancer metastases remains unexplored. The presence of antibodies against nNav1.5 may highlight the immunogenicity of nNav1.5. Hence, the aim of the present study was to detect the presence of antineonatal Nav1.5 antibodies (antinNav1.5-Ab) in the serum of patients with breast cancer and to elucidate the effects of breast cancer therapy on its expression. A total of 32 healthy female volunteers and 64 patients with breast cancer were randomly recruited into the present study as the control and breast cancer group, respectively. Patients with breast cancer were divided equally based on their pre- and ongoing-treatment status. Serum samples were tested with in-house indirect enzyme-linked immunosorbent assay (ELISA) to detect antinNav1.5-Ab, CD25 (T regulatory cell marker) using an ELISA kit and Luminex assay to detect the expression of metastasis-associated cytokines, such as vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-10, IL-8, chemokine (C-C motif) ligand 2 and tumor necrosis factor-alpha (TNF-α) The mean difference in the expression of antinNav1.5-Ab among the three groups (control, pretreatment and ongoing-treatment) was significant (P=0.0005) and the pretreatment breast cancer group exhibited the highest expression. The concentration of CD25 was highest in the pretreatment breast cancer group compared with the control and ongoing-treatment groups. There was a significant positive correlation between antinNav1.5-Ab and IL-6 in the pretreatment group (r=0.7260; P=0.0210) and a significant negative correlation between antinNav1.5-Ab and VEGF in the ongoing-treatment group (r=-0.842; P-value=0.0040). The high expression of antinNav1.5-Ab in the pretreatment group was in accordance with the uninterrupted presence of metastasis and highlighted the immunogenicity of nNav1.5 whereas the low expression of antinNav1.5-Ab in the ongoing-treatment group reflected the efficacy of breast cancer therapy in eliminating metastases. The augmented manifestation of T regulatory cells in the pretreatment group highlighted the functional role of nNav1.5 in promoting metastasis. The parallel expression of antinNav1.5-Ab with the imbalanced expression of cytokines promoting metastasis (IL-8, IL-6 and TNF-α) and cytokines that prevent metastasis (IL-10) indicated the role of nNav1.5 in breast cancer growth. The expression of antinNav1.5-Ab in accordance to the metastatic microenvironment indicates the immunogenicity of the protein and highlights the influence of breast cancer therapy on its expression level.
Collapse
Affiliation(s)
- Harishini Rajaratinam
- School of Health Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Nur Syahmina Rasudin
- School of Health Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Tengku Ahmad Damitri Al Astani
- Department of Chemical Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
- Breast Cancer Awareness and Research (BestARi) Unit, Hospital Universiti Sains Malaysia (HUSM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Maya Mazuwin Yahya
- Department of Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Wan Zainira Wan Zain
- Department of Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Nurul Asma-Abdullah
- School of Health Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Wan Ezumi Mohd Fuad
- School of Health Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
39
|
Voltage-gated sodium channel Na v1.5 promotes tumor progression and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cancer Lett 2020; 500:119-131. [PMID: 33338532 DOI: 10.1016/j.canlet.2020.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Nav1.5, encoded by SCN5A, has been associated with metastasis in colorectal cancer (CRC). Here, we investigated the mechanism by which Nav1.5 regulates tumor progression and whether Nav1.5 influences chemosensitivity to 5-fluorouracil (5-FU) in CRCs. CRC cases were evaluated for Nav1.5 expression. Elevated Nav1.5 expression was associated with poor prognosis in CRCs, whereas stage II/III patients with upregulated SCN5A expression could have better survival after receiving 5-FU-based adjuvant chemotherapy. In CRC cells, SCN5A knockdown reduced the proliferation, migration and invasion. According to RNA sequencing, SCN5A knockdown inhibited both the cell cycle and epithelial-mesenchymal transition. In addition, Nav1.5 stabilized the KRas-calmodulin complex to modulate Ras signaling, promoting Ca2+ influx through the Na+-Ca2+ exchanger and Ca2+ release-activated calcium channel. Meanwhile, SCN5A knockdown increased the 50% inhibitory concentration to 5-FU by upregulating 5-FU-stimulated apoptosis in CRCs. In conclusion, Nav1.5 could progress to proliferation and metastasis through Ca2+/calmodulin-dependent Ras signaling in CRC, and it could also enhance 5-FU-stimulated apoptosis. Clinically, patients with stage II/III CRCs with elevated SCN5A expression demonstrated poor prognosis, yet those patients could benefit more from 5-FU-based chemotherapy than patients with lower SCN5A expression.
