1
|
Lyu Z, Wang H, Dai F, Lin Y, Wen H, Liu X, Feng X, Xu Z, Huang L. Increased ZNF83 is a potential prognostic biomarker and regulates oxidative stress-induced ferroptosis in clear cell renal cell carcinoma. J Mol Med (Berl) 2025; 103:583-597. [PMID: 40220129 DOI: 10.1007/s00109-025-02543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
While zinc finger proteins (ZFPs) are known to be crucial in various cellular activities such as gene expression regulation and energy metabolism, their specific roles in tumor progression are not well-documented. This study focuses on Zinc Finger Protein 83 (ZNF83) to explore its impact on clear cell renal cell carcinoma (ccRCC) and assess its viability as a prognostic biomarker. Public datasets were utilized to analyze ZNF83's expression and functions in ccRCC systematically. Further, in vitro and in vivo experiments were conducted to delve deeper into ZNF83's functional role. Techniques like electron microscopy for mitochondrial morphology and ROS level quantification were used to assess ferroptosis. RNA sequencing and metabolomic mass spectrometry were employed to understand ZNF83's role in oxidative stress modulation and ferroptosis resistance. Our findings demonstrated that ZNF83 overexpression significantly enhanced tumor cell survival and proliferation, while ZNF83 knockout suppressed these processes. Under oxidative stress or upon treatment with ferroptosis inducers, ZNF83 expression was markedly upregulated, and the protein predominantly localized to the cell nucleus. Notably, ZNF83 overexpression conferred resistance to ferroptosis, promoting tumor cell survival under ferroptosis-inducing conditions. Conversely, ZNF83 knockout sensitized cells to ferroptosis, increasing tumor cell death. RNA-seq and metabolomic analyses revealed that ZNF83 is intricately involved in the regulation of NRF2, a master regulator of the antioxidant response, and associated signaling pathways. ZNF83 represents a key ferroptosis regulator in ccRCC, serving as both a promising prognostic biomarker and therapeutic target. Targeting ZNF83 may improve treatment strategies for ccRCC patients. KEY MESSAGES: ZNF83 as a crucial regulator of tumor cell survival and proliferation in renal cancer, a novel discovery in the context of renal cancer progression. ZNF83 overexpression confers resistance to ferroptosis, enhancing tumor cell survival under oxidative stress or ferroptosis-inducing conditions. Utilizing both RNA sequencing and metabolomic mass spectrometry, we provide comprehensive insights into the molecular pathways, particularly NRF2-related, regulated by ZNF83 in ccRCC. ZNF83's potential as a novel prognostic biomarker for ccRCC is proposed, offering a new avenue for personalized treatment strategies and improving treatment outcomes for patients.
Collapse
Affiliation(s)
- Zhaojie Lyu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| | - Huming Wang
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Fang Dai
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Yu Lin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Hantao Wen
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xudong Liu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiaotong Feng
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zihan Xu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Lei Huang
- National Clinical Research Center for Digestive Diseases, Shanghai Institute of Pancreatic Diseases, Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- National Key Laboratory of Immunity and Inflammation, Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Li M, Su C, Wang Q, Chen Y, Jiang D, Wang W, Chen S, Li X, Fu M, Lu J. A pan-cancer analysis: predictive role of ZNF32 in cancer prognosis and immunotherapy response. Discov Oncol 2025; 16:94. [PMID: 39870934 PMCID: PMC11772917 DOI: 10.1007/s12672-025-01803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.0, KM-Plotter, cBioPortal, ImmuCellAI. We investigated correlations between ZNF32 expression and various factors such as prognosis, immune infiltration, immunotherapy, DNA methylation, and biological functions. Furthermore, we performed in vitro research to validate the significance of ZNF32 in head and neck cancer (HNSC). Our study revealed that ZNF32 was high in various types of cancer, including ACC, BRCA, and others, indicating its important potential as a prognostic biomarker. Significant changes in CNA and DNA methylation were associated with high ZNF32 expression. ZNF32 was notably linked to various immune characteristics, including immune cell infiltration, MSI, TMB and immune checkpoint gene expression, indicating its potential in informing immunotherapy approaches. Interestingly, in FaDu and CAL27 cell lines, the group with elevated ZNF32 expression exhibited increased levels of immune checkpoint markers, such as CTLA-4 and PD-L1. Overexpression of ZNF32 significantly enhanced proliferation and migration in FaDu and CAL27 cell lines, as demonstrated through CCK-8 assays, colony formation, flow cytometry, Transwell migration, and Boyden invasion assays. Our in vitro experiments confirmed that ZNF32 promotes malignant behavior by driving HNSC cell proliferation and migration. These results imply that ZNF32 might be a promising target for tumor prognosis and immunotherapy. Our results highlight the important role of ZNF32 in tumorigenesis and provide novel perspectives for potential cancer treatment strategies.
