1
|
Piktel D, Nair RR, Rellick SL, Geldenhuys WJ, Martin KH, Craig MD, Gibson LF. Pitavastatin Is Anti-Leukemic in a Bone Marrow Microenvironment Model of B-Lineage Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14112681. [PMID: 35681662 PMCID: PMC9179467 DOI: 10.3390/cancers14112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemoresistance after chemotherapy is a negative prognostic indicator for B-cell acute lymphoblastic leukemia (ALL), necessitating the search for novel therapies. By growing ALL cells together with bone marrow stromal cells, we developed a chemoresistant ALL model. Using this model, we found that the lipid lowering drug pitavastatin had antileukemic activity in this chemoresistant co-culture model. Our data suggests that pitavastatin may be a novel treatment option for repurposing in chemoresistant, relapse ALL. Abstract The lack of complete therapeutic success in the treatment of B-cell acute lymphoblastic leukemia (ALL) has been attributed, in part, to a subset of cells within the bone marrow microenvironment that are drug resistant. Recently, the cholesterol synthesis inhibitor, pitavastatin (PIT), was shown to be active in acute myeloid leukemia, prompting us to evaluate it in our in vitro co-culture model, which supports a chemo-resistant ALL population. We used phospho-protein profiling to evaluate the use of lipid metabolic active compounds in these chemo-resistant cells, due to the up-regulation of multiple active survival signals. In a co-culture with stromal cells, a shift towards anabolic processes occurred, which was further confirmed by assays showing increased lipid content. The treatment of REH leukemia cells with pitavastatin in the co-culture model resulted in significantly higher leukemic cell death than exposure to the standard-of-care chemotherapeutic agent, cytarabine (Ara-C). Our data demonstrates the use of pitavastatin as a possible alternative treatment strategy to improve patient outcomes in chemo-resistant, relapsed ALL.
Collapse
Affiliation(s)
- Debbie Piktel
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
| | - Rajesh R. Nair
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
| | - Stephanie L. Rellick
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
| | - Werner J. Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA;
| | - Karen H. Martin
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | - Laura F. Gibson
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-7206
| |
Collapse
|
2
|
Ruiz-Aparicio PF, Vernot JP. Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. J Pers Med 2022; 12:jpm12050716. [PMID: 35629139 PMCID: PMC9147878 DOI: 10.3390/jpm12050716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Bone marrow aging is associated with multiple cellular dysfunctions, including perturbed haematopoiesis, the propensity to haematological transformation, and the maintenance of leukaemia. It has been shown that instructive signals from different leukemic cells are delivered to stromal cells to remodel the bone marrow into a supportive leukemic niche. In particular, cellular senescence, a physiological program with both beneficial and deleterious effects on the health of the organisms, may be responsible for the increased incidence of haematological malignancies in the elderly and for the survival of diverse leukemic cells. Here, we will review the connection between BM aging and cellular senescence and the role that these processes play in leukaemia progression. Specifically, we discuss the role of mesenchymal stem cells as a central component of the supportive niche. Due to the specificity of the genetic defects present in leukaemia, one would think that bone marrow alterations would also have particular changes, making it difficult to envisage a shared therapeutic use. We have tried to summarize the coincident features present in BM stromal cells during aging and senescence and in two different leukaemias, acute myeloid leukaemia, with high frequency in the elderly, and B-acute lymphoblastic leukaemia, mainly a childhood disease. We propose that mesenchymal stem cells are similarly affected in these different leukaemias, and that the changes that we observed in terms of cellular function, redox balance, genetics and epigenetics, soluble factor repertoire and stemness are equivalent to those occurring during BM aging and cellular senescence. These coincident features may be used to explore strategies useful to treat various haematological malignancies.
Collapse
Affiliation(s)
- Paola Fernanda Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
3
|
Leukemia-Induced Cellular Senescence and Stemness Alterations in Mesenchymal Stem Cells Are Reversible upon Withdrawal of B-Cell Acute Lymphoblastic Leukemia Cells. Int J Mol Sci 2021; 22:ijms22158166. [PMID: 34360930 PMCID: PMC8348535 DOI: 10.3390/ijms22158166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
Leukemic cell growth in the bone marrow (BM) induces a very stressful condition. Mesenchymal stem cells (MSC), a key component of this BM niche, are affected in several ways with unfavorable consequences on hematopoietic stem cells favoring leukemic cells. These alterations in MSC during B-cell acute lymphoblastic leukemia (B-ALL) have not been fully studied. In this work, we have compared the modifications that occur in an in vitro leukemic niche (LN) with those observed in MSC isolated from B-ALL patients. MSC in this LN niche showed features of a senescence process, i.e., altered morphology, increased senescence-associated β-Galactosidase (SA-βGAL) activity, and upregulation of p53 and p21 (without p16 expression), cell-cycle arrest, reduced clonogenicity, and some moderated changes in stemness properties. Importantly, almost all of these features were found in MSC isolated from B-ALL patients. These alterations rendered B-ALL cells susceptible to the chemotherapeutic agent dexamethasone. The senescent process seems to be transient since when leukemic cells are removed, normal MSC morphology is re-established, SA-βGAL expression is diminished, and MSC are capable of re-entering cell cycle. In addition, few cells showed low γH2AX phosphorylation that was reduced to basal levels upon cultivation. The reversibility of the senescent process in MSC must impinge important biological and clinical significance depending on cell interactions in the bone marrow at different stages of disease progression in B-ALL.
Collapse
|
4
|
Redox Control in Acute Lymphoblastic Leukemia: From Physiology to Pathology and Therapeutic Opportunities. Cells 2021; 10:cells10051218. [PMID: 34067520 PMCID: PMC8155968 DOI: 10.3390/cells10051218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy originating from B- or T-lymphoid progenitor cells. Recent studies have shown that redox dysregulation caused by overproduction of reactive oxygen species (ROS) has an important role in the development and progression of leukemia. The application of pro-oxidant therapy, which targets redox dysregulation, has achieved satisfactory results in alleviating the conditions of and improving the survival rate for patients with ALL. However, drug resistance and side effects are two major challenges that must be addressed in pro-oxidant therapy. Oxidative stress can activate a variety of antioxidant mechanisms to help leukemia cells escape the damage caused by pro-oxidant drugs and develop drug resistance. Hematopoietic stem cells (HSCs) are extremely sensitive to oxidative stress due to their low levels of differentiation, and the use of pro-oxidant drugs inevitably causes damage to HSCs and may even cause severe bone marrow suppression. In this article, we reviewed research progress regarding the generation and regulation of ROS in normal HSCs and ALL cells as well as the impact of ROS on the biological behavior and fate of cells. An in-depth understanding of the regulatory mechanisms of redox homeostasis in normal and malignant HSCs is conducive to the formulation of rational targeted treatment plans to effectively reduce oxidative damage to normal HSCs while eradicating ALL cells.
Collapse
|
5
|
CD81 knockout promotes chemosensitivity and disrupts in vivo homing and engraftment in acute lymphoblastic leukemia. Blood Adv 2021; 4:4393-4405. [PMID: 32926125 DOI: 10.1182/bloodadvances.2020001592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/02/2020] [Indexed: 12/30/2022] Open
Abstract
Relapse remains a major obstacle to achieving 100% overall survival rate in pediatric hematologic malignancies like acute lymphoblastic leukemia (ALL). Relapse often results from the development of chemoresistance. One of the mechanisms of chemoresistance involves ALL cell interactions with the bone marrow (BM) microenvironment, providing a sanctuary. This phenomenon is known as BM microenvironment-induced chemoprotection. Members of the transmembrane 4 superfamily (tetraspanins; TSPANs) are known to mediate microenvironmental interactions and have been extensively studied in solid tumors. Although the TSPAN family member CD81 is a minimal residual disease marker, its biological role in ALL is not well characterized. We show for the first time that CD81 knockout induces chemosensitivity, reduces cellular adhesion, and disrupts in vivo BM homing and engraftment in B-ALL. This chemosensitization is mediated through control of Bruton tyrosine kinase signaling and induction of p53-mediated cell death. We then show how CD81-related signaling can be disrupted by treatment with the epigenetic drug combination of DNA hypomethylating agent azacitidine (aza) and histone deacetylase inhibitor panobinostat (pano), which we previously used to sensitize ALL cells to chemotherapy under conditions that promote BM microenvironment-induced chemoprotection. Aza/pano-mediated modulation of CD81 surface expression is involved in decreasing BM load by promoting ALL cell mobilization from BM to peripheral blood and increasing response to chemotherapy in disseminated patient-derived xenograft models. This study identifies the novel role of CD81 in BM microenvironment-induced chemoprotection and delineates the mechanism by which aza/pano successfully sensitizes ALL cells via modulation of CD81.
Collapse
|
6
|
Broto G, Silva P, Trigo F, Victorino V, Bonifácio K, Pavanelli W, Tomiotto-Pelissier F, Garbim M, Oliveira S, Jumes J, Panis C, Barbosa D. Impact of the induction phase chemotherapy on cytokines and oxidative markers in peripheral and bone marrow plasma of children with acute lymphocytic leukemia. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:163-168. [PMID: 35492386 PMCID: PMC9040137 DOI: 10.1016/j.crimmu.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
B-cell acute lymphocytic leukemia (B-ALL) is the main neoplasia affecting children worldwide, in which cytotoxic chemotherapy remains the main treatment modality. In this study, we analyzed the profile of inflammatory markers concerning oxidative stress and cytokines in 17 B-ALL patients. Peripheral blood (PB) and bone marrow (BM) samples were collected and evaluated for the pro-oxidative status (nitric oxide products-NOx and hydroperoxides), antioxidants (sulfhydryl groups-SH and total radical-trapping antioxidant parameter-TRAP), and cytokines (TNF-α, IFN-γ), at diagnosis (D0) to and the end of the induction phase (D28). At D28, hydroperoxides were higher in PB, concomitant to TNF-α levels. INF-γ was increased in the BM at D28. Hydroperoxides were higher in patients presenting malignant cells in BM and/or PB after treatment, a condition named minimal residual disease (MRD) when compared to those without MRD at D28. These findings suggest that oxidative stress and cytokines vary across the B-ALL induction phase, and lipid peroxidation is a potential marker associated with MRD status. B-ALL is the main neoplasia in childhood. Chemotherapy is the main modality for B-ALL treatment, and the success in the initial phase is determinant on the rates of cure. Oxidative stress is one of the main known mechanisms of action of chemotherapy. We showed that the initial chemotherapy of B-ALL is mediated by oxidative stress fluctuations Lipid peroxides are associated to disease elimination in the induction phase.
Collapse
|
7
|
Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, Andreeff M, Krause DS. Bone marrow niches in haematological malignancies. Nat Rev Cancer 2020; 20:285-298. [PMID: 32112045 PMCID: PMC9912977 DOI: 10.1038/s41568-020-0245-2] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Haematological malignancies were previously thought to be driven solely by genetic or epigenetic lesions within haematopoietic cells. However, the niches that maintain and regulate daily production of blood and immune cells are now increasingly being recognized as having an important role in the pathogenesis and chemoresistance of haematological malignancies. Within haematopoietic cells, the accumulation of a small number of recurrent mutations initiates malignancy. Concomitantly, specific alterations of the niches, which support haematopoietic stem cells and their progeny, can act as predisposition events, facilitating mutant haematopoietic cell survival and expansion as well as contributing to malignancy progression and providing protection of malignant cells from chemotherapy, ultimately leading to relapse. In this Perspective, we summarize our current understanding of the composition and function of the specialized haematopoietic niches of the bone marrow during health and disease. We discuss disease mechanisms (rather than malignancy subtypes) to provide a comprehensive description of key niche-associated pathways that are shared across multiple haematological malignancies. These mechanisms include primary driver mutations in bone marrow niche cells, changes associated with increased hypoxia, angiogenesis and inflammation as well as metabolic reprogramming by stromal niche cells. Consequently, remodelling of bone marrow niches can facilitate immune evasion and activation of survival pathways favouring malignant haematopoietic cell maintenance, defence against excessive reactive oxygen species and protection from chemotherapy. Lastly, we suggest guidelines for the handling and biobanking of patient samples and analysis of the niche to ensure that basic research identifying therapeutic targets can be more efficiently translated to the clinic. The hope is that integrating knowledge of how bone marrow niches contribute to haematological disease predisposition, initiation, progression and response to therapy into future clinical practice will likely improve the treatment of these disorders.
Collapse
Affiliation(s)
- Simón Méndez-Ferrer
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- National Health Service Blood and Transplant, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - David P Steensma
- Harvard Medical School, Boston, MA, USA
- The Center for Prevention of Progression of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert P Hasserjian
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Irene M Ghobrial
- Harvard Medical School, Boston, MA, USA
- The Center for Prevention of Progression of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Medicine, Frankfurt, Germany
- Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
8
|
Oxidative resistance of leukemic stem cells and oxidative damage to hematopoietic stem cells under pro-oxidative therapy. Cell Death Dis 2020; 11:291. [PMID: 32341354 PMCID: PMC7184730 DOI: 10.1038/s41419-020-2488-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023]
Abstract
Leukemic stem cells (LSCs) and hematopoietic stem cells (HSCs) are both dependent on the hypoxic bone marrow (BM) microenvironment (also known as the BM niche). There is always fierce competition between the two types of cells, and the former exhibits a greater competitive advantage than the latter via multiple mechanisms. Under hypoxia, the dynamic balance between the generation and clearing of intracellular reactive oxygen species (ROS) is conducive to maintaining a quiescent state of cells. Quiescent LSCs can reside well in the BM niche, avoiding attack by chemotherapeutic agents, which is the cause of chemotherapeutic resistance and relapse in leukemia. HSCs acquire energy mainly through anaerobic glycolysis, whereas LSCs achieve energy metabolism largely through mitochondrial oxidative respiration. Mitochondria are the primary site of ROS generation. Thus, in theory, mitochondria-mediated respiration will cause an increase in ROS generation in LSCs and a higher intracellular oxidative stress level. The sensitivity of the cells to pro-oxidant drugs increases as well, which allows for the selective clearing of LSCs by pro-oxidative therapy. However, HSCs are also highly sensitive to changes in ROS levels, and the toxic effects of pro-oxidant drugs on HSCs poses a major challenge to pro-oxidative therapy in leukemia. Given the above facts, we reviewed studies on the oxidative resistance of LSCs and the oxidative damage to HSCs under pro-oxidative therapy. An in-depth investigation into the oxidative stress status and regulatory mechanisms of LSCs and HSCs in hypoxic environments will promote our understanding of the survival strategy employed by LSCs and the mechanism of the oxidative damage to HSCs in the BM niche, thus facilitating individualized treatment of leukemia patients and helping eliminate LSCs without disturbing normal hematopoietic cells.
Collapse
|
9
|
Challenges for Immunotherapy in Multiple Myeloma: Bone Marrow Microenvironment-Mediated Immune Suppression and Immune Resistance. Cancers (Basel) 2020; 12:cancers12040988. [PMID: 32316450 PMCID: PMC7226482 DOI: 10.3390/cancers12040988] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
The power of immunotherapy in the battle of Multiple Myeloma (MM) started with allogeneic stem cell transplantation, and was rediscovered with immunomodulatory drugs and extended with the outstanding results achieved with targeted antibodies. Today, next to powerful antibodies Elotuzumab and Daratumumab, several T-cell-based immunotherapeutic approaches, such as bispecific antibodies and chimeric antigen receptor-transduced T-cells (CAR T-cells) are making their successful entry in the immunotherapy arena with highly promising results in clinical trials. Nonetheless, similar to what is observed in chemotherapy, MM appears capable to escape from immunotherapy, especially through tight interactions with the cells of the bone marrow microenvironment (BM-ME). This review will outline our current understanding on how BM-ME protects MM-cells from immunotherapy through immunosuppression and through induction of intrinsic resistance against cytotoxic effector mechanisms of T- and NK-cells.
Collapse
|
10
|
Batsivari A, Haltalli MLR, Passaro D, Pospori C, Lo Celso C, Bonnet D. Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nat Cell Biol 2020; 22:7-17. [PMID: 31907409 DOI: 10.1038/s41556-019-0444-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
Adult haematopoietic stem cells (HSCs) mainly reside in the bone marrow, where stromal and haematopoietic cells regulate their function. The steady state HSC niche has been extensively studied. In this Review, we focus on how bone marrow microenvironment components respond to different insults including inflammation, malignant haematopoiesis and chemotherapy. We highlight common and unique patterns among multiple cell types and their environment and discuss current limitations in our understanding of this complex and dynamic tissue.
Collapse
Affiliation(s)
- Antoniana Batsivari
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
| | - Myriam Luydmila Rachelle Haltalli
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK
- Lo Celso Laboratory, The Francis Crick Institute, London, UK
| | - Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
| | - Constandina Pospori
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK
- Lo Celso Laboratory, The Francis Crick Institute, London, UK
| | - Cristina Lo Celso
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK.
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK.
- Lo Celso Laboratory, The Francis Crick Institute, London, UK.
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK.
| |
Collapse
|
11
|
Liu T, Peng XC, Li B. The Metabolic Profiles in Hematological Malignancies. Indian J Hematol Blood Transfus 2019; 35:625-634. [PMID: 31741613 DOI: 10.1007/s12288-019-01107-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/25/2019] [Indexed: 11/24/2022] Open
Abstract
Leukemia is one of the most aggressive hematological malignancies. Leukemia stem cells account for the poor prognosis and relapse of the disease. Decades of investigations have been performed to figure out how to eradicate the leukemia stem cells. It has also been known that cancer cells especially solid cancer cells use energy differently than most of the cell types. The same thing happens to leukemia. Since there are metabolic differences between the hematopoietic stem cells and their immediate descendants, we aim at manipulating the energy sources with which that could have an effect on leukemia stem cells while sparing the normal blood cells. In this review we summarize the metabolic characteristics of distinct leukemias such as acute myeloid leukemia, chronic myeloid leukemia, T cell lymphoblastic leukemia, B-cell lymphoblastic leukemia, chronic lymphocytic leukemia and other leukemia associated hematological malignancies such as multiple myeloma and myelodysplastic syndrome. A better understanding of the metabolic profiles in distinct leukemias might provide novel perspectives and shed light on novel metabolic targeting strategies towards the clinical treatment of leukemias.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pathology, People's Hospital of Longhua, Shenzhen, 518131 People's Republic of China
| | - Xing-Chun Peng
- Department of Pathology, People's Hospital of Longhua, Shenzhen, 518131 People's Republic of China
| | - Bin Li
- 2Department of Pathology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai Clinical Center, CAS, Huaihai Road 966, Shanghai City, 200031 Shanghai People's Republic of China
| |
Collapse
|
12
|
Cao Y, Wu C, Song Y, Lin Z, Kang Y, Lu P, Zhang C, Huang Q, Hao T, Zhu X, Hu J. Cyr61 decreases Cytarabine chemosensitivity in acute lymphoblastic leukemia cells via NF-κB pathway activation. Int J Mol Med 2018; 43:1011-1020. [PMID: 30535449 DOI: 10.3892/ijmm.2018.4018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/11/2018] [Indexed: 11/05/2022] Open
Abstract
Elevated Cyr61 levels have been reported in various malignancies. Elevation of Cyr61 protein levels contributes to the proliferation, metastasis, and chemotherapy resistance of malignant cells. Previously, it was discovered that Cyr61 is elevated in both the plasma and the bone marrow supernatants of patients with acute lymphoblastic leukemia (ALL), promoting ALL cell survival. However, the role of Cyr61 in the chemotherapeutic resistance of ALL cells remains unknown. The aim of the current study was to investigate the role of Cyr61 in regulating ALL cell chemosensitivity to Ara‑C. It was found that Cyr61 is overexpressed in bone marrow mononuclear cells from patients with ALL. Increased Cyr61 effectively decreased Ara‑C‑induced apoptosis of ALL cells, and its function was blocked by the use of the anti‑Cyr61 monoclonal antibody 093G9. Furthermore, Cyr61 increased the level of Bcl‑2 in Ara‑C‑treated ALL cells. Mechanistically, it was shown that Cyr61 affected ALL cell resistance to Ara‑C partially via the NF‑κB pathway. Taken together, the present study is the first, to the best of our knowledge, to reveal that Cyr61 is involved in ALL cell resistance through the NF‑κB pathway. The findings support a functional role for Cyr61 in promoting chemotherapy resistance, suggesting that targeting Cyr61 directly or its relevant effector pathways may improve the clinical responses of patients with ALL.
Collapse
Affiliation(s)
- Yingping Cao
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Conglian Wu
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yanfang Song
- Department of Laboratory Medicine, Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, P.R. China
| | - Zhen Lin
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yanli Kang
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Pingxia Lu
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Chenqing Zhang
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Qinghua Huang
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Taisen Hao
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xianjin Zhu
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jianda Hu
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
13
|
Senft D, Jeremias I. A rare subgroup of leukemia stem cells harbors relapse-inducing potential in acute lymphoblastic leukemia. Exp Hematol 2018; 69:1-10. [PMID: 30261200 DOI: 10.1016/j.exphem.2018.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Abstract
After initially successful chemotherapy, relapse frequently jeopardizes the outcome of patients with acute leukemia. Because of their adverse characteristics of self-renewal and dormancy, leukemia stem cells have been hypothesized to play a critical role in resistance to antiproliferative chemotherapy and the development of relapse. The high abundance of stem-like cells in acute lymphoblastic leukemia (ALL), however, suggests that not all leukemia-initiating cells carry these adverse characteristics, complicating the biological characterization of relapse-inducing cells in this malignancy. Here, we review sources of therapy resistance and relapse in acute leukemias, which include tumor cell plasticity and reversible characteristics. We discuss the development of patient-derived mouse models that are genetically engineered to mimic long-term dormancy and minimal residual disease in patients. These models allow the tracking and functional characterization of patient-derived ALL blasts that combine the properties of long-term dormancy, treatment resistance, and stemness. Finally, we discuss possible therapeutic avenues to target the functional plasticity of leukemia-initiating cells in ALL.
Collapse
Affiliation(s)
- Daniela Senft
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health (HMGU), Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health (HMGU), Munich, Germany; Department of Pediatrics, Dr. von Hauner Childrens Hospital, Ludwig Maximilians University, Munich, Germany; German Consortium for Translational Cancer Research (DKTK), Partnering Site Munich, Munich, Germany.
| |
Collapse
|
14
|
Abstract
Purpose of review The goal of this review is to summarize recent advances in our understanding of the regulation of redox homeostasis and the subtype-specific role of antioxidant enzymes in B-cell-derived malignancies. Furthermore, it presents selected prooxidative therapeutic strategies against B-cell neoplasms. Recent findings Recent reports have shown that the disturbed redox homeostasis in B-cell malignancies is regulated by cancer-specific signaling pathways and therefore varies between the individual subtypes. For instance, in a subtype of diffuse large B-cell lymphoma with increased oxidative phosphorylation, elevated reactive oxygen species are accompanied by higher levels of thioredoxin and glutathione and inhibition of either of these systems is selectively toxic to this subtype. In addition, growing number of small molecule inhibitors targeting antioxidant enzymes, such as auranofin, SK053, adenanthin, or decreasing glutathione level, such as imexon, buthionine sulfoximine, and L-cysteinase, trigger specific cytotoxic effects against B-cell malignancies. Lastly, attention is drawn to recent reports of effective treatment modalities involving prooxidative agents and interfering with redox homeostasis provided by stromal cells. Summary Recent findings reveal important differences in redox homeostasis within the distinct subsets of B-cell-derived malignancies that can be therapeutically exploited to improve existing treatment and to overcome drug resistance.
Collapse
|
15
|
Starkova J, Hermanova I, Hlozkova K, Hararova A, Trka J. Altered Metabolism of Leukemic Cells: New Therapeutic Opportunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 336:93-147. [PMID: 29413894 DOI: 10.1016/bs.ircmb.2017.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cancer metabolic program alters bioenergetic processes to meet the higher demands of tumor cells for biomass production, nucleotide synthesis, and NADPH-balancing redox homeostasis. It is widely accepted that cancer cells mostly utilize glycolysis, as opposed to normal cells, in which oxidative phosphorylation is the most employed bioenergetic process. Still, studies examining cancer metabolism had been overlooked for many decades, and it was only recently discovered that metabolic alterations affect both the oncogenic potential and therapeutic response. Since most of the published works concern solid tumors, in this comprehensive review, we aim to summarize knowledge about the metabolism of leukemia cells. Leukemia is a malignant disease that ranks first and fifth in cancer-related deaths in children and adults, respectively. Current treatment has reached its limits due to toxicity, and there has been a need for new therapeutic approaches. One of the possible scenarios is improved use of established drugs and another is to introduce new druggable targets. Herein, we aim to describe the complexity of leukemia metabolism and highlight cellular processes that could be targeted therapeutically and enhance the effectiveness of current treatments.
Collapse
Affiliation(s)
- Julia Starkova
- CLIP-Childhood Leukaemia Investigation Prague, Charles University, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Ivana Hermanova
- CLIP-Childhood Leukaemia Investigation Prague, Charles University, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Hlozkova
- CLIP-Childhood Leukaemia Investigation Prague, Charles University, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alzbeta Hararova
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Trka
- CLIP-Childhood Leukaemia Investigation Prague, Charles University, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
16
|
Zhou F, Pan Y, Wei Y, Zhang R, Bai G, Shen Q, Meng S, Le XF, Andreeff M, Claret FX. Jab1/Csn5-Thioredoxin Signaling in Relapsed Acute Monocytic Leukemia under Oxidative Stress. Clin Cancer Res 2017; 23:4450-4461. [PMID: 28270496 PMCID: PMC5861712 DOI: 10.1158/1078-0432.ccr-16-2426] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/01/2016] [Accepted: 03/01/2017] [Indexed: 12/28/2022]
Abstract
Purpose: High levels of ROS and ineffective antioxidant systems contribute to oxidative stress, which affects the function of hematopoietic cells in acute myeloid leukemia (AML); however, the mechanisms by which ROS lead to malignant transformation in relapsed AML-M5 are not completely understood. We hypothesized that alterations in intracellular ROS would trigger AML-M5 relapse by activating the intrinsic pathway.Experimental Design: We studied ROS levels and conducted c-Jun activation domain-binding protein-1 (JAB1/COPS5) and thioredoxin (TRX) gene expression analyses with blood samples obtained from 60 matched AML-M5 patients at diagnosis and relapse and conducted mechanism studies of Jab1's regulation of Trx in leukemia cell lines.Results: Our data showed that increased production of ROS and a low capacity of antioxidant enzymes were characteristics of AML-M5, both at diagnosis and at relapse. Consistently, increased gene expression levels of TRX and JAB1/COPS5 were associated with low overall survival rates in patients with AML-M5. In addition, stimulating AML-M5 cells with low concentrations of hydrogen peroxide led to increased Jab1 and Trx expression. Consistently, transfection of ectopic Jab1 into leukemia cells increased Trx expression, whereas silencing of Jab1 in leukemia cells reduced Trx expression. Mechanistically, Jab1 interacted with Trx and stabilized Trx protein. Moreover, Jab1 transcriptionally regulated Trx. Furthermore, depletion of Jab1 inhibited leukemia cell growth both in vitro and in vivoConclusions: We identified a novel Jab1-Trx axis that is a key cellular process in the pathobiologic characteristics of AML-M5. Targeting the ROS/Jab1/Trx pathway could be beneficial in the treatment of AML-M5. Clin Cancer Res; 23(15); 4450-61. ©2017 AACR.
Collapse
Affiliation(s)
- Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Yunbao Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Clinical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ronghua Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gaigai Bai
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Qiuju Shen
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Shan Meng
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Xiao-Feng Le
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francois X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Experimental Therapeutic Academic Program and Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
17
|
Barwe SP, Quagliano A, Gopalakrishnapillai A. Eviction from the sanctuary: Development of targeted therapy against cell adhesion molecules in acute lymphoblastic leukemia. Semin Oncol 2017; 44:101-112. [PMID: 28923207 DOI: 10.1053/j.seminoncol.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/10/2017] [Accepted: 06/29/2017] [Indexed: 02/04/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant hematological disease afflicting hematopoiesis in the bone marrow. While 80%-90% of patients diagnosed with ALL will achieve complete remission at some point during treatment, ALL is associated with high relapse rate, with a 5-year overall survival rate of 68%. The initial remission failure and the high rate of relapse can be attributed to intrinsic chemoprotective mechanisms that allow persistence of ALL cells despite therapy. These mechanisms are mediated, at least in part, through the engagement of cell adhesion molecules (CAMs) within the bone marrow microenvironment. This review assembles CAMs implicated in protection of leukemic cells from chemotherapy. Such studies are limited in ALL. Therefore, CAMs that are associated with poor outcomes or are overexpressed in ALL and have been shown to be involved in chemoprotection in other hematological cancers are also included. It is likely that these molecules play parallel roles in ALL because the CAMs identified to be a factor in ALL chemoresistance also work similarly in other hematological malignancies. We review the signaling mechanisms activated by the engagement of CAMs that provide protection from chemotherapy. Development of targeted therapies against CAMs could improve outcome and raise the overall cure rate in ALL.
Collapse
Affiliation(s)
- Sonali P Barwe
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE.
| | - Anthony Quagliano
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE
| | | |
Collapse
|
18
|
Innao V, Allegra A, Russo S, Gerace D, Vaddinelli D, Alonci A, Allegra AG, Musolino C. Standardisation of minimal residual disease in multiple myeloma. Eur J Cancer Care (Engl) 2017; 26. [PMID: 28671297 DOI: 10.1111/ecc.12732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 12/16/2022]
Abstract
The assessment of the effectiveness of chemotherapy in oncology cannot disregard the concept of minimal residual disease (MRD). In fact, the efforts of numerous scientific groups all over the world are currently focusing on this issue, with the sole purpose of defining sensitive, effective assessment criteria that are, above all, able to give acceptable, easily repeatable results worldwide. Regarding this issue, especially with the advent of new drugs, multiple myeloma is one of the haematologic malignancies for which a consensus has not yet been reached. In this review, we analyse various techniques that have been used to improve the sensitivity of response, aimed at reducing the cut-off values previously allowed, as well as serological values like serum-free light chain, or immunophenotypic tools on bone marrow or peripheral blood, like multi-parameter flow cytometry, or molecular ones such as allele-specific oligonucleotide (ASO)-qPCR and next-generation/high-throughput sequencing technologies (NGS). Moreover, our discussion makes a brief reference to promising techniques, such as mass spectrometry for identifying Ig light chain (LC) in peripheral blood, and the assessment of gene expression profile not only in defining prognostic risk at the diagnosis but also as a tool for evaluation of response.
Collapse
Affiliation(s)
- V Innao
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - A Allegra
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - S Russo
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - D Gerace
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - D Vaddinelli
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - A Alonci
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - A G Allegra
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - C Musolino
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| |
Collapse
|
19
|
Qattan MY, Bakker EY, Rajendran R, Chen DWC, Saha V, Liu J, Zeef L, Schwartz JM, Mutti L, Demonacos C, Krstic-Demonacos M. Differential regulation of cell death pathways by the microenvironment correlates with chemoresistance and survival in leukaemia. PLoS One 2017; 12:e0178606. [PMID: 28582465 PMCID: PMC5459454 DOI: 10.1371/journal.pone.0178606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/16/2017] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoids (GCs) and topoisomerase II inhibitors are used to treat acute lymphoblastic leukaemia (ALL) as they induce death in lymphoid cells through the glucocorticoid receptor (GR) and p53 respectively. Mechanisms underlying ALL cell death and the contribution of the bone marrow microenvironment to drug response/resistance remain unclear. The role of the microenvironment and the identification of chemoresistance determinants were studied by transcriptomic analysis in ALL cells treated with Dexamethasone (Dex), and Etoposide (Etop) grown in the presence or absence of bone marrow conditioned media (CM). The necroptotic (RIPK1) and the apoptotic (caspase-8/3) markers were downregulated by CM, whereas the inhibitory effects of chemotherapy on the autophagy marker Beclin-1 (BECN1) were reduced suggesting CM exerts cytoprotective effects. GCs upregulated the RIPK1 ubiquitinating factor BIRC3 (cIAP2), in GC-sensitive (CEM-C7-14) but not in resistant (CEM-C1-15) cells. In addition, CM selectively affected GR phosphorylation in a site and cell-specific manner. GR is recruited to RIPK1, BECN1 and BIRC3 promoters in the sensitive but not in the resistant cells with phosphorylated GR forms being generally less recruited in the presence of hormone. FACS analysis and caspase-8 assays demonstrated that CM promoted a pro-survival trend. High molecular weight proteins reacting with the RIPK1 antibody were modified upon incubation with the BIRC3 inhibitor AT406 in CEM-C7-14 cells suggesting that they represent ubiquitinated forms of RIPK1. Our data suggest that there is a correlation between microenvironment-induced ALL proliferation and altered response to chemotherapy.
Collapse
Affiliation(s)
- Malak Yahia Qattan
- College of Applied Medical Sciences and Community Services (CAMS&CS), King Saud University, Riyadh, Saudi Arabia
| | - Emyr Yosef Bakker
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Ramkumar Rajendran
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Daphne Wei-Chen Chen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Vaskar Saha
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Tata Translational Cancer Research Centre, Kolkata, India
| | - Jizhong Liu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Leo Zeef
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Luciano Mutti
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Constantinos Demonacos
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Marija Krstic-Demonacos
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
McGinn OJ, Krishnan S, Bourquin JP, Sapra P, Dempsey C, Saha V, Stern PL. Targeting the 5T4 oncofetal glycoprotein with an antibody drug conjugate (A1mcMMAF) improves survival in patient-derived xenograft models of acute lymphoblastic leukemia. Haematologica 2017; 102:1075-1084. [PMID: 28341731 PMCID: PMC5451339 DOI: 10.3324/haematol.2016.158485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/15/2017] [Indexed: 12/29/2022] Open
Abstract
Outcome in childhood acute lymphoblastic leukemia is prognosticated from levels of minimal residual disease after remission induction therapy. Higher levels of minimal residual disease are associated with inferior results even with intensification of therapy, thus suggesting that identification and targeting of minimal residual disease cells could be a therapeutic strategy. Here we identify high expression of 5T4 in subclonal populations of patient-derived xenografts from patients with high, post-induction levels of minimal residual disease. 5T4-positive cells showed preferential ability to overcome the NOD-scidIL2Rγnull mouse xenograft barrier, migrated in vitro on a CXCL12 gradient, preferentially localized to bone marrow in vivo and displayed the ability to reconstitute the original clonal composition on limited dilution engraftment. Treatment with A1mcMMAF (a 5T4-antibody drug conjugate) significantly improved survival without overt toxicity in mice engrafted with a 5T4-positive acute lymphoblastic leukemia cell line. Mice engrafted with 5T4-positive patient-derived xenograft cells were treated with combination chemotherapy or dexamethasone alone and then given A1mcMMAF in the minimal residual disease setting. Combination chemotherapy was toxic to NOD-scidIL2Rγnull mice. While dexamethasone or A1mcMMAF alone improved outcomes, the sequential administration of dexamethasone and A1mcMMAF significantly improved survival (P=0.0006) over either monotherapy. These data show that specifically targeting minimal residual disease cells improved outcomes and support further investigation of A1mcMMAF in patients with high-risk B-cell precursor acute lymphoblastic leukemia identified by 5T4 expression at diagnosis.
Collapse
Affiliation(s)
- Owen J McGinn
- Immunology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK
| | - Shekhar Krishnan
- Paediatric Oncology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK.,Tata Translational Cancer Research Center, Tata Medical Center, Kolkata, India
| | - Jean-Pierre Bourquin
- Division of Oncology & Children's Research Center, University Children's Hospital, University of Zurich, Switzerland
| | - Puja Sapra
- Pfizer Inc. Pearl River, NY10965-1299, USA
| | - Clare Dempsey
- Paediatric Oncology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK
| | - Vaskar Saha
- Paediatric Oncology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK .,Tata Translational Cancer Research Center, Tata Medical Center, Kolkata, India
| | - Peter L Stern
- Immunology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK
| |
Collapse
|
21
|
Johnson SM, Dempsey C, Parker C, Mironov A, Bradley H, Saha V. Acute lymphoblastic leukaemia cells produce large extracellular vesicles containing organelles and an active cytoskeleton. J Extracell Vesicles 2017; 6:1294339. [PMID: 28386390 PMCID: PMC5373679 DOI: 10.1080/20013078.2017.1294339] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/26/2016] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles have been described in non-paracrine cellular interactions in cancer. We report a similar phenomenon in B-cell precursor (BCP) acute lymphoblastic leukaemia (ALL). Using advanced microscopy and high throughput screening, we further characterise a subset of large vesicles (LEVs) identified in cell lines, murine models of human BCP-ALL and clinical samples. Primary ALL blasts and cell lines released heterogeneous anucleate vesicles <6 micron into extracellular fluids. Larger LEVs were enclosed in continuous membranes, contained intact organelles and demonstrated an organised cytoskeleton. An excess of circulating CD19-positive LEVs were observed in diagnostic samples and isolated from mice engrafted with BCP-ALL primary cells. LEVs exhibited dynamic shape change in vitro and were internalised by other leukaemic cell lines leading to phenotypic transformation analogous to the cell of origin. In patient-derived xenografts, LEVs were released by primary ALL cells into extracellular spaces and internalised by murine mesenchymal cells in vivo. Collectively these data highlight the heterogeneity but accessibility of LEVs in clinical samples and their potential to provide a unique insight into the biology of the cell of origin and to their development as novel biomarkers to aid diagnosis and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Suzanne M Johnson
- Children's Cancer Group, Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , UK
| | - Clare Dempsey
- Children's Cancer Group, Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , UK
| | - Catriona Parker
- Children's Cancer Group, Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , UK
| | - Aleksandr Mironov
- Children's Cancer Group, Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , UK
| | - Helen Bradley
- Faculty of Biology, Medicine and Health, CRUK Manchester Institute, University of Manchester , Manchester , UK
| | - Vaskar Saha
- Children's Cancer Group, Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Tata Translational Cancer Research Centre, Tata Medical Center, Kolkata, India
| |
Collapse
|
22
|
Di Daniele N, Noce A, Vidiri MF, Moriconi E, Marrone G, Annicchiarico-Petruzzelli M, D’Urso G, Tesauro M, Rovella V, De Lorenzo A. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget 2017; 8:8947-8979. [PMID: 27894098 PMCID: PMC5352455 DOI: 10.18632/oncotarget.13553] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
Obesity symbolizes a major public health problem. Overweight and obesity are associated to the occurrence of the metabolic syndrome and to adipose tissue dysfunction. The adipose tissue is metabolically active and an endocrine organ, whose dysregulation causes a low-grade inflammatory state and ectopic fat depositions. The Mediterranean Diet represents a possible therapy for metabolic syndrome, preventing adiposopathy or "sick fat" formation.The Mediterranean Diet exerts protective effects in elderly subjects with and without baseline of chronic diseases. Recent studies have demonstrated a relationship between cancer and obesity. In the US, diet represents amount 30-35% of death causes related to cancer. Currently, the cancer is the second cause of death after cardiovascular diseases worldwide. Furthermore, populations living in the Mediterranean area have a decreased incidence of cancer compared with populations living in Northern Europe or the US, likely due to healthier dietary habits. The bioactive food components have a potential preventive action on cancer. The aims of this review are to evaluate the impact of Mediterranean Diet on onset, progression and regression of metabolic syndrome, cancer and on longevity.
Collapse
Affiliation(s)
- Nicola Di Daniele
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Annalisa Noce
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Maria Francesca Vidiri
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| | - Eleonora Moriconi
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| | - Giulia Marrone
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | | | - Gabriele D’Urso
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Valentina Rovella
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Antonino De Lorenzo
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| |
Collapse
|
23
|
Houshmand M, Soleimani M, Atashi A, Saglio G, Abdollahi M, Nikougoftar Zarif M. Mimicking the Acute Myeloid Leukemia Niche for Molecular Study and Drug Screening. Tissue Eng Part C Methods 2017; 23:72-85. [PMID: 28007011 DOI: 10.1089/ten.tec.2016.0404] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone marrow niche is a major contributing factor in leukemia development and drug resistance in acute myeloid leukemia (AML) patients. Although mimicking leukemic bone marrow niche relies on two-dimensional (2D) culture conditions, it cannot recapitulate complex bone marrow structure that causes introduction of different three-dimensional (3D) scaffolds. Simultaneously, microfluidic platform by perfusing medium culture mimic interstitial fluid flow, along with 3D scaffold would help for mimicking bone marrow microenvironment. In this study TF-1 cells were cocultured with bone marrow mesenchymal stem cells (BM-MSCs) in 2D and 3D microfluidic devices. Phenotype maintenance during cell culture and proliferation rate was assayed and confirmed by cell cycle analysis. Morphology of cells in 2D and 3D culture conditions was demonstrated by scanning electron microscopy. After these experiments, drug screening was performed by applying azacitidine and cytarabine and cytotoxicity assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for B cell lymphoma 2 (BCL2) were done to compare drug resistance in 2D and 3D culture conditions. Our result shows leukemic cells in 3D microfluidic device retaining their phenotype and proliferation rate was significantly higher in 3D culture condition in comparison to 2D culture condition (p < 0.05), which was confirmed by cell cycle analysis. Cytotoxicity assay also illustrated drug resistance in 3D culture condition and qRT-PCR demonstrated higher BCL2 expression in 3D microfluidic device in contrast to 2D microfluidic device (p < 0.05). On balance, mimicking bone marrow niche would help the target therapy and specify the role of niche in development of leukemia in AML patients.
Collapse
Affiliation(s)
- Mohammad Houshmand
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| | - Masoud Soleimani
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Amir Atashi
- 3 Stem cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences , Shahroud, Iran
| | - Giuseppe Saglio
- 4 Department of Clinical and Biological Sciences, "S. Luigi Gonzaga" Hospital, University of Turin , Orbassano, Italy
| | - Mohammad Abdollahi
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Mahin Nikougoftar Zarif
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| |
Collapse
|
24
|
Neveu B, Spinella JF, Richer C, Lagacé K, Cassart P, Lajoie M, Jananji S, Drouin S, Healy J, Hickson GRX, Sinnett D. CLIC5: a novel ETV6 target gene in childhood acute lymphoblastic leukemia. Haematologica 2016; 101:1534-1543. [PMID: 27540136 PMCID: PMC5479611 DOI: 10.3324/haematol.2016.149740] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/11/2016] [Indexed: 01/13/2023] Open
Abstract
The most common rearrangement in childhood precursor B-cell acute lymphoblastic leukemia is the t(12;21)(p13;q22) translocation resulting in the ETV6-AML1 fusion gene. A frequent concomitant event is the loss of the residual ETV6 allele suggesting a critical role for the ETV6 transcriptional repressor in the etiology of this cancer. However, the precise mechanism through which loss of functional ETV6 contributes to disease pathogenesis is still unclear. To investigate the impact of ETV6 loss on the transcriptional network and to identify new transcriptional targets of ETV6, we used whole transcriptome analysis of both pre-B leukemic cell lines and patients combined with chromatin immunoprecipitation. Using this integrative approach, we identified 4 novel direct ETV6 target genes: CLIC5, BIRC7, ANGPTL2 and WBP1L To further evaluate the role of chloride intracellular channel protein CLIC5 in leukemogenesis, we generated cell lines overexpressing CLIC5 and demonstrated an increased resistance to hydrogen peroxide-induced apoptosis. We further described the implications of CLIC5's ion channel activity in lysosomal-mediated cell death, possibly by modulating the function of the transferrin receptor with which it colocalizes intracellularly. For the first time, we showed that loss of ETV6 leads to significant overexpression of CLIC5, which in turn leads to decreased lysosome-mediated apoptosis. Our data suggest that heightened CLIC5 activity could promote a permissive environment for oxidative stress-induced DNA damage accumulation, and thereby contribute to leukemogenesis.
Collapse
Affiliation(s)
- Benjamin Neveu
- CHU Sainte-Justine Research Center, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Jean-François Spinella
- CHU Sainte-Justine Research Center, Montreal, Canada
- Molecular biology program, Faculty of Medicine, University of Montreal, Montreal, Canada
| | | | - Karine Lagacé
- CHU Sainte-Justine Research Center, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, Canada
| | | | | | | | - Simon Drouin
- CHU Sainte-Justine Research Center, Montreal, Canada
| | - Jasmine Healy
- CHU Sainte-Justine Research Center, Montreal, Canada
| | - Gilles R X Hickson
- CHU Sainte-Justine Research Center, Montreal, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Daniel Sinnett
- CHU Sainte-Justine Research Center, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
25
|
Metabolic reprogramming of bone marrow stromal cells by leukemic extracellular vesicles in acute lymphoblastic leukemia. Blood 2016; 128:453-6. [DOI: 10.1182/blood-2015-12-688051] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|