Collapse
|
40
|
Harguindey S, Alfarouk K, Polo Orozco J, Fais S, Devesa J. Towards an Integral Therapeutic Protocol for Breast Cancer Based upon the New H +-Centered Anticancer Paradigm of the Late Post-Warburg Era. Int J Mol Sci 2020; 21:E7475. [PMID: 33050492 PMCID: PMC7589677 DOI: 10.3390/ijms21207475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
A brand new approach to the understanding of breast cancer (BC) is urgently needed. In this contribution, the etiology, pathogenesis, and treatment of this disease is approached from the new pH-centric anticancer paradigm. Only this unitarian perspective, based upon the hydrogen ion (H+) dynamics of cancer, allows for the understanding and integration of the many dualisms, confusions, and paradoxes of the disease. The new H+-related, wide-ranging model can embrace, from a unique perspective, the many aspects of the disease and, at the same time, therapeutically interfere with most, if not all, of the hallmarks of cancer known to date. The pH-related armamentarium available for the treatment of BC reviewed here may be beneficial for all types and stages of the disease. In this vein, we have attempted a megasynthesis of traditional and new knowledge in the different areas of breast cancer research and treatment based upon the wide-ranging approach afforded by the hydrogen ion dynamics of cancer. The concerted utilization of the pH-related drugs that are available nowadays for the treatment of breast cancer is advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Department of Pharmacology, Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
41
|
Leslie TK, Brückner L, Chawla S, Brackenbury WJ. Inhibitory Effect of Eslicarbazepine Acetate and S-Licarbazepine on Na v1.5 Channels. Front Pharmacol 2020; 11:555047. [PMID: 33123007 PMCID: PMC7567166 DOI: 10.3389/fphar.2020.555047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Eslicarbazepine acetate (ESL) is a dibenzazepine anticonvulsant approved as adjunctive treatment for partial-onset epileptic seizures. Following first pass hydrolysis of ESL, S-licarbazepine (S-Lic) represents around 95% of circulating active metabolites. S-Lic is the main enantiomer responsible for anticonvulsant activity and this is proposed to be through the blockade of voltage-gated Na+ channels (VGSCs). ESL and S-Lic both have a voltage-dependent inhibitory effect on the Na+ current in N1E-115 neuroblastoma cells expressing neuronal VGSC subtypes including Nav1.1, Nav1.2, Nav1.3, Nav1.6, and Nav1.7. ESL has not been associated with cardiotoxicity in healthy volunteers, although a prolongation of the electrocardiographic PR interval has been observed, suggesting that ESL may also inhibit cardiac Nav1.5 isoform. However, this has not previously been studied. Here, we investigated the electrophysiological effects of ESL and S-Lic on Nav1.5 using whole-cell patch clamp recording. We interrogated two model systems: (1) MDA-MB-231 metastatic breast carcinoma cells, which endogenously express the "neonatal" Nav1.5 splice variant, and (2) HEK-293 cells stably over-expressing the "adult" Nav1.5 splice variant. We show that both ESL and S-Lic inhibit transient and persistent Na+ current, hyperpolarise the voltage-dependence of fast inactivation, and slow the recovery from channel inactivation. These findings highlight, for the first time, the potent inhibitory effects of ESL and S-Lic on the Nav1.5 isoform, suggesting a possible explanation for the prolonged PR interval observed in patients on ESL treatment. Given that numerous cancer cells have also been shown to express Nav1.5, and that VGSCs potentiate invasion and metastasis, this study also paves the way for future investigations into ESL and S-Lic as potential invasion inhibitors.