Collapse
Affiliation(s)
- Minghan Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chang Su
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qianru Wang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuetong Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Di Jiang
- Department of Otolaryngology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523000, China
| | - Weijia Wang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shunjin Chen
- Department of Otolaryngology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523000, China
| | - Xiangping Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Ming Fu
- Department of Otolaryngology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523000, China
| | - Juan Lu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Li T, Guo J, Hu G, Cao F, Su H, Shen M, Wang H, You M, Liu Y, Gurr GM, You S. Zinc finger proteins facilitate adaptation of a global insect pest to climate change. BMC Biol 2024; 22:303. [PMID: 39741276 DOI: 10.1186/s12915-024-02109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Global climate change significantly impacts ecosystems, particularly through temperature fluctuations that affect insect physiology and behavior. As poikilotherms, insect pests such as the globally devastating diamondback moth (DBM), Plutella xylostella, are especially vulnerable to rising temperatures and extreme heat events, necessitating effective adaptive mechanisms. RESULTS Here we demonstrate the roles of zinc finger proteins (ZFPs) in mediating thermal adaptability in DBM. We utilized a comprehensive approach involving cloning and bioinformatics analysis of three ZFPs, PxZNF568, PxZNF93, and PxZNF266, measurement of their expression levels in hot-evolved and control strains, and assessment of catalase enzymatic activity and total antioxidant capacity. We also employed CRISPR/Cas9 technology to create five stable homozygous knockout strains to elucidate ZFP functions in high-temperature tolerance. Survival rates under high-temperature stress and the critical thermal maxima (CTMax) of the knockout strains were significantly lower than the wild-type strain, and exhibited marked decreases in antioxidant capacity. CONCLUSION Findings reveal the importance of ZFPs in thermal adaptability of DBM, contributing critical insights for future pest management strategies in the context of a warming climate and laying the foundation for further exploration of ZFP functionality in agricultural pest control.
Collapse
Affiliation(s)
- Tianpu Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
- Key Laboratory of Green Control of Insect Pests of Fujian Province, Fuzhou, 350002, China
| | - Jiao Guo
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
- Key Laboratory of Green Control of Insect Pests of Fujian Province, Fuzhou, 350002, China
| | - Guilei Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
- Key Laboratory of Green Control of Insect Pests of Fujian Province, Fuzhou, 350002, China
| | - Fang Cao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
- Key Laboratory of Green Control of Insect Pests of Fujian Province, Fuzhou, 350002, China
| | - Haiyin Su
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
- Key Laboratory of Green Control of Insect Pests of Fujian Province, Fuzhou, 350002, China
| | - Mengdi Shen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
- Key Laboratory of Green Control of Insect Pests of Fujian Province, Fuzhou, 350002, China
| | - Huimin Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
- Key Laboratory of Green Control of Insect Pests of Fujian Province, Fuzhou, 350002, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
- Key Laboratory of Green Control of Insect Pests of Fujian Province, Fuzhou, 350002, China
| | - Yuanyuan Liu
- Haixia Lnstitute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Geoff M Gurr
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
- Gulbali Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China.
- Key Laboratory of Green Control of Insect Pests of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Zhong C, Chen D, Gong D, Sheng X, Lin Y, Li R, Li Y. Transcriptomic response of overexpression ZNF32 in breast cancer cells. Sci Rep 2024; 14:28407. [PMID: 39557972 PMCID: PMC11574142 DOI: 10.1038/s41598-024-80125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Breast cancer is one of the deadliest malignancies in women worldwide. Zinc finger protein 32 (ZNF32) has been reported to be involved in autophagy and stem cell like properties of breast cancer cells. However, the effects, mechanisms, target genes and pathways of ZNF32 in breast cancer development have not been fully explored. In this study, stable ZNF32 overexpression breast cancer cell line was generated, and we used RNA-seq and RT-qPCR to quantify and verify the changes in transcription levels in breast cancer cells under ZNF32 overexpression. Transcriptome analysis showed that high expression of ZNF32 is accompanied by changes in downstream focal adhesion, ECM-receptor interaction, PI3K-AKT, HIPPO and TNF signaling pathways, which are critical for the occurrence and development of cancer. Multiple differentially expressed genes (DEGs) were significantly involved in cell proliferation, adhesion and migration, including 11 DEGs such as CA9, CRLF1 and ENPP2P with fundamental change of regulation modes. All the 11 DEGs were validated by RT-qPCR, and 9 of them contained potential transcriptional binding sequences of ZNF32 in their promoter region. This study provides a holistic perspective on the role and molecular mechanism of ZNF32 in breast cancer progression.
Collapse
Affiliation(s)
- Chaosong Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Dingshuang Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Di Gong
- School of Basic Medical Science, Chengdu University, Chengdu, China
| | - Xueqing Sheng
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Ruiwen Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Zhao J, Wen D, Zhang S, Jiang H, Di X. The role of zinc finger proteins in malignant tumors. FASEB J 2023; 37:e23157. [PMID: 37615242 DOI: 10.1096/fj.202300801r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Zinc finger proteins (ZNFs) are the largest family of transcriptional factors in mammalian cells. Recently, their role in the development, progression, and metastasis of malignant tumors via regulating gene transcription and translation processes has become evident. Besides, their possible involvement in drug resistance has also been found, indicating that ZNFs have the potential to become new biological markers and therapeutic targets. In this review, we summarize the oncogenic and suppressive roles of various ZNFs in malignant tumors, including lung, breast, liver, gastric, colorectal, pancreatic, and other cancers, highlighting their role as prognostic markers, and hopefully provide new ideas for the treatment of malignant tumors in the future.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Ding Y, Gong Y, Zeng H, Song G, Yu Z, Fu B, Liu Y, Huang D, Zhong Y. ZNF765 is a prognostic biomarker of hepatocellular carcinoma associated with cell cycle, immune infiltration, m 6A modification, and drug susceptibility. Aging (Albany NY) 2023; 15:6179-6211. [PMID: 37400985 PMCID: PMC10373972 DOI: 10.18632/aging.204827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is an ongoing challenge worldwide. Zinc finger protein 765 (ZNF765) is an important zinc finger protein that is related to the permeability of the blood-tumor barrier. However, the role of ZNF765 in HCC is unclear. This study evaluated the expression of ZNF765 in hepatocellular carcinoma and the impact of its expression on patient prognosis based on The Cancer Genome Atlas (TCGA). Immunohistochemical assays (IHC) were used to examine protein expression. Besides, a colony formation assay was used to examine cell viability. We also explored the relationship between ZNF765 and chemokines in the HCCLM3 cells by qRT-PCR. Moreover, we examined the effect of ZNF765 on cell resistance by measurement of the maximum half-inhibitory concentration. Our research revealed that ZNF765 expression in HCC samples was higher than that in normal samples, whose upregulation was not conducive to the prognosis. The results of GO, KEGG, and GSEA showed that ZNF765 was associated with the cell cycle and immune infiltration. Furthermore, we confirmed that the expression of ZNF765 had a strong connection with the infiltration level of various immune cells, such as B cells, CD4+ T cells, macrophages, and neutrophils. In addition, we found that ZNF765 was associated with m6A modification, which may affect the progression of HCC. Finally, drug sensitivity testing found that patients with HCC were sensitive to 20 drugs when they expressed high levels of ZNF765. In conclusion, ZNF765 may be a prognostic biomarker related to cell cycle, immune infiltration, m6A modification, and drug sensitivity for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yongqi Ding
- Second Affiliated Hospital of Nanchang University, Nanchang, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Gelin Song
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Bidong Fu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yue Liu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanying Zhong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Li Q, Yuan H, Zhao G, Zhang J, Li S, Gong D, Feng T, Kou Q, Wang Q, Wang G, Li S, Li K, Lin P. ZNF32 prevents the activation of cancer-associated fibroblasts through negative regulation of TGFB1 transcription in breast cancer. FASEB J 2023; 37:e22837. [PMID: 36934389 DOI: 10.1096/fj.202201801r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/20/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the leading cause of cancer-related deaths in women worldwide. Cancer-associated fibroblasts (CAFs) are one of the fundamental cellular components of the tumor microenvironment and play a critical role in the initiation, progression, and therapy resistance of breast cancer. However, the detailed molecular mechanisms of CAFs activation from normal fibroblasts (NFs) are still not well understood. In the present study, we reported that ZNF32 expression in breast cancer cells was negatively correlated with CAF-related markers (FSP1, α-SMA, and FAP) in stromal fibroblasts, and loss of ZNF32 promoted the activation of CAFs, as evidenced by the enhanced proliferation and contractility of CAFs. ZNF32 deficiency-mediated fibroblast activation promoted the growth and metastasis of breast cancer cells in vitro and in vivo. Mechanistically, we demonstrated that ZNF32 inhibited TGFB1 transcription by directly binding to the -1968/-1962 region of the TGFB1 promoter, leading to the prevention of fibroblast activation. Altogether, our findings reveal an important mechanism by which ZNF32 suppression increases the transcription of the TGFB1 gene in breast cancer cells, and subsequently, elevated levels of secretory TGF-β stimulate NFs transformation into CAFs, which in turn facilitates the malignant progression of breast cancer. Our data implicated ZNF32 as a potential therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Qin Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Yuan
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Zhao
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Siqi Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Di Gong
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Tianyu Feng
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qiming Kou
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qijing Wang
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Guanru Wang
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Lin
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Egusquiza-Alvarez CA, Robles-Flores M. An approach to p32/gC1qR/HABP1: a multifunctional protein with an essential role in cancer. J Cancer Res Clin Oncol 2022; 148:1831-1854. [PMID: 35441886 DOI: 10.1007/s00432-022-04001-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
P32/gC1qR/HABP1 is a doughnut-shaped acidic protein, highly conserved in eukaryote evolution and ubiquitous in the organism. Although its canonical subcellular localization is the mitochondria, p32 can also be found in the cytosol, nucleus, cytoplasmic membrane, and it can be secreted. Therefore, it is considered a multicompartmental protein. P32 can interact with many physiologically divergent ligands in each subcellular location and modulate their functions. The main ligands are C1q, hyaluronic acid, calreticulin, CD44, integrins, PKC, splicing factor ASF/SF2, and several microbial proteins. Among the functions in which p32 participates are mitochondrial metabolism and dynamics, apoptosis, splicing, immune response, inflammation, and modulates several cell signaling pathways. Notably, p32 is overexpressed in a significant number of epithelial tumors, where its expression level negatively correlates with patient survival. Several studies of gain and/or loss of function in cancer cells have demonstrated that p32 is a promoter of malignant hallmarks such as proliferation, cell survival, chemoresistance, angiogenesis, immunoregulation, migration, invasion, and metastasis. All of this strongly suggests that p32 is a potential diagnostic molecule and therapeutic target in cancer. Indeed, preclinical advances have been made in developing therapeutic strategies using p32 as a target. They include tumor homing peptides, monoclonal antibodies, an intracellular inhibitor, a p32 peptide vaccine, and p32 CAR T cells. These advances are promising and will allow soon to include p32 as part of targeted cancer therapies.
Collapse
Affiliation(s)
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
9
|
Adachi Y, Sato N, Oba T, Amaike T, Kudo Y, Kohi S, Nakayama T, Hirata K. Prognostic and functional role of hyaluronan‑binding protein 1 in pancreatic ductal adenocarcinoma. Oncol Lett 2022; 24:222. [PMID: 35720501 PMCID: PMC9178692 DOI: 10.3892/ol.2022.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hyaluronan-binding protein 1 (HABP1) is among the molecules known to bind to hyaluronan and is involved in a variety of cellular processes, including cell proliferation and migration. HABP1 has been implicated in the progression of various cancers; however, there have been (to the best of our knowledge) few studies on the expression and function of HABP1 in pancreatic ductal adenocarcinoma (PDAC), a topic that is examined in the present study. Immunohistochemical analysis of HABP1 protein was conducted in archival tissues from 105 patients with PDAC. Furthermore, the functional effect of HABP1 on proliferation, colony formation, and migration in PDAC cells was examined by knockdown of HABP1. It was revealed that HABP1 was overexpressed in 49 (46.2%) out of 105 patients with PDAC. Overall survival was significantly shorter in patients with high HABP1 expression than in those with low HABP1 expression (median survival time of 12.8 months vs. 28.5 months; log-rank test, P=0.004). Knockdown of HABP1 expression in PDAC cells resulted in decreased cell proliferation, colony formation, and cell migration activity. Thus, HABP1 may serve as a prognostic factor in PDAC and may be of use as a novel therapeutic target.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Norihiro Sato
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takuya Oba
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takao Amaike
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Yuzan Kudo
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Shiro Kohi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Keiji Hirata
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| |
Collapse
|
10
|
Wang Y, Liu S, Tian S, Du R, Lin T, Xiao X, Wang R, Chen R, Geng H, Subramanian S, Niu Y, Wang Y, Yue D. C1QBP regulates apoptosis of renal cell carcinoma via modulating xanthine dehydrogenase (XDH) mediated ROS generation. Int J Med Sci 2022; 19:842-857. [PMID: 35693733 PMCID: PMC9149634 DOI: 10.7150/ijms.71703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Complement component 1 Q subcomponent binding protein (C1QBP) plays a vital role in the progression and metabolism of cancer. Studies have shown that xanthine dehydrogenase (XDH)-derived reactive oxygen species (ROS) accelerates tumor growth, and also induces mutations or produces cytotoxic effects concurrently. However, the role of C1QBP in metabolism, oxidative stress, and apoptosis of renal cell carcinoma (RCC) cells have not yet been explored. Methods: Metabolomics assay was applied to investigate the role of C1QBP in RCC metabolism. C1QBP knockdown and overexpression cells were established via lentiviral infection and subjected to apoptosis and ROS assay in vitro. RNA stability assay was applied to characterize the mechanism of C1QBP regulating XDH transcription. In vivo, orthotopic tumor xenografts assay was performed to investigate the role of C1QBP in RCC progression. Results: Metabolomics investigation revealed that C1QBP dramatically diminished the hypoxanthine content in RCC cells. C1QBP promoted the mRNA and protein expression of hypoxanthine catabolic enzyme XDH. Meanwhile, C1QBP may affect XDH transcription by regulating the mRNA level of XDH transcriptional stimulators IL-6, TNF-α, and IFN-γ. Moreover, the expression of C1QBP and XDH was lower in RCC tumors compared with the tumor-associated normal tissues, and their down-regulation was associated with higher Fuhrman grade. C1QBP significantly increased ROS level, apoptosis, and the expression of apoptotic proteins such as cleaved caspase-3 and bax/bcl2 via regulating XDH. Conclusion: C1QBP promotes the catabolism of hypoxanthine and elevates the apoptosis of RCC cells by modulating XDH-mediated ROS generation.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China.,Department of Clinical Laboratory, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin 300134, China
| | - Shuang Liu
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Shaoping Tian
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Runxuan Du
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300211, China
| | - Tianyu Lin
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Xuesong Xiao
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300211, China
| | - Rui Wang
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hua Geng
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Saravanan Subramanian
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yuanjie Niu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300211, China
| | - Yong Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300211, China
| | - Dan Yue
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
11
|
Li K, Zhao G, Yuan H, Zhang J, Li Q, Gong D, Lin P. Upregulated expression of DDX5 predicts recurrence and poor prognosis in breast cancer. Pathol Res Pract 2021; 229:153736. [PMID: 34923193 DOI: 10.1016/j.prp.2021.153736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023]
Abstract
DEAD-box helicase 5 (DDX5) has been shown to promote tumorigenesis and cancer progression. However, the relationship between DDX5 and recurrence in breast cancer (BC) patients remains unknown. The objective of the present study was to evaluate the correlation of DDX5 with recurrence-free survival (RFS) and breast cancer-specific survival (BCSS) in patients with BC. The expression of DDX5 was examined by immunohistochemical analysis. RFS was calculated by Kaplan-Meier survival analysis. Univariate and multivariable associations were assessed by Cox proportional hazards models. In the present study, a total of 868 BC patients were analysed, and we found that DDX5 protein was significantly overexpressed in BC tissues compared to adjacent normal tissues. Elevated DDX5 was associated with an aggressive phenotype in BC patients. Moreover, DDX5 protein was upregulated in recurrent patients compared with nonrecurrent patients, and DDX5 protein levels were positively associated with worse RFS and BCSS in BC patients. High DDX5 expressing BC patients with age more than 50 year, advanced clinical stage or histological grade had a significantly increased risk of recurrence and shorter survival. Our findings highlight the significance of DDX5 in the recurrence and clinical outcome of BC patients and suggest that DDX5 may be a potential predictive biomarker for patients with BC.
Collapse
Affiliation(s)
- Kai Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Gang Zhao
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hang Yuan
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jie Zhang
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Di Gong
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ping Lin
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
12
|
Qin L, Zhan Z, Wei C, Li X, Zhang T, Li J. Hsa‑circRNA‑G004213 promotes cisplatin sensitivity by regulating miR‑513b‑5p/PRPF39 in liver cancer. Mol Med Rep 2021; 23:421. [PMID: 33864660 PMCID: PMC8025462 DOI: 10.3892/mmr.2021.12060] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, increasing evidence has confirmed that exosomal circular RNAs (circRNAs) serve a crucial role in the prognostic prediction and diagnosis of liver cancer (LC). The present study compared the expression patterns of exosomal circRNAs during transarterial chemoembolization (TACE). CircRNA sequencing analysis identified 390 differentially expressed circRNAs between the prior TACE and following the first TACE operation groups and 489 differentially expressed circRNAs between the prior to TACE and following the second TACE operation groups. Gene Ontology analