1
|
Wang CJ, Qin J, Liu Y, Wen Z, Chen CX, Li HY, Huang HT, Yang L, Yang XS. Perioperative, functional, and oncologic outcomes in obese patients undergoing Da Vinci robot-assisted radical prostatectomy: a systematic review and meta-analysis. BMC Urol 2024; 24:207. [PMID: 39313813 PMCID: PMC11418329 DOI: 10.1186/s12894-024-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVE The influence of robot-assisted radical prostatectomy (RARP) in obese (OB) and non-obese (NOB) prostate cancer patients remains a topic of debate. The objective of this study was to juxtapose the perioperative, functional, and oncologic outcomes of RARP in OB and NOB cohorts. MATERIALS AND METHODS We systematically searched the databases such as PubMed, Embase, Web of Science, and the Cochrane Library database to identify relevant studies published in English up to September 2023. Review Manager was used to compare various parameters. The study was registered with PROSPERO (CRD42023473136). Sixteen comparative trials were included for 8434 obese patients compared with 55,266 non-obese patients. RESULTS The OB group had a longer operative time (WMD 17.8 min, 95% CI 9.7,25.8; p < 0.0001), a longer length of hospital stay (WMD 0.18 day, 95% CI 0.12,0.24; p < 0.00001, a higher estimated blood loss (WMD 50.6 ml, 95% CI 11.7,89.6; p = 0.01), and higher pelvic lymphadenectomy rate (RR 1.08, 95% CI 1.04,1.12; p < 0.0001)and lower nerve sparing rate (RR 0.95, 95% CI 0.91,0.99; p < 0.01), but there was no difference between unilateral (RR 1.0, 95% CI 0.8,1.3; p = 0.8)and bilateral (RR 0.9, 95% CI 0.9,1.0; p = 0.06)nerve sparing rate. Then, complication rates (RR 1.6, 95% CI 1.5,1.7; p < 0.00001) were higher in the OB group, and both major (RR 1.4, 95% CI 1.1,1.8; p = 0.01)and minor (RR 1.4, 95% CI 1.1,1.7; p < 0.01)complication rates were higher in the OB group. Moreover, obese patients showed significantly higher probabilities of incontinence (RR 1.17, 95% CI 1.03,1.33; p = 0.01) and impotency (RR 1.08, 95% CI 1.01,1.15; p = 0.02) at 1 year. Last, the positive surgical margin (RR 1.2, 95% CI 1.1,1.3; p < 0.01) was higher in the OB group. CONCLUSION In the obese group, perioperative outcomes, total complications, functional outcomes, and oncologic outcomes were all worse for RARP. Weight loss before RARP may be a feasible strategy to improve the prognosis of patients.
Collapse
Affiliation(s)
- Chong-Jian Wang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiao Qin
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Liu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhi Wen
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Cai-Xia Chen
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hong-Yuan Li
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hao-Tian Huang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lin Yang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue-Song Yang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
2
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
3
|
Chung M, Hwang J, Park S. Antiobesity effects of onion ( Allium cepa) in subjects with obesity: Systematic review and meta-analysis. Food Sci Nutr 2023; 11:4409-4418. [PMID: 37576046 PMCID: PMC10420769 DOI: 10.1002/fsn3.3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 04/30/2023] [Indexed: 08/15/2023] Open
Abstract
Onions are rich in bioactive compounds and have been found to prevent various chronic diseases, including obesity. We performed a systematic review and meta-analysis to investigate the antiobesity effect of onions. Studies were identified in PubMed/MEDLINE, Embase, Web of Science, and CENTRAL focusing on clinical trials evaluating the antiobesity effects of onion in obese subjects. The risk of bias in the studies was evaluated using Cochrane's Risk of Bias tool. The effect of onions was analyzed using data from the selected studies, and the results were indicated by weighted mean difference with 95% CI. The I 2 static test was used to examine heterogeneity between the studies. A total of 38 studies were reviewed, of which five clinical trials meeting the criteria were selected. As investigational products, onion peels were used in four studies and onions were used in one study. Following systematic review, it was determined that the risk of bias was generally low, and body weight, BMI, waist circumference, and triglyceride levels were significantly reduced in the onion groups compared to the placebo. In conclusion, onion intake had an antiobesity effect by reducing body weight and body fat, and this effect was particularly pronounced with onion peel.
Collapse
Affiliation(s)
- Min‐Yu Chung
- Department of Food and NutritionGangseo UniversitySeoulKorea
| | - Jin‐Taek Hwang
- Food Functionality Research DivisionKorea Food Research InstituteWanjuKorea
| | - Soo‐Hyun Park
- Food Functionality Research DivisionKorea Food Research InstituteWanjuKorea
| |
Collapse
|
4
|
Obesity and main urologic cancers: Current systematic evidence, novel biological mechanisms, perspectives and challenges. Semin Cancer Biol 2023; 91:70-98. [PMID: 36893965 DOI: 10.1016/j.semcancer.2023.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Urologic cancers (UC) account for 13.1% of all new cancer cases and 7.9% of all cancer-related deaths. A growing body of evidence has indicated a potential causal link between obesity and UC. The aim of the present review is to appraise in a critical and integrative manner evidence from meta-analyses and mechanistic studies on the role of obesity in four prevalent UC (kidney-KC, prostate-PC, urinary bladder-UBC, and testicular cancer-TC). Special emphasis is given on Mendelian Randomization Studies (MRS) corroborating a genetic causal association between obesity and UC, as well as on the role of classical and novel adipocytokines. Furthermore, the molecular pathways that link obesity to the development and progression of these cancers are reviewed. Available evidence indicates that obesity confers increased risk for KC, UBC, and advanced PC (20-82%, 10-19%, and 6-14%, respectively), whereas for TC adult height (5-cm increase) may increase the risk by 13%. Obese females tend to be more susceptible to UBC and KC than obese males. MRS have shown that a higher genetic-predicted BMI may be causally linked to KC and UBC but not PC and TC. Biological mechanisms that are involved in the association between excess body weight and UC include the Insulin-like Growth Factor axis, altered availability of sex hormones, chronic inflammation and oxidative stress, abnormal secretion of adipocytokines, ectopic fat deposition, dysbiosis of the gastrointestinal and urinary tract microbiomes and circadian rhythm dysregulation. Anti-hyperglycemic and non-steroidal anti-inflammatory drugs, statins, and adipokine receptor agonists/antagonists show potential as adjuvant cancer therapies. Identifying obesity as a modifiable risk factor for UC may have significant public health implications, allowing clinicians to tailor individualized prevention strategies for patients with excess body weight.
Collapse
|
5
|
Qing Y, Jamal MA, Shi D, Zhao S, Xu K, Jiao D, Zhao H, Li H, Jia B, Wang H, Zhao HY, Wei HJ. Delayed body development with reduced triglycerides levels in leptin transgenic pigs. Transgenic Res 2021; 31:59-72. [PMID: 34741281 DOI: 10.1007/s11248-021-00288-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022]
Abstract
Leptin is a well-known adipokine that plays critical role in adiposity. To further investigate the role of leptin in adiposity, we utilized leptin overexpressing transgenic pigs and evaluated the effect of leptin on growth and development, fat deposition, and lipid metabolism at tissue and cell level. Leptin transgenic pigs were produced and divided into two groups: elevated leptin expression (leptin ( +)) and normal leptin expression group (control). Results indicated that leptin ( +) pigs had elevated leptin protein and mRNA expression levels and exhibited sluggish growth and development followed by decreased subcutaneous fat thickness, low serum triglycerides, saturated, unsaturated fatty acids and high cholesterol esters (p < 0.05). There were differences in the lipid metabolism related genes at different fat depots, including upregulation of PPARγ, AGPAT6, PLIN2, HSL and ATGL in subcutaneous, PPARγ in perirenal, and FAT/CD36 and PLIN2 in mesenteric adipose tissues and downregulation of AGPAT6 and ATGL in perirenal and AGPAT6 in mesenteric adipose tissues (p < 0.05). Additionally, in-vitro cultured leptin ( +) preadipocytes exhibited upregulation of PPARγ, FAT/CD36, ACACA, AGPAT, PLIN2, ATGL and HSL as compared to control (p < 0.05). These findings suggested that homeostasis imbalance in lipolysis and lipogenesis at adipose tissue and adipocytes levels led to low subcutaneous fat depots in leptin overexpression pigs. These pigs can act as model for obesity and related metabolic disorder.
Collapse
Affiliation(s)
- Yubo Qing
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Muhammad Ameen Jamal
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Dejia Shi
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Sumei Zhao
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Kaixiang Xu
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Deling Jiao
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Heng Zhao
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Honghui Li
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Baoyu Jia
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Haizhen Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Ye Zhao
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Jiang Wei
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China. .,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China. .,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China. .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
6
|
Jiménez-Cortegana C, López-Saavedra A, Sánchez-Jiménez F, Pérez-Pérez A, Castiñeiras J, Virizuela-Echaburu JA, de la Cruz-Merino L, Sánchez-Margalet V. Leptin, Both Bad and Good Actor in Cancer. Biomolecules 2021; 11:913. [PMID: 34202969 PMCID: PMC8235379 DOI: 10.3390/biom11060913] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Leptin is an important regulator of basal metabolism and food intake, with a pivotal role in obesity. Leptin exerts many different actions on various tissues and systems, including cancer, and is considered as a linkage between metabolism and the immune system. During the last decades, obesity and leptin have been associated with the initiation, proliferation and progression of many types of cancer. Obesity is also linked with complications and mortality, irrespective of the therapy used, affecting clinical outcomes. However, some evidence has suggested its beneficial role, called the "obesity paradox", and the possible antitumoral role of leptin. Recent data regarding the immunotherapy of cancer have revealed that overweight leads to a more effective response and leptin may probably be involved in this beneficial process. Since leptin is a positive modulator of both the innate and the adaptive immune system, it may contribute to the increased immune response stimulated by immunotherapy in cancer patients and may be proposed as a good actor in cancer. Our purpose is to review this dual role of leptin in cancer, as well as trying to clarify the future perspectives of this adipokine, which further highlights its importance as a cornerstone of the immunometabolism in oncology.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Ana López-Saavedra
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Jesús Castiñeiras
- Urology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain;
| | - Juan A. Virizuela-Echaburu
- Medical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain; (J.A.V.-E.); (L.d.l.C.-M.)
| | - Luis de la Cruz-Merino
- Medical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain; (J.A.V.-E.); (L.d.l.C.-M.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| |
Collapse
|
7
|
Liu H, Du T, Li C, Yang G. STAT3 phosphorylation in central leptin resistance. Nutr Metab (Lond) 2021; 18:39. [PMID: 33849593 PMCID: PMC8045279 DOI: 10.1186/s12986-021-00569-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
Mechanism exploitation of energy homeostasis is urgently required because of the worldwide prevailing of obesity-related metabolic disorders in human being. Although it is well known that leptin plays a central role in regulating energy balance by suppressing food intake and promoting energy expenditure, the existence of leptin resistance in majority of obese individuals hampers the utilization of leptin therapy against these disorders. However, the mechanism of leptin resistance is largely unknown in spite of the globally enormous endeavors. Current theories to interpret leptin resistance include the impairment of leptin transport, attenuation of leptin signaling, chronic inflammation, ER tress, deficiency of autophagy, as well as leptin itself. Leptin-activated leptin receptor (LepRb) signals in hypothalamus via several pathways, in which JAK2-STAT3 pathway, the most extensively investigated one, is considered to mediate the major action of leptin in energy regulation. Upon leptin stimulation the phosphorylation of STAT3 is one of the key events in JAK2-STAT3 pathway, followed by the dimerization and nuclear translocation of this molecule. Phosphorylated STAT3 (p-STAT3), as a transcription factor, binds to and regulates its target gene such as POMC gene, playing the physiological function of leptin. Regarding POMC gene in hypothalamus however little is known about the detail of its interaction with STAT3. Moreover the status of p-STAT3 and its significance in hypothalamus of DIO mice needs to be well elucidated. This review comprehends literatures on leptin and leptin resistance and especially discusses what STAT3 phosphorylation would contribute to central leptin resistance.
Collapse
Affiliation(s)
- Huimin Liu
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Tianxin Du
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Chen Li
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Guoqing Yang
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China.
| |
Collapse
|
8
|
Association between Single Nucleotide Polymorphism rs9891119 of STAT3 Gene and the Genetic Susceptibility to Type 2 Diabetes in Chinese Han Population from Guangdong. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6657324. [PMID: 33833859 PMCID: PMC8012137 DOI: 10.1155/2021/6657324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/06/2021] [Accepted: 03/12/2021] [Indexed: 11/18/2022]
Abstract
Background The aim of this study was to investigate the association between single nucleotide polymorphism (SNP) rs9891119 of the signal transducer and activator of the transcription 3 (STAT3) gene and genetic susceptibility to type 2 diabetes in Chinese Han population from the Guangdong province. Objective The aim of the present study was to explore the relationship between single nucleotide polymorphism rs9891119 of STAT3 gene and type 2 diabetes mellitus (T2DM), which provides a basis for molecular genetic research on the pathogenesis of T2DM in Chinese Han population. Methods In our case-control study, the SNP rs9891119 was picked out from the STAT3 gene and the SNP genotyping was performed by using the SNPscan™ kit in 1092 patients with type 2 diabetes as cases and 1092 normal persons as controls. The distributions of genotype and allele frequencies in two groups were analyzed by SPSS 20.0 software. Results Our results showed that the alleles of A and C of rs9891119 of the STAT3 gene were 54.3 and 45.7% in patients with type 2 diabetes, while 55.5% and 44.5% in the normal persons, which have no statistical significance (P > 0.05). There were also no significant differences in AA, AC, and CC genotype frequencies between type 2 diabetes patients and normal persons. There were no significant differences in codominant, dominant, recessive, and overdominant genetic models of SNP rs9891119 before and after adjusting the covariant factors (P > 0.05). Conclusions Therefore, genetic susceptibility to type 2 diabetes may be not associated with SNP rs9891119 of the STAT3 gene in Chinese Han population from the Guangdong province.
Collapse
|
9
|
Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, Sánchez-Margalet V. Role of Leptin in Inflammation and Vice Versa. Int J Mol Sci 2020; 21:E5887. [PMID: 32824322 PMCID: PMC7460646 DOI: 10.3390/ijms21165887] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is an essential immune response for the maintenance of tissue homeostasis. In a general sense, acute and chronic inflammation are different types of adaptive response that are called into action when other homeostatic mechanisms are insufficient. Although considerable progress has been made in understanding the cellular and molecular events that are involved in the acute inflammatory response to infection and tissue injury, the causes and mechanisms of systemic chronic inflammation are much less known. The pathogenic capacity of this type of inflammation is puzzling and represents a common link of the multifactorial diseases, such as cardiovascular diseases and type 2 diabetes. In recent years, interest has been raised by the discovery of novel mediators of inflammation, such as microRNAs and adipokines, with different effects on target tissues. In the present review, we discuss the data emerged from research of leptin in obesity as an inflammatory mediator sustaining multifactorial diseases and how this knowledge could be instrumental in the design of leptin-based manipulation strategies to help restoration of abnormal immune responses. On the other direction, chronic inflammation, either from autoimmune or infectious diseases, or impaired microbiota (dysbiosis) may impair the leptin response inducing resistance to the weight control, and therefore it may be a cause of obesity. Thus, we are reviewing the published data regarding the role of leptin in inflammation, and the other way around, the role of inflammation on the development of leptin resistance and obesity.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| |
Collapse
|
10
|
Gorrab A, Pagano A, Ayed K, Chebil M, Derouiche A, Kovacic H, Gati A. Leptin Promotes Prostate Cancer Proliferation and Migration by Stimulating STAT3 Pathway. Nutr Cancer 2020; 73:1217-1227. [PMID: 32698628 DOI: 10.1080/01635581.2020.1792946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To better understand the link between obesity and prostate cancer (PC) aggressiveness, we investigate the role of leptin, an obesity associated adipokine, and its receptor (Ob-R) in PC cells migration. The migration assay (Wound-healing) was used to study the leptin impact on DU-145 and PC3 cells lines. STAT3 activation was performed by Western Blot. E-cadherin expression was studied using fluorescence microscopy and Ob-R expression in PC and benign prostatic Hyperplasia (BPH) biopsies was assessed by RT-PCR. In this study we demonstrate that high dose of leptin promotes PC cells migration and EMT transition via the stimulation of STAT3 pathway. In addition, we report that although Ob-R mRNA is expressed by ADK and BPH resections biopsies, significant higher levels were observed for ADK patients. Finally, we found a positive association between Ob-R mRNA expression and worse PC prognosis. A better understanding of the molecular processes of leptin signaling is crucial for identifying appropriate approaches for treatment of obesity-related PC patients.
Collapse
Affiliation(s)
- Amal Gorrab
- Laboratory of Genetics, Immunology and Human Pathology, Department of Biology - Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Alessandra Pagano
- Aix-Marseille Université, UMR 7051, Institut de Neurophysiopathologie (INP), CNRS, Fac Médecine, Marseille, France
| | - Khouloud Ayed
- Laboratory of Genetics, Immunology and Human Pathology, Department of Biology - Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Mohamed Chebil
- Department of Urology, Charles Nicolle University Hospital of Tunis, Tunis, Tunisia
| | - Amine Derouiche
- Department of Urology, Charles Nicolle University Hospital of Tunis, Tunis, Tunisia
| | - Hervé Kovacic
- Aix-Marseille Université, UMR 7051, Institut de Neurophysiopathologie (INP), CNRS, Fac Médecine, Marseille, France
| | - Asma Gati
- Laboratory of Genetics, Immunology and Human Pathology, Department of Biology - Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
11
|
Defever K, Platz EA, Lopez DS, Mondul AM. Differences in the prevalence of modifiable risk and protective factors for prostate cancer by race and ethnicity in the National Health and Nutrition Examination Survey. Cancer Causes Control 2020; 31:851-860. [PMID: 32666408 DOI: 10.1007/s10552-020-01326-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/04/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Prostate cancer burden is disproportionate by race. Black men have the highest incidence and mortality rates. Rates for Hispanic men are significantly lower than for non-Hispanic Whites. Whether differences in prevalences of modifiable risk and protective factors for prostate cancer may explain these racial/ethnic differences remains unclear. METHODS We used data from the National Health and Nutrition Examination Surveys (NHANES), which are cross-sectional and nationally representative. We selected factors known or suspected to be associated with prostate cancer and calculated risk scores combining key factors. Age-adjusted means and proportions were calculated for each factor and risk score by race/ethnicity. We estimated odds ratios (OR) using polytomous logistic regression. RESULTS Prevalences of most factors are statistically significantly differed by race/ethnicity. In NHANES III, the prevalence of high risk score (i.e., > 25th percentile for all participants) was lower for all groups (non-Hispanic Black = 59.4%, non-US-born Mexican American = 51.4%, US-born Mexican American = 61.4%) vs. non-Hispanic White men (76.4%). Similar findings were observed for the fatal weighted risk score and for continuous NHANES. CONCLUSIONS Our findings from this nationally representative study suggest that a combination of multiple risk and protective factors may help to explain the lower rates of prostate cancer in Mexican Americans. However, variation in these factors did not explain the higher risk of prostate cancer in non-Hispanic Black men. No one lifestyle change can reduce prostate cancer equally across all racial/ethnic groups, and modifiable factors may not explain the increased risk in black men at all. Secondary prevention strategies may provide the most benefit for black men.
Collapse
Affiliation(s)
- Kali Defever
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David S Lopez
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX, USA
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
Serum Omentin Levels in Patients with Prostate Cancer and Associations with Sex Steroids and Metabolic Syndrome. J Clin Med 2020; 9:jcm9041179. [PMID: 32326011 PMCID: PMC7230956 DOI: 10.3390/jcm9041179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Mechanisms linking obesity and prostate cancer (PC) include increased insulin signaling, persistent inflammation, and altered adipocytokines secretion. Previous studies indicated that omentin may play a potential role in cancerogenesis of different sites, including the prostate. In this study, we focused on the hormonal and metabolic characteristics of men recruited for prostate biopsy. We evaluated serum concentrations of adipocytokines and sex steroids where concentrations are related to the adiposity: omentin, leptin, testosterone, estradiol, and sex hormone-binding globulin (SHBG). Aim: The aim of the study was to assess the concentration of serum omentin in men with PC. We also investigated relationships between omentin, leptin, sex steroids, SHBG, age, and metabolic syndrome (MS). Methods: Our study was conducted on 72 patients with PC and 65 men with benign prostate hyperplasia (BPH). Both groups were compared for body mass index. Results: Comparing men with PC to subjects with BPH there were significantly higher serum concentrations of omentin, estradiol, and prostate specific antigen (PSA) in the former. Estradiol/testosterone ratio, which is a marker of testosterone to estradiol conversion, was also significantly higher in the PC group. MS was diagnosed in 47 men with PC and in 30 men with BPH, the prevalence was significantly higher in the PC group. When the subjects with PC were subdivided into two subgroups, the serum omentin did not differ between those with MS and without MS. In the overall sample serum, omentin was positively associated with age, SHBG, and leptin. A positive correlation was also found between omentin and estradiol/testosterone ratio, and negatively with testosterone/SHBG ratio. Positive correlations were noted between age and SHBG, PSA and estradiol/testosterone ratio. In our study, a drop of total testosterone and testosterone/SHBG ratio, due to age, was also demonstrated. Conclusions: In patients with prostate cancer, serum omentin may be a diagnostic indicator. Omentin levels do not correlate with estradiol or testosterone concentrations but they are related to the testosterone/SHBG ratio. Omentin is not associated with an increased likelihood of having metabolic syndrome in men with prostate cancer.
Collapse
|
13
|
Appetite-regulating hormones-leptin, adiponectin and ghrelin-and the development of prostate cancer: a systematic review and exploratory meta-analysis. Prostate Cancer Prostatic Dis 2020; 23:11-23. [PMID: 31147627 DOI: 10.1038/s41391-019-0154-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 04/13/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Obesity has been proposed as a risk factor for prostate cancer (PCa). In obesity, serum levels of the appetite-regulating hormones-leptin, adiponectin, and ghrelin-become deregulated. OBJECTIVE To explore whether serum levels of appetite-regulating hormones associate with the incidence of PCa, the incidence of advanced disease, or PCa-specific mortality. METHODS PRISMA guidelines were followed. A systematic search for relevant articles published until March 2019 was performed using the databases PubMed, EMBASE, and Web of Science. Observational studies with data on serum levels of leptin, adiponectin, or ghrelin and PCa outcome were included. Meta-analysis was used to combine risk estimates. Meta-relative risks (mRRs) were calculated using random effects models. When available, raw data was pooled. Publication bias was assessed by funnel plot and Begg's test. RESULTS Thirty-five studies were eligible for inclusion. The qualitative analysis indicated that leptin was not consistently associated with any PCa outcome, although several cohorts reported decreased adiponectin levels in men who later developed advanced PCa. Based on the meta-analysis, there was no significant effect of leptin on PCa incidence (mRR = 0.93 (95% CI 0.75-1.16), p = 0.52) or advanced PCa (mRR = 0.90 (95% CI 0.74-1.10), p = 0.30). There were insufficient studies to estimate the mRR of PCa incidence for men with the highest levels of adiponectin. The combined risk of advanced PCa for men with the highest levels of adiponectin was reduced but did not reach significance (mRR = 0.81 (95% CI 0.61-1.08), p = 0.15). CONCLUSIONS The current evidence does not suggest an association between leptin and PCa outcome. However, there may be an inverse association between adiponectin and the incidence of advanced PCa that should be investigated by further studies. Serum ghrelin has not been largely investigated.
Collapse
|
14
|
Lam T, Birzniece V, McLean M, Gurney H, Hayden A, Cheema BS. The Adverse Effects of Androgen Deprivation Therapy in Prostate Cancer and the Benefits and Potential Anti-oncogenic Mechanisms of Progressive Resistance Training. SPORTS MEDICINE-OPEN 2020; 6:13. [PMID: 32056047 PMCID: PMC7018888 DOI: 10.1186/s40798-020-0242-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/05/2020] [Indexed: 12/25/2022]
Abstract
Prostate cancer has the second highest incidence of all cancers amongst men worldwide. Androgen deprivation therapy (ADT) remains a common form of treatment. However, in reducing serum testosterone to castrate levels and rendering men hypogonadal, ADT contributes to a myriad of adverse effects which can affect prostate cancer prognosis. Physical activity is currently recommended as synergistic medicine in prostate cancer patients to alleviate the adverse effects of treatment. Progressive resistance training (PRT) is an anabolic exercise modality which may be of benefit in prostate cancer patients given its potency in maintaining and positively adapting skeletal muscle. However, currently, there is a scarcity of RCTs which have evaluated the use of isolated PRT in counteracting the adverse effects of prostate cancer treatment. Moreover, although physical activity in general has been found to reduce relapse rates and improve survival in prostate cancer, the precise anti-oncogenic effects of specific exercise modalities, including PRT, have not been fully established. Thus, the overall objective of this article is to provide a rationale for the in-depth investigation of PRT and its biological effects in men with prostate cancer on ADT. This will be achieved by (1) summarising the metabolic effects of ADT in patients with prostate cancer and its effect on prostate cancer progression and prognosis, (2) reviewing the existing evidence regarding the metabolic benefits of PRT in this cohort, (3) exploring the possible oncological pathways by which PRT can affect prostate cancer prognosis and progression and (4) outlining avenues for future research.
Collapse
Affiliation(s)
- Teresa Lam
- School of Medicine, Western Sydney University, Penrith, NSW, Australia. .,Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, NSW, Australia. .,Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, NSW, Australia.
| | - Vita Birzniece
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, NSW, Australia.,School of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Translational Health Research Institute, Penrith, NSW, Australia
| | - Mark McLean
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, NSW, Australia
| | - Howard Gurney
- Crown Princess Mary Cancer Centre, Westmead, NSW, Australia
| | - Amy Hayden
- Crown Princess Mary Cancer Centre, Westmead, NSW, Australia.,Department of Radiation Oncology, Blacktown Hospital, Blacktown, NSW, Australia
| | - Birinder S Cheema
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
15
|
Pinheiro-Castro N, Silva LBAR, Ong TP. Obesity and Cancer Risk. NUTRITION AND CANCER PREVENTION 2019:147-159. [DOI: 10.1039/9781788016506-00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Obesity is a major global public health problem and a key risk factor for several cancers. Obesity is a complex disease caused by a chronic positive energy balance state. Different mechanisms have been proposed to explain the influence of obesity on cancer risk. These include adipose tissue dysfunction, which is accompanied by metabolic, inflammatory and hormonal alterations that can impact cancer initiation and progression. More recently, obesity-associated dysbiosis has been highlighted as an important factor in cancer development. As the World Cancer Research Fund and the American Institute for Cancer Research recommend, maintaining a healthy body weight is a key strategy for cancer prevention. As obesity prevalence increases in developed and developing countries, multidisciplinary approaches will be needed in order to promote weight loss and, thus, effectively reduce rates of cancer incidence.
Collapse
Affiliation(s)
- N. Pinheiro-Castro
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - L. B. A. R. Silva
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - T. P. Ong
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| |
Collapse
|
16
|
Signal transducer and activator of transcription-3 drives the high-fat diet-associated prostate cancer growth. Cell Death Dis 2019; 10:637. [PMID: 31474764 PMCID: PMC6717738 DOI: 10.1038/s41419-019-1842-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men. PCa progression can be associated with obesity. Signal transducer and activator of transcription-3 (STAT3) plays a crucial role in PCa growth. However, whether STAT3 plays a role in high-fat diet (HFD)-associated PCa growth is unknown. Our data show that HFD feeding increases tumor size, STAT3 phosphorylation, and palmitic acid (PA) level in the xenograft tissues of the PCa-bearing xenograft mouse model. In vitro studies show that PA increases STAT3 expression and phosphorylation (STAT3-Y705) in PCa. Computational modeling suggests strong and stable binding between PA and unphosphorylated STAT3 at R593 and N538. The binding changes STAT3 structure and activity. Functional studies show that both STAT3 mutants (R583A and N538A) and STAT3 dominant negative significantly reduce PA-enhanced STAT3 phosphorylation, PA-increased PCa cell proliferation, migration, and invasion. In the xenograft mouse models, the HFD-increased tumor growth and STAT3 phosphorylation in tumors are reversed by STAT3 inhibition. Our study not only demonstrates the regulatory role of PA/STAT3 axis in HFD-associated PCa growth but also suggests a novel mechanism of how STAT3 is activated by PA. Our data suggest STAT3 as a therapeutic target for the treatment of HFD-associated PCa.
Collapse
|
17
|
The influence of leptin on the process of carcinogenesis. Contemp Oncol (Pozn) 2019; 23:63-68. [PMID: 31316286 PMCID: PMC6630388 DOI: 10.5114/wo.2019.85877] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity is a new risk factor, to which more and more research is devoted, related to the development of cancer. Many studies of recent years have drawn attention to the role of adipose tissue as an important internal endocrine organ. In the adipose tissue proteins are produced, referred to by the common name as adipokines. In the case of obesity, the neoplasm cells are constantly stimulated by pro-inflammatory cytokines and adipokines, among which leptin dominates. The studies show that leptin can affect the cancer cells through numerous phenomena, e.g. inflammation, cell proliferation, suppression of apoptosis and angiogenesis. In this literature review we examined the role of leptin in the development of the individual cancers: breast cancer, colorectal cancer, prostate cancer, ovarian cancer, endometrial cancer and brain neoplasms: glioma and meningioma. However, leptin has very complicated mechanisms of action which require better understanding in certain types of cancer.
Collapse
|
18
|
Total flavonoids extracted from Nervilia Fordii function in polycystic ovary syndrome through IL-6 mediated JAK2/STAT3 signaling pathway. Biosci Rep 2019; 39:BSR20181380. [PMID: 30463907 PMCID: PMC6328881 DOI: 10.1042/bsr20181380] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Large doses of flavonoids could cure many diseases with no serious side effects. However, the role of flavonoids in the treatment of polycystic ovary syndrome (PCOS) has not been reported. Therefore, total flavonoids extracted from Nervilia Fordii were selected to explore its therapeutic efficiency in PCOS. PCOS rat model was constructed to explore the role of total flavonoids in the treatment of PCOS. ELISA was used to assess the changes of ovulation function under the treatment of total flavonoids with or without exogenous interleukin-6 (IL-6). Western blot, real-time PCR and immunohistochemistry were carried out to assess the related molecular mechanisms. We explored that total flavonoids obviously increased the serum levels of follicle-stimulating hormone (FSH), and sharply decreased the serum levels of luteinizing hormone (LH), testosterone (T) and insulin (INS) in the PCOS-IR rats via partly inhibiting the activation of JAK2/STAT3 pathway, partially up-regulating the IL-6 expression and partially down-regulating the suppressor of cytokine signaling 3 (SOCS3) expression in ovaries of PCOS rats. The effect of total flavonoids on estrous cycles, serum levels of FSH, LH, T and INS were partially attenuated by IL-6 in PCOS rat model. Moreover, IL-6 significantly reversed the effect of total flavonoids on the phosphorylation of JAK2/STAT3, the expression of IL-6 and SOCS3 in ovaries of PCOS rats. Total flavonoids extracted from Nervilia Fordii might induce the expression of IL-6 in ovary and act as a potential therapeutic drug for the treatment of PCOS.
Collapse
|
19
|
Marrelli M, Amodeo V, Statti G, Conforti F. Biological Properties and Bioactive Components of Allium cepa L.: Focus on Potential Benefits in the Treatment of Obesity and Related Comorbidities. Molecules 2018; 24:molecules24010119. [PMID: 30598012 PMCID: PMC6337254 DOI: 10.3390/molecules24010119] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/10/2023] Open
Abstract
Common onion (Allium cepa L.) is one of the oldest cultivated plants, utilized worldwide as both vegetable and flavouring. This species is known to contain sulphur amino acids together with many vitamins and minerals. A variety of secondary metabolites, including flavonoids, phytosterols and saponins, have also been identified. Despite the predominant use of this plant as food, a wide range of beneficial effects have also been proved. Different biological properties, such as antioxidant, antimicrobial and antidiabetic, have been reported. The aim of this review is to provide an overview of the studies concerning the beneficial effects of this species against obesity and its related comorbidities, such as hyperlipidaemia, hypertension and diabetes. Both in vitro and in vivo results about onion dietary supplementation have been taken into account. Furthermore, this review examines the possible role of onion bioactive components in modulating or preventing weight-gain or related diseases, as well as the possible mechanisms behind their activity.
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende (CS), Italy.
| | - Valentina Amodeo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende (CS), Italy.
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende (CS), Italy.
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende (CS), Italy.
| |
Collapse
|
20
|
Kawan MA, Kyrou I, Ramanjaneya M, Williams K, Jeyaneethi J, Randeva HS, Karteris E. Involvement of the glutamine RF‑amide peptide and its cognate receptor GPR103 in prostate cancer. Oncol Rep 2018; 41:1140-1150. [PMID: 30483810 PMCID: PMC6313030 DOI: 10.3892/or.2018.6893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023] Open
Abstract
Glutamine RF‑amide peptide (QRFP) belongs to the RFamide neuropeptide family, which is involved in a wide spectrum of biological activities, ranging from food intake and cardiovascular functioning to analgesia, aldosterone secretion, locomotor activity and reproduction. Recently, QRFP has been demonstrated to exert its effects by activating the G protein‑coupled receptor GPR103. QRFP is expressed in the brain and peripherally in the adipose tissue, bladder, colon, testis, parathyroid and thyroid gland, as well as in the prostate gland. Following lung cancer, prostate cancer constitutes the second most frequently diagnosed cancer among men, whilst obesity appears to be a contributing factor for aggressive prostate cancer. In the present study, we sought to investigate the role of QRFP in prostate cancer, using two androgen‑independent human prostate cancer cell lines (PC3 and DU145) as in vitro experimental models and clinical human prostate cancer samples. The expression of both QRFP and GPR103 at the gene and protein level was higher in human prostate cancer tissue samples compared to control and benign prostatic hyperplasia (BHP) samples. Furthermore, in both prostate cancer cell lines used in the present study, QRFP treatment induced the phosphorylation of ERK1/2, p38, JNK and Akt. In addition, QRFP increased cell migration and invasion in these in vitro models, with the increased expression of MMP2. Furthermore, we demonstrated that the pleiotropic adipokine, leptin, increased the expression of QRFP and GPR103 in PC3 prostate cancer cells via a PI3K‑ and MAPK‑dependent mechanism, indicating a novel potential link between adiposity and prostate cancer. Our findings expand the existing evidence and provide novel insight into the implication of QRFP in prostate cancer.
Collapse
Affiliation(s)
- Mohamed Ab Kawan
- Translational and Experimental Medicine, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ioannis Kyrou
- Translational and Experimental Medicine, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Manjunath Ramanjaneya
- Translational and Experimental Medicine, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kevin Williams
- Department of Urology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Jeyarooban Jeyaneethi
- Biosciences, Department of Life Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
| | - Harpal S Randeva
- Translational and Experimental Medicine, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Emmanouil Karteris
- Biosciences, Department of Life Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
| |
Collapse
|
21
|
Yunusova NV, Kondakova IV, Kolomiets LA, Afanas'ev SG, Kishkina AY, Spirina LV. The role of metabolic syndrome variant in the malignant tumors progression. Diabetes Metab Syndr 2018; 12:807-812. [PMID: 29699953 DOI: 10.1016/j.dsx.2018.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MS) is one of the leading risk factors for the development of some common cancers (endometrial cancer, postmenopausal breast cancer, colorectal cancer). Currently, a drug-induced metabolic syndrome related with androgen deprivation therapy in patients with prostate cancer represents a serious medical problem. Not only MS, or its individual components, but MS variants with different levels of leptin, adiponectin, visfatin, resistin are associated with tumor invasion, metastasis and survival rates in patients with MS-associated malignancies.
Collapse
Affiliation(s)
- Natalia V Yunusova
- Laboratory of tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia; Biochemistry Division, Siberian State Medical University, 634050, Tоmsk, Moskovskiy str. 2., Russia
| | - Irina V Kondakova
- Laboratory of tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia
| | - Larisa A Kolomiets
- Department of Oncogynecology, Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia; Oncology Division, Siberian State Medical University, 634050, Tоmsk, Moskovskiy str. 2., Russia
| | - Sergey G Afanas'ev
- Abdominal Oncology Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia; 2 - Siberian State Medical University, 634050, Tоmsk, Moskovskiy str. 2., Russia
| | - Anastasia Yu Kishkina
- Laboratory of tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia
| | - Liudmila V Spirina
- Laboratory of tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia; Biochemistry Division, Siberian State Medical University, 634050, Tоmsk, Moskovskiy str. 2., Russia.
| |
Collapse
|
22
|
Di Sebastiano KM, Pinthus JH, Duivenvoorden WCM, Mourtzakis M. Glucose impairments and insulin resistance in prostate cancer: the role of obesity, nutrition and exercise. Obes Rev 2018; 19:1008-1016. [PMID: 29573216 DOI: 10.1111/obr.12674] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/04/2018] [Accepted: 01/15/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Hyperinsulinemia, obesity and related metabolic diseases are associated with prostate cancer development. Prostate cancer patients undergoing androgen deprivation therapy (ADT) are at increased risk for metabolic syndrome, cardiovascular disease and diabetes, while pre-existing metabolic conditions may be exacerbated. PURPOSE An integrative approach is used to describe the interactions between insulin, glucose metabolism, obesity and prostate cancer. The potential role of nutrition and exercise will also be examined. FINDINGS Hyperinsulinemia is associated with prostate cancer development, progression and aggressiveness. Prostate cancer patients who undergo ADT are at risk of diabetes in survivorship. It is unclear whether this is a direct result of treatment or related to pre-existing metabolic features (e.g. hyperinsulinemia and obesity). Obesity and metabolic syndrome are also associated with prostate cancer development and poorer outcomes for cancer survivors, which may be driven by hyperinsulinemia, pro-inflammation, hyperleptinemia and/or hypoadiponectinemia. CONCLUSIONS Independently evaluating changes in glucose metabolism near the time of prostate cancer diagnosis and during long-term ADT treatment is important to distinguish their unique contributions to the development of metabolic disturbances. Integrative approaches, including metabolic, clinical and body composition measures, are needed to understand the role of adiposity and insulin resistance in prostate cancer and to develop effective nutrition and exercise interventions to improve secondary diseases in survivorship.
Collapse
Affiliation(s)
- K M Di Sebastiano
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - J H Pinthus
- Department of Surgery, Division of Urology, McMaster University, Hamilton, ON, Canada
| | - W C M Duivenvoorden
- Department of Surgery, Division of Urology, McMaster University, Hamilton, ON, Canada
| | - M Mourtzakis
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
23
|
Morris EV, Edwards CM. Adipokines, adiposity, and bone marrow adipocytes: Dangerous accomplices in multiple myeloma. J Cell Physiol 2018; 233:9159-9166. [PMID: 29943829 DOI: 10.1002/jcp.26884] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
Obesity has become a global epidemic influencing the establishment and progression of a wide range of diseases, such as diabetes, cardiovascular disease, and cancer. In 2016, International Agency for Research on Cancer reported that obesity is now associated with 13 different cancers, one of which is multiple myeloma (MM), a destructive cancer of plasma cells that predominantly reside in the bone marrow. Obesity is the accumulation of excess body fat, which causes metabolic, endocrine, immunologic, and inflammatory-like changes. Obesity is usually associated with an increase in visceral and/or subcutaneous fat; however, an additional fat depot that also responds to diet-induced changes is bone marrow adipose tissue (BMAT). There have been several studies over the past few decades that have identified BMAT as a key driver in MM progression. Adipocytes secrete numerous adipokines, such as leptin, adiponectin, resistin, adipsin, and visfatin, which when secreted at normal controlled levels have protective properties. However, in obesity these levels of secretion change, coupled with an increase in adipocyte number and size causing a profound and lasting effect on the bone microenvironment, contributing to MM cell growth, survival, and migration as well as potentially fueling bone destruction. Obesity is a modifiable risk factor making it an attractive option for targeted therapy. This review discusses the link between obesity, monoclonal gammopathy of undetermined significance (a benign condition that precedes MM), and myeloma, and the contribution of key adipokines to disease establishment and progression.
Collapse
Affiliation(s)
- Emma V Morris
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Chen S, Zhu H, Wang G, Xie Z, Wang J, Chen J. Combined use of leptin and mechanical stress has osteogenic effects on ossification of the posterior longitudinal ligament. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:1757-1766. [PMID: 29909551 DOI: 10.1007/s00586-018-5663-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/04/2018] [Accepted: 06/06/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the effects of leptin/leptin receptor (LepR) combined with mechanical stress on the development of ossification of the posterior longitudinal ligament (OPLL), which is a disease characterized by ectopic bone formation of the posterior longitudinal ligament (PLL) and can lead to radiculopathy and myelopathy. METHODS Six human samples of the PLL were analyzed for the expression of leptin and LepR by RT-PCR and western blotting. PLL cells were stimulated with leptin and mechanical stress delivered via a Flexcell tension system, and osteogenic differentiation was evaluated by RT-PCR and western blotting analysis of osteogenic marker expression as well as by alkaline phosphatase (ALP) staining and alizarin red S staining. Activation of mitogen-activated protein kinase (MAPK), Janus kinase (JAK) 2-signal transducer, activator of transcription (STAT) 3 and phosphatidylinositol 3-kinase (PI3K)-Akt was evaluated by western blotting. RESULTS Samples from the OPLL group had higher LepR mRNA and protein levels and lower leptin levels than those from healthy controls. Exposure to leptin and Flexcell increased the number of ALP-positive cells and calcium nodules in a dose-dependent manner; this effect was accompanied by upregulation of the osteogenic markers osteocalcin, runt-related transcription factor 2 (RUNX2) and osteopontin. Extracellular signal-regulated kinase, P38 MAPK, JAK2, STAT3, PI3K and Akt signaling, was also activated by the combined effects of leptin and mechanical stress. CONCLUSIONS Leptin and LepR are differentially expressed in OPLL tissues, and the combined use of leptin/LepR and mechanical stress promotes osteogenic differentiation of PLL cells via MAPK, JAK2-STAT3 and PI3K/Akt signaling. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310020, China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Haifeng Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310020, China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Gangliang Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310020, China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310020, China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jiying Wang
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310020, China.
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
25
|
Impact of Obesity on Long-Term Urinary Incontinence after Radical Prostatectomy: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8279523. [PMID: 29850573 PMCID: PMC5903323 DOI: 10.1155/2018/8279523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/11/2018] [Accepted: 02/28/2018] [Indexed: 12/31/2022]
Abstract
Obesity is a known risk factor for prostate cancer progression and may contribute to poor treatment outcomes. However, little is known concerning the relationship between obesity (body mass index [BMI] ⩾ 30) and the urinary incontinence (UI) of patients after radical prostatectomy (RP). The goal of this study was to focus on the prevalence and duration of UI after RP with specific attention to the BMI. Subsequently, trials were identified in a literature search of PubMed, Embase, Cochrane Library, Web of Science, and Google Scholar using appropriate search terms. All comparative studies reporting BMI, study characteristics, and outcome data including the relationship between BMI and urinary incontinence data were included. Finally, four studies comprising 6 trials with 2890 participants were included. The results showed that obesity increased UI risk at 12 months in patients who underwent robotic-assisted laparoscopic radical prostatectomy (RLRP) (odds ratio [OR] 2.43, 95% confidence interval [CI] [1.21, 4.88], P = 0.01). When stratified by the surgical methods, the pooled results showed that obesity increased UI risk at 24 months in patients who underwent RLRP (OR 2.00, 95% CI [1.57, 2.56], P < 0.001). However, in patients who underwent laparoscopic radical prostatectomy (LRP), the pooled results showed that obesity does not increase UI risk at 24 months (OR 1.13, 95% CI [0.74, 1.72], P = 0.58). This is the first study to include obesity as the primary independent variable. Outcomes indicate that obesity (BMI ≥ 30) may increase the UI risk at 12 and 24 months after RLRP. Well-designed randomized controlled trials with strict control of confounders are needed to make results comparable.
Collapse
|
26
|
Hu W, Lv J, Han M, Yang Z, Li T, Jiang S, Yang Y. STAT3: The art of multi-tasking of metabolic and immune functions in obesity. Prog Lipid Res 2018; 70:17-28. [PMID: 29635003 DOI: 10.1016/j.plipres.2018.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that has recently attracted increased attention. Accumulating studies have demonstrated that STAT3 plays an important role in various diseases, such as cancer and ischemic injury. In light of the distinctive effects of STAT3 on the regulation of metabolism and immune responses, we present the elaborate network of STAT3 in obesity. In this review, we first introduce the general background of STAT3, including a discussion regarding the STAT family and the characterization and regulation of STAT3. Then, we describe the STAT3 signaling network and its pathophysiological roles in lipid and glucose metabolism and immune function. Finally, we highlight the research progress regarding STAT3 in obesity. The information presented here may be useful for the design of future studies and may highlight the potential of STAT3 as a future therapeutic target for obesity.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Mengzhen Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
27
|
Hu MB, Xu H, Hu JM, Zhu WH, Yang T, Jiang HW, Ding Q. Genetic polymorphisms in leptin, adiponectin and their receptors affect risk and aggressiveness of prostate cancer: evidence from a meta-analysis and pooled-review. Oncotarget 2018; 7:81049-81061. [PMID: 27768592 PMCID: PMC5348375 DOI: 10.18632/oncotarget.12747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/12/2016] [Indexed: 01/04/2023] Open
Abstract
Leptin and adiponectin signaling was associated with development and progression of various cancers. The present study aimed to clarify the role of genetic variants in leptin, adiponectin and their receptors in prostate cancer. After comprehensive search and manuscript scanning, a total of 49 genetic variants were enrolled and examined for their relations to cancer risk and aggressiveness. In the meta-analysis, LEP rs7799039 (allele contrast: OR 1.133, 95%CI 1.024-1.254), ADIPOQ rs2241766 (allele contrast: OR 1.201, 95%CI 1.015-1.422) and ADIPOR1 rs10920531 (allele contrast: OR 1.184, 95%CI 1.075-1.305) variants were identified to be correlated with increased risk of prostate cancer. On the contrary, LEPR rs1137101 (allele contrast: OR 0.843, 95%CI 0.730-0.973) and ADIPOR1 rs2232853 (allele contrast: OR 0.638, 95%CI 0.535-0.760) variants were associated with decreased risk of prostate cancer. From the pooled-review, we additionally recognized eight variants associated with cancer risk and another eight variants associated with cancer aggressiveness, respectively. These observations indicated important roles of leptin, adiponectin and their receptors in the development and progression of prostate cancer. The identified polymorphisms might assist in developing better risk-assessment tools, as well as generating novel targeted therapies, especially for obese cancer patients with impaired leptin and adiponectin signaling.
Collapse
Affiliation(s)
- Meng-Bo Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hua Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ji-Meng Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wen-Hui Zhu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tian Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hao-Wen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
28
|
Abstract
Chronic kidney diseases (CKD), a common outcome of various kidney diseases, cause a series of refractory complications, which lead to great economic burdens on patients. The clinical outcomes of CKD depend on various factors, including metabolic disorders. Leptin, a peptide hormone, produced in adipose tissues, plays an important role in regulating food consumption and energy expenditure. Leptin also influences the immune system and hematopoiesis. Increased leptin status is observed in CKD, leptin deficiency attenuates the immune response in nephritis. Conversely, leptin inhibits the development of obesity, which is closely associated glomerular disorder. Now, the precise role of leptin in CKD remains elusive. This review will give an integrated understanding of the potential role of leptin and its interactions with other signal molecules in CKD.
Collapse
Affiliation(s)
- Song Mao
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Li Fang
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Fen Liu
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Siqiong Jiang
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Liangxia Wu
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Jianhua Zhang
- b Department of Pediatrics, Xinhua Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
29
|
Kang M, Byun SS, Lee SE, Hong SK. Clinical Significance of Serum Adipokines according to Body Mass Index in Patients with Clinically Localized Prostate Cancer Undergoing Radical Prostatectomy. World J Mens Health 2018; 36:57-65. [PMID: 29299904 PMCID: PMC5756808 DOI: 10.5534/wjmh.17026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/03/2017] [Accepted: 09/11/2017] [Indexed: 02/01/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the clinical significance of 7 circulating adipokines according to body mass index (BMI) in Korean men with localized prostate cancer (PCa) undergoing radical prostatectomy (RP). MATERIALS AND METHODS Sixty-two of 65 prospectively enrolled patients with clinically localized PCa who underwent RP between 2015 and 2016 were evaluated. Patients were classified into 2 groups according to their BMI: non-obese (<25 kg/m²) and obese (≥25 kg/m²). The adipokines evaluated were interleukin-2, insulin-like growth factor 1 (IGF-1), chemerin, C-X-C motif chemokine 10, adiponectin, leptin, and resistin. Multivariate logistic regression analysis was used to identify the independent predictors of advanced tumor stage. RESULTS We found that obese patients with PCa who underwent RP had a higher incidence of tumors with a high Gleason score (≥8), pathological T3 (pT3) stage, and positive extraprostatic extension than patients with a normal BMI. Additionally, patients with obesity showed significantly lower serum adiponectin and higher serum leptin levels, but did not show differences in other adipokines. Multivariate analysis demonstrated that IGF-1 (odds ratio [OR]=1.03) was identified as a predictor of advanced tumor stage (≥pT3) in the overall population. However, only leptin remained an independent predictive factor for advanced tumor stage (≥pT3) (OR=1.15) in patients with obesity. CONCLUSIONS In conclusion, our results indicate that a higher leptin level in obese men can be considered a risk factor for aggressive PCa. This prospective study provides greater insight into the role of circulating adipokines in Korean patients with PCa undergoing RP, particularly in patients with obesity.
Collapse
Affiliation(s)
- Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Soo Byun
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea.,Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang Eun Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Kyu Hong
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea.,Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
30
|
Abstract
Leptin is an adipocyte-derived hormone, which contributes to the homeostatic regulation of energy balance and metabolism through humoral and neural pathways. Leptin acts on the neurons in certain brain areas such as the hypothalamus, hippocampus, and brain stem to regulate food intake, thermogenesis, energy expenditure, and homeostasis of glucose/lipid metabolism. The pathologically increased circulating leptin is a biomarker of leptin resistance, which is common in obese individuals. Leptin resistance is defined by a reduced sensitivity or a failure in response of the brain to leptin, showing a decrease in the ability of leptin to suppress appetite or enhance energy expenditure, which causes an increased food intake and finally leads to overweight, obesity, cardiovascular diseases, and other metabolic disorders. Leptin resistance is a challenge for clinical treatment or drug discovery of obesity. Until recently, emerging evidence has been showing novel mechanisms of the leptin resistance. Here, we summarized the advances and controversy of leptin resistance and associated diseases, for better understanding the physiology and pathophysiology of leptin as well as the new strategies for treating obesity and metabolic disorders.
Collapse
|
31
|
Serretta V, Abrate A, Siracusano S, Gesolfo CS, Vella M, Di Maida F, Cangemi A, Cicero G, Barresi E, Sanfilippo C. Clinical and biochemical markers of visceral adipose tissue activity: Body mass index, visceral adiposity index, leptin, adiponectin, and matrix metalloproteinase-3. Correlation with Gleason patterns 4 and 5 at prostate biopsy. Urol Ann 2018; 10:280-286. [PMID: 30089986 PMCID: PMC6060586 DOI: 10.4103/ua.ua_188_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Context: The correlation between aggressive prostate cancer and obesity mainly based on body mass index (BMI) and pathology after surgery remains controversial. Aims: The aim of the study was to correlate BMI, visceral adiposity index (VAI), and the plasmatic levels of leptin, adiponectin, and matrix metalloproteinase-3 (MMP-3), and biomarkers of adipose tissue function, with the detection of Gleason patterns 4 and 5 at biopsy. Subjects and Methods: Consecutive patients with prostate cancer at 12-core transrectal biopsy were enrolled. BMI, waist circumference (WC), blood samples to evaluate the plasmatic levels of triglycerides (TG) and high-density lipoproteins (HDL), adiponectin, leptin, and MMP-3 were obtained immediately before biopsy. The VAI was calculated according to the formula: WC/(39.68 + [1.88 × BMI]) × TG/1.03 × 1.31/HDL. Results: One hundred and forty-nine patients were entered. The median PSA, BMI, and VAI were 10.0 ng/ml, 27.6 kg/m2, and 4.6, respectively. Gleason patterns 4 or 5 were detected in 68 (45.6%) patients; in 15 (41.7%), 31 (44.9%), and 22 (50.0%) among normal weight, overweight, and obese patients, respectively (P = 0.55). The statistical analysis did not show any significant correlation between BMI, VAI, the plasmatic levels of leptin, adiponectin, MMP-3, and the detection of Gleason patterns 4 and 5 at biopsy. A statistically significant association emerged with older age (P = 0.017) and higher PSA values (P = 0.02). Conclusion: We did not find any association between BMI, VAI, the plasmatic levels of adiponectin, leptin, and MMP-3 and the detection of Gleason patterns 4 and 5 at prostate biopsy.
Collapse
Affiliation(s)
- Vincenzo Serretta
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Alberto Abrate
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Simone Siracusano
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Cristina Scalici Gesolfo
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Marco Vella
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Fabrizio Di Maida
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Antonina Cangemi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Cicero
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | | | | |
Collapse
|
32
|
Yunusova NV, Kondakova IV, Kolomiets LA, Afanas'ev SG, Chernyshova AL, Kudryavtsev IV, Tsydenova AA. Molecular targets for the therapy of cancer associated with metabolic syndrome (transcription and growth factors). Asia Pac J Clin Oncol 2017; 14:134-140. [PMID: 29115033 DOI: 10.1111/ajco.12780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/20/2017] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome (MS) is one of the leading risk factors for the development of cardiovascular diseases, type II diabetes mellitus and reproductive system diseases. Currently, not only cardiovascular disease and reproductive history risks related with MS are frequently discussed, but it has been also shown that MS is associated with increased risk of some common cancers (endometrial cancer, postmenopausal breast cancer, colorectal cancer, biliary tract cancers and liver cancer for men). Further studies are required to understand the mechanisms of the involvement of MS components in the pathogenesis of malignant neoplasms. Changes in the expression of transcription and growth factors in the peripheral tissues as well as in cancer tissues of patients with MS were revealed. Transcription factors (AMP-activated protein kinase-1, STAT3, sterol regulatory element-binding protein-1 and peroxisome proliferator-activated receptor-γ), leptin and adiponectin receptors seem to be the most promising molecular targets for the therapy of cancers associated with MS.
Collapse
Affiliation(s)
- Natalia V Yunusova
- Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russian Federation.,Siberian State Medical University, Тоmsk, Russian Federation
| | - Irina V Kondakova
- Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russian Federation
| | - Larisa A Kolomiets
- Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russian Federation.,Siberian State Medical University, Тоmsk, Russian Federation
| | - Sergey G Afanas'ev
- Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russian Federation
| | - Alena L Chernyshova
- Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russian Federation
| | - Igor V Kudryavtsev
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | | |
Collapse
|
33
|
Calogero AE, Duca Y, Condorelli RA, La Vignera S. Male accessory gland inflammation, infertility, and sexual dysfunctions: a practical approach to diagnosis and therapy. Andrology 2017; 5:1064-1072. [PMID: 28992374 DOI: 10.1111/andr.12427] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/09/2017] [Accepted: 08/14/2017] [Indexed: 11/26/2022]
Abstract
The role of urogenital inflammation in causing infertility and sexual dysfunctions has long been a matter of debate in the international scientific literature. The most recent scientific evidences show that male accessory gland infection/inflammation could alter, with various mechanisms, both conventional and biofunctional sperm parameters, and determine worst reproductive outcome. At the same time, the high prevalence of erectile dysfunction and premature ejaculation in patients with male accessory gland infection/inflammation underlines the close link between these diseases and sexual dysfunctions. The aim of this review was to provide the reader the basis for a correct diagnosis of male accessory gland infection/inflammation and a subsequent appropriate therapeutic approach, particularly in patients with infertility and/or sexual dysfunction.
Collapse
Affiliation(s)
- A E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Y Duca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - R A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - S La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
34
|
Zhou W, Huang S, Jiang Q, Yuan T. Suppression of miR-4735-3p in androgen receptor-expressing prostate cancer cells increases cell death during chemotherapy. Am J Transl Res 2017; 9:3714-3722. [PMID: 28861162 PMCID: PMC5575185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) play critical roles in the tumorigenesis of prostate cancer, while the biological function of miR-4735-3p is unknown. Mitogen-activated protein kinase kinase kinase 1 (MEKK1) has been shown to induce androgen receptor (AR)-dependent apoptosis in prostate cancer cells, but the regulation of MEKK1 in prostate cancer cells remains poorly defined. Here, we showed that miR-4735-3p was a MEKK1-targeting miRNA, and was highly expressed in AR+ prostate cancer specimens. Moreover, the levels of miR-4735-3p and MEKK1 inversely correlated. MiR-4735-3p-low subjects had a better overall survival, compared to miR-4735-3p-high subjects. MiR-4735-3p targeted the 3'-UTR of MEKK1 mRNA to inhibit its protein translation. Overexpression of miR-4735-3p inhibited MEKK1-mediated cell apoptosis upon docetaxel treatment, while depletion of miR-4735-3p enhanced it. Together, our data suggest that miR-4735-3p may suppress MEKK1-mediated prostate cancer cell apoptosis during chemotherapy. Inhibition of miR-4735-3p may improve the outcome of chemotherapy for some prostate cancers.
Collapse
Affiliation(s)
- Weidong Zhou
- Department of Urology, Tongji Hospital, School of Medicine, Tongji UniversityShanghai 200065, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji UniversityShanghai 200065, China
| | - Qiquan Jiang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji UniversityShanghai 200065, China
| | - Tao Yuan
- Department of Urology, Tongji Hospital, School of Medicine, Tongji UniversityShanghai 200065, China
| |
Collapse
|
35
|
Lee YC, Wu WJ, Lin HH, Li WM, Huang CN, Hsu WC, Chang LL, Li CC, Yeh HC, Li CF, Ke HL. Prognostic Value of Leptin Receptor Overexpression in Upper Tract Urothelial Carcinomas in Taiwan. Clin Genitourin Cancer 2017; 15:e653-e659. [PMID: 28188048 DOI: 10.1016/j.clgc.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Leptin and its receptor (LEPR) are key players in the regulation of energy balance and body weight control and act as a growth factor for specific organs in both normal and disease states. However, LEPR accumulation may be involved in carcinogenesis, progression, and metastasis in many cancers. This study evaluated the clinical significance of LEPR expression in upper tract urothelial carcinoma (UTUC). MATERIALS AND METHODS LEPR expression was examined in 110 tissue samples from patients with UTUC, using immunohistochemistry, and an analysis was performed to identify evidence of association between LEPR expression and different clinicopathologic variables. RESULTS LEPR expression was significantly correlated with patients with increased body mass index (P < .001) and high serum creatinine levels (P = .005). We found, using the log-rank test, that high LEPR expression was associated with poor recurrence-free (P = .009) and cancer-specific survival (P = .001). This finding was supported by our results using Cox regression analysis, which showed that LEPR expression was an independent predictor of poor recurrence-free survival (hazard ratio = 2.55; P = .011) and cancer-specific survival (hazard ratio = 2.26; P = .006). CONCLUSIONS Our findings indicate that LEPR expression is a potential biomarker for predicting patient survival in UTUC. Further study is necessary to investigate the role of LEPR in carcinogenesis of UTUC.
Collapse
Affiliation(s)
- Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hui-Hui Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Chun-Nung Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chi Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin-Li Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Microbiology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan; National Cancer Research Institute, National Health Research Institutes, Tainan, Taiwan
| | - Hung-Lung Ke
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
36
|
Ayoub N, Alkhatatbeh M, Jibreel M, Ababneh M. Analysis of circulating adipokines in patients newly diagnosed with solid cancer: Associations with measures of adiposity and tumor characteristics. Oncol Lett 2017; 13:1974-1982. [PMID: 28454352 DOI: 10.3892/ol.2017.5670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/29/2016] [Indexed: 12/23/2022] Open
Abstract
The development and progression of cancer is a complex and multifactorial process and the global prevalence of obesity is markedly increasing. A number of studies have made an association between obesity and increased rates of epithelial tumors. Obesity is associated with altered adipokine levels, potentially contributing to the process of tumor development and metastasis. In the current study, the associations between circulating adipokines and measures of adiposity and tumor characteristics among patients diagnosed with solid malignancies were examined at the time of presentation, and following the administration of chemotherapy. A total of 30 patients with cancer and matched healthy controls were enrolled in the present study. Plasma adipokine levels of hepatocyte growth factor (HGF), adiponectin and leptin were determined using commercially available ELISA kits. At baseline, plasma HGF, adiponectin and leptin levels were not significantly different between patients with cancer and the healthy controls. Circulating HGF levels were significantly associated with the stage of cancer at diagnosis (P=0.044), but lacked a significant association with lymph node status (P=0.194). Plasma adiponectin and leptin levels were not significantly associated with tumor characteristics at the time of diagnosis. Only leptin was positively correlated with the body mass index of patients with cancer (P<0.001). No significant correlations were detected between the evaluated adipokines and measures of visceral obesity, as determined by waist circumference and the waist-hip ratio at presentation. Following administration of chemotherapy, adiponectin was the only adipokine evaluated in the current study that exhibited a significant difference, when compared with baseline plasma levels (P=0.013), and a significant positive correlation between baseline and follow-up circulating levels (P=0.002) among patients with cancer. In addition, there were no significant inter-correlations between circulating adipokines at baseline level and during follow-up in patients with cancer. Collectively, the findings of the current study suggest a lack of diagnostic roles for the adipokines investigated and no significant association with measures of adiposity. Adiponectin may be a potential adipokine to measure in patients with cancer, in order to further assess its prognostic and predictive potential.
Collapse
Affiliation(s)
- Nehad Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad Alkhatatbeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Malak Jibreel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mera Ababneh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
37
|
Di Sebastiano KM, Pinthus JH, Duivenvoorden WCM, Patterson L, Dubin JA, Mourtzakis M. Elevated C-Peptides, Abdominal Obesity, and Abnormal Adipokine Profile are Associated With Higher Gleason Scores in Prostate Cancer. Prostate 2017; 77:211-221. [PMID: 27699825 DOI: 10.1002/pros.23262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/12/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer development is associated with numerous lifestyle factors (i.e., physical activity, nutrition intake) and metabolic perturbations. These factors have been studied independently; here, we used an integrative approach to characterize these lifestyle and metabolic parameters in men undergoing diagnostic prostate biopsies. METHODS We prospectively evaluated 51 consecutive men for body composition, metabolic factors including glucose- and lipid-related measures, as well as lifestyle factors prior to prostate biopsy. Evaluations were performed in a blinded manner and were subsequently related to biopsy outcomes for: (i) presence or absence of cancer; and (ii) where cancer was present, Gleason score. RESULTS Serum C-peptide concentrations were significantly greater in participants with Gleason scores ≥4 + 3 (2.8 ± 1.1 ng/ml) compared to those with Gleason 3 + 3 (1.4 ± 0.6 ng/ml) or Gleason 3 + 4 (1.3 ± 0.8 ng/ml, P = 0.002), suggesting greater insulin secretion despite lack of differences in fasting glucose concentrations. Central adiposity, measured by waist circumference, was significantly greater in participants with Gleason ≥4 + 3 (110.1 ± 7.4 cm) compared to those with Gleason 3 + 4 (102.0 ± 9.5 cm, P = 0.028). Men with Gleason ≥4 + 3 also had significantly greater leptin concentrations than those with lower Gleason scores (Gleason ≥4 + 3: 15.6 ± 3.3 ng/ml vs. Gleason 3 + 4: 8.1 ± 8.1 ng/ml, P < 0.05) and leptin:adiponectin ratio (Gleason ≥4 + 3: 9.7 ± 6.1 AU, Gleason 3 + 4: 2.9 ± 3.2, Gleason 3 + 3: 2.4 ± 2.1 AU, P = 0.013). CONCLUSIONS We profiled a cluster of obesity-related metabolic perturbations (C-peptide, central adiposity, leptin, and leptin:adiponectin ratios) which may associate with more aggressive prostate cancer histology. Prostate 77:211-221, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jehonathan H Pinthus
- Department of Surgery, Division of Urology, McMaster University, Hamilton, Ontario, Canada
| | | | - Laurel Patterson
- Department of Surgery, Division of Urology, McMaster University, Hamilton, Ontario, Canada
| | - Joel A Dubin
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, Canada
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Marina Mourtzakis
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
38
|
Di Sebastiano KM, Bell KE, Mitchell AS, Quadrilatero J, Dubin JA, Mourtzakis M. Glucose metabolism during the acute prostate cancer treatment trajectory: The influence of age and obesity. Clin Nutr 2016; 37:195-203. [PMID: 27998647 DOI: 10.1016/j.clnu.2016.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Obesity and age, key risk factors for aggressive prostate cancer, are associated with insulin resistance. Glucose-related parameters in patients with aggressive prostate cancer were compared with 2 reference groups: men of similar age and body mass index (BMI) without cancer, and healthy young men. Acute changes in these parameters following radiation treatment were also evaluated. METHODS Nine patients with aggressive prostate cancer underwent metabolic assessments prior to treatment (baseline), 7 and 33 weeks post-baseline (post-treatment initiation). Baseline measures were compared with the 2 reference groups. Evaluations included: 1) fasting and oral glucose tolerance test (OGTT) blood samples for glucose, C-peptide, and insulin, 2) fasting blood samples for triglycerides, cholesterols, leptin, adiponectin, IL-6, and TNF-α, 3) body composition, 4) nutrition, and 5) physical activity. RESULTS At baseline, patients had normal fasting glucose concentrations (<5.6 mM; 4.9 ± 1.2 mM) but impaired 2-h OGTT glucose concentrations (>7.8 mM; 8.7 ± 2.9 mM). Both reference groups had normal fasting (matched males: 4.2 ± 0.5 mM; young males: 3.7 ± 0.4 mM) and 2-h OGTT glucose concentrations (matched males: 5.6 ± 1.8 mM; young males: 3.1 ± 0.1 mM) that were significantly lower than patient values. During the OGTT, patients had higher insulin (120 min) and C-peptide (45, 60, 90, 120 min) concentrations compared to the matched males. At 7 weeks, 2-h OGTT glucose concentrations in patients improved to healthy ranges without changes in insulin, C-peptide, IGF-1, IGFBP-3 or other metabolic parameters. CONCLUSIONS At baseline patients with aggressive prostate cancer demonstrated impaired glucose tolerance compared with men of similar age and body size. Following treatment, glucose tolerance improved in the absence of changes in expected modifiers of glucose metabolism. These improvements may be related to treatment.
Collapse
Affiliation(s)
| | - Kirsten E Bell
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Andrew S Mitchell
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Joel A Dubin
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada; Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Marina Mourtzakis
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
39
|
Lohmann AE, Goodwin PJ, Chlebowski RT, Pan K, Stambolic V, Dowling RJO. Association of Obesity-Related Metabolic Disruptions With Cancer Risk and Outcome. J Clin Oncol 2016; 34:4249-4255. [PMID: 27903146 DOI: 10.1200/jco.2016.69.6187] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Over the past 40 years, the prevalence of obesity has increased epidemically worldwide, which raises significant concerns regarding public health and the associated economic burden. Obesity is a major risk factor for several conditions including cardiovascular disease and type 2 diabetes, and recent evidence suggests that obesity negatively affects cancer risk and outcome. The relationship between obesity and cancer is complex and involves multiple factors both at the systemic and cellular level. Indeed, disruptions in insulin metabolism, adipokines, inflammation, and sex hormones all contribute to the adverse effects of obesity in cancer development and progression. The focus of this review will be the impact of these systemic obesity-related factors on cancer biology, incidence, and outcome. Potential therapeutic interventions and current clinical trials targeting obesity and its associated factors will also be discussed.
Collapse
Affiliation(s)
- Ana Elisa Lohmann
- Ana Elisa Lohmann and Pamela J. Goodwin, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto; Vuk Stambolic, University of Toronto; Vuk Stambolic and Ryan J.O. Dowling, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; and Rowan T. Chlebowski and Kathy Pan, Los Angeles Biomedical Research Institute at Harbor, University of California, Los Angeles Medical Center, Torrance, CA
| | - Pamela J Goodwin
- Ana Elisa Lohmann and Pamela J. Goodwin, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto; Vuk Stambolic, University of Toronto; Vuk Stambolic and Ryan J.O. Dowling, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; and Rowan T. Chlebowski and Kathy Pan, Los Angeles Biomedical Research Institute at Harbor, University of California, Los Angeles Medical Center, Torrance, CA
| | - Rowan T Chlebowski
- Ana Elisa Lohmann and Pamela J. Goodwin, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto; Vuk Stambolic, University of Toronto; Vuk Stambolic and Ryan J.O. Dowling, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; and Rowan T. Chlebowski and Kathy Pan, Los Angeles Biomedical Research Institute at Harbor, University of California, Los Angeles Medical Center, Torrance, CA
| | - Kathy Pan
- Ana Elisa Lohmann and Pamela J. Goodwin, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto; Vuk Stambolic, University of Toronto; Vuk Stambolic and Ryan J.O. Dowling, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; and Rowan T. Chlebowski and Kathy Pan, Los Angeles Biomedical Research Institute at Harbor, University of California, Los Angeles Medical Center, Torrance, CA
| | - Vuk Stambolic
- Ana Elisa Lohmann and Pamela J. Goodwin, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto; Vuk Stambolic, University of Toronto; Vuk Stambolic and Ryan J.O. Dowling, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; and Rowan T. Chlebowski and Kathy Pan, Los Angeles Biomedical Research Institute at Harbor, University of California, Los Angeles Medical Center, Torrance, CA
| | - Ryan J O Dowling
- Ana Elisa Lohmann and Pamela J. Goodwin, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto; Vuk Stambolic, University of Toronto; Vuk Stambolic and Ryan J.O. Dowling, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; and Rowan T. Chlebowski and Kathy Pan, Los Angeles Biomedical Research Institute at Harbor, University of California, Los Angeles Medical Center, Torrance, CA
| |
Collapse
|