Collapse
Affiliation(s)
| | - Lotte Brückner
- Department of Biology, University of York, York, United Kingdom
| | - Sangeeta Chawla
- Department of Biology, University of York, York, United Kingdom.,York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom.,York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
42
|
Poisson L, Lopez-Charcas O, Chadet S, Bon E, Lemoine R, Brisson L, Ouaissi M, Baron C, Besson P, Roger S, Moussata D. Rock inhibition promotes Na V1.5 sodium channel-dependent SW620 colon cancer cell invasiveness. Sci Rep 2020; 10:13350. [PMID: 32770034 PMCID: PMC7414216 DOI: 10.1038/s41598-020-70378-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
The acquisition of invasive capacities by carcinoma cells, i.e. their ability to migrate through and to remodel extracellular matrices, is a determinant process leading to their dissemination and to the development of metastases. these cancer cell properties have often been associated with an increased Rho-ROCK signalling, and ROCK inhibitors have been proposed for anticancer therapies. In this study we used the selective ROCK inhibitor, Y-27632, to address the participation of the Rho-ROCK signalling pathway in the invasive properties of SW620 human colon cancer cells. Contrarily to initial assumptions, Y-27632 induced the acquisition of a pro-migratory cell phenotype and increased cancer cell invasiveness in both 3- and 2-dimensions assays. This effect was also obtained using the other ROCK inhibitor Fasudil as well as with knocking down the expression of ROCK-1 or ROCK-2, but was prevented by the inhibition of NaV1.5 voltage-gated sodium channel activity. Indeed, ROCK inhibition enhanced the activity of the pro-invasive NaV1.5 channel through a pathway that was independent of gene expression regulation. In conclusions, our evidence identifies voltage-gated sodium channels as new targets of the ROCK signalling pathway, as well as responsible for possible deleterious effects of the use of ROCK inhibitors in the treatment of cancers.
Collapse
Affiliation(s)
- Lucile Poisson
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,Inserm UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Osbaldo Lopez-Charcas
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Emeline Bon
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Roxane Lemoine
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Lucie Brisson
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Mehdi Ouaissi
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,CHRU de Tours, Tours, France
| | - Christophe Baron
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,CHRU de Tours, Tours, France
| | - Pierre Besson
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France. .,Institut Universitaire de France, Paris, France.
| | - Driffa Moussata
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,CHRU de Tours, Tours, France
| |
Collapse
|
43
|
Luo Q, Wu T, Wu W, Chen G, Luo X, Jiang L, Tao H, Rong M, Kang S, Deng M. The Functional Role of Voltage-Gated Sodium Channel Nav1.5 in Metastatic Breast Cancer. Front Pharmacol 2020; 11:1111. [PMID: 32792949 PMCID: PMC7393602 DOI: 10.3389/fphar.2020.01111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs), which are abnormally expressed in various types of cancers such as breast cancer, prostate cancer, lung cancer, and cervical cancer, are involved in the metastatic process of invasion and migration. Nav1.5 is a pore-forming α subunit of VGSC encoded by SCN5A. Various studies have demonstrated that Nav1.5, often as its neonatal splice form, is highly expressed in metastatic breast cancer cells. Abnormal activation and expression of Nav1.5 trigger a variety of cellular mechanisms, including changing H+ efflux, promoting epithelial-to-mesenchymal transition (EMT) and the expression of cysteine cathepsin, to potentiate the metastasis and invasiveness of breast cancer cells in vitro and in vivo. Here, we systematically review the latest available data on the pro-metastatic effect of Nav1.5 and its underlying mechanisms in breast cancer. We summarize the factors affecting Nav1.5 expression in breast cancer cells, and discuss the potential of Nav1.5 blockers serving as candidates for breast cancer treatment.
Collapse
Affiliation(s)
- Qianxuan Luo
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ting Wu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Gong Chen
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Xuan Luo
- Department of Biochemistry and Molecular Biology, Hunan Normal University, Changsha, China
| | - Liping Jiang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, China
| | - Mingqiang Rong
- Department of Biochemistry and Molecular Biology, Hunan Normal University, Changsha, China
| | - Shuntong Kang
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
44
|
Almasi S, El Hiani Y. Exploring the Therapeutic Potential of Membrane Transport Proteins: Focus on Cancer and Chemoresistance. Cancers (Basel) 2020; 12:cancers12061624. [PMID: 32575381 PMCID: PMC7353007 DOI: 10.3390/cancers12061624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Improving the therapeutic efficacy of conventional anticancer drugs represents the best hope for cancer treatment. However, the shortage of druggable targets and the increasing development of anticancer drug resistance remain significant problems. Recently, membrane transport proteins have emerged as novel therapeutic targets for cancer treatment. These proteins are essential for a plethora of cell functions ranging from cell homeostasis to clinical drug toxicity. Furthermore, their association with carcinogenesis and chemoresistance has opened new vistas for pharmacology-based cancer research. This review provides a comprehensive update of our current knowledge on the functional expression profile of membrane transport proteins in cancer and chemoresistant tumours that may form the basis for new cancer treatment strategies.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON KIH 8M5, Canada;
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
45
|
Díaz-García A, Varela D. Voltage-Gated K +/Na + Channels and Scorpion Venom Toxins in Cancer. Front Pharmacol 2020; 11:913. [PMID: 32655396 PMCID: PMC7325878 DOI: 10.3389/fphar.2020.00913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Ion channels have recently been recognized as novel therapeutic targets in cancer research since they are overexpressed in different histological tissues, and their activity is linked to proliferation, tumor progression, angiogenesis, metastasis, and apoptosis. Voltage gated-potassium channels (VGKC) are involved in cell proliferation, cancer progression, cell cycle transition, and apoptosis. Moreover, voltage-dependent sodium channels (VGSC) contribute to decreases in extracellular pH, which, in turn, promotes cancer cell migration and invasion. Furthermore, VGSC and VGKC modulate voltage-sensitive Ca2+ channel activity by controlling the membrane potential and regulating Ca2+ influx, which functions as a second messenger in processes related to proliferation, invasion, migration, and metastasis. The subgroup of these types of channels that have shown a high oncogenic potential have become known as "oncochannels", and the evidence has highlighted them as key potential therapeutic targets. Scorpion venoms contain a high proportion of peptide toxins that act by modulating voltage-gated Na+/K+ channel activity. Increasing scientific data have pointed out that scorpion venoms and their toxins can affect the activity of oncochannels, thus showing their potential for anticancer therapy. In this review, we provide an update of the most relevant voltage-gated Na+\K+ ion channels as cellular targets and discuss the possibility of using scorpion venom and toxins for anticancer therapy.
Collapse
Affiliation(s)
- Alexis Díaz-García
- LifEscozul Chile SpA, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
46
|
Xu X, Dai Y, Feng L, Zhang H, Hu Y, Xu L, Zhu X, Jiang Y. Knockdown of Nav1.5 inhibits cell proliferation, migration and invasion via Wnt/β-catenin signaling pathway in oral squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2020; 52:527-535. [PMID: 32400862 DOI: 10.1093/abbs/gmaa021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/14/2019] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common type of malignant oral cancer that has a high recurrence rate. Voltage-gated sodium channel Nav1.5 was reported to be highly up-regulated in various types of cancers. However, the regulatory mechanism of Nav1.5 in cancers including OSCC still remains elusive. In this study, Nav1.5 was found to be highly expressed in OSCC tissues and cells. Through the analysis of clinical characteristics of patients, we found that the expression level of Nav1.5 was closely related to neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, tumor-node-metastasis stage, and lymph node metastasis. Moreover, we found that Nav1.5 mainly located on the cell membrane as well as cytoplasm and knockdown of Nav1.5 promoted cell apoptosis and decreased proliferation in OSCC. Transwell assay results showed that knockdown of Nav1.5 effectively suppressed the migration and invasion in OSCC. In addition, knockdown of Nav1.5 was found to inhibit the protein and mRNA expression levels of β-catenin, cyclin D1, and c-Myc in the Wnt/β-catenin signaling pathway. In summary, these results indicated that Nav1.5 may be involved in the progression of OSCC through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoli Xu
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yongzheng Dai
- Hefei School of Stomatology, Anhui Medical University, Hefei 230001, China
- Department of General Dentistry, Hefei Stomatological Hospital, Hefei 230001, China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hongli Zhang
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yukun Hu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Le Xu
- Department of Stomatology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Xinwei Zhu
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
- Binhu Clinical Division, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei 230601, China
| | - Yong Jiang
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
- Department of Stomatology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| |
Collapse
|
47
|
Scorpion Toxins and Ion Channels: Potential Applications in Cancer Therapy. Toxins (Basel) 2020; 12:toxins12050326. [PMID: 32429050 PMCID: PMC7290751 DOI: 10.3390/toxins12050326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
Apoptosis, a genetically directed process of cell death, has been studied for many years, and the biochemical mechanisms that surround it are well known and described. There are at least three pathways by which apoptosis occurs, and each pathway depends on extra or intracellular processes for activation. Apoptosis is a vital process, but disturbances in proliferation and cell death rates can lead to the development of diseases like cancer. Several compounds, isolated from scorpion venoms, exhibit inhibitory effects on different cancer cells. Indeed, some of these compounds can differentiate between healthy and cancer cells within the same tissue. During the carcinogenic process, morphological, biochemical, and biological changes occur that enable these compounds to modulate cancer but not healthy cells. This review highlights cancer cell features that enable modulation by scorpion neurotoxins. The properties of the isolated scorpion neurotoxins in cancer cells and the potential uses of these compounds as alternative treatments for cancer are discussed.
Collapse
|
48
|
Yang M, James AD, Suman R, Kasprowicz R, Nelson M, O'Toole PJ, Brackenbury WJ. Voltage-dependent activation of Rac1 by Na v 1.5 channels promotes cell migration. J Cell Physiol 2020; 235:3950-3972. [PMID: 31612502 PMCID: PMC6973152 DOI: 10.1002/jcp.29290] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
Ion channels can regulate the plasma membrane potential (Vm ) and cell migration as a result of altered ion flux. However, the mechanism by which Vm regulates motility remains unclear. Here, we show that the Nav 1.5 sodium channel carries persistent inward Na+ current which depolarizes the resting Vm at the timescale of minutes. This Nav 1.5-dependent Vm depolarization increases Rac1 colocalization with phosphatidylserine, to which it is anchored at the leading edge of migrating cells, promoting Rac1 activation. A genetically encoded FRET biosensor of Rac1 activation shows that depolarization-induced Rac1 activation results in acquisition of a motile phenotype. By identifying Nav 1.5-mediated Vm depolarization as a regulator of Rac1 activation, we link ionic and electrical signaling at the plasma membrane to small GTPase-dependent cytoskeletal reorganization and cellular migration. We uncover a novel and unexpected mechanism for Rac1 activation, which fine tunes cell migration in response to ionic and/or electric field changes in the local microenvironment.
Collapse
Affiliation(s)
- Ming Yang
- Department of BiologyUniversity of YorkYorkUK
| | - Andrew D. James
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Rakesh Suman
- Phase Focus Ltd, Electric WorksSheffield Digital CampusSheffieldUK
| | | | - Michaela Nelson
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Peter J. O'Toole
- Bioscience Technology Facility, Department of BiologyUniversity of YorkYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
49
|
Simon A, Yang M, Marrison JL, James AD, Hunt MJ, O'Toole PJ, Kaye PM, Whittington MA, Chawla S, Brackenbury WJ. Metastatic breast cancer cells induce altered microglial morphology and electrical excitability in vivo. J Neuroinflammation 2020; 17:87. [PMID: 32192526 PMCID: PMC7081703 DOI: 10.1186/s12974-020-01753-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND An emerging problem in the treatment of breast cancer is the increasing incidence of metastases to the brain. Metastatic brain tumours are incurable and can cause epileptic seizures and cognitive impairment, so better understanding of this niche, and the cellular mechanisms, is urgently required. Microglia are the resident brain macrophage population, becoming "activated" by neuronal injury, eliciting an inflammatory response. Microglia promote proliferation, angiogenesis and invasion in brain tumours and metastases. However, the mechanisms underlying microglial involvement appear complex and better models are required to improve understanding of function. METHODS Here, we sought to address this need by developing a model to study metastatic breast cancer cell-microglial interactions using intravital imaging combined with ex vivo electrophysiology. We implanted an optical window on the parietal bone to facilitate observation of cellular behaviour in situ in the outer cortex of heterozygous Cx3cr1GFP/+ mice. RESULTS We detected GFP-expressing microglia in Cx3cr1GFP/+ mice up to 350 μm below the window without significant loss of resolution. When DsRed-expressing metastatic MDA-MB-231 breast cancer cells were implanted in Matrigel under the optical window, significant accumulation of activated microglia around invading tumour cells could be observed. This inflammatory response resulted in significant cortical disorganisation and aberrant spontaneously-occurring local field potential spike events around the metastatic site. CONCLUSIONS These data suggest that peritumoral microglial activation and accumulation may play a critical role in local tissue changes underpinning aberrant cortical activity, which offers a possible mechanism for the disrupted cognitive performance and seizures seen in patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Anna Simon
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
- Bioscience Technology Facility, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Ming Yang
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Joanne L Marrison
- Bioscience Technology Facility, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Andrew D James
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Mark J Hunt
- Hull York Medical School, Heslington, York, YO10 5DD, UK
| | - Peter J O'Toole
- Bioscience Technology Facility, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Paul M Kaye
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
- Hull York Medical School, Heslington, York, YO10 5DD, UK
- Department of Biology and York Biomedical Research Institute, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Miles A Whittington
- Hull York Medical School, Heslington, York, YO10 5DD, UK
- Department of Biology and York Biomedical Research Institute, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Sangeeta Chawla
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
- Department of Biology and York Biomedical Research Institute, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK.
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
- Department of Biology and York Biomedical Research Institute, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
50
|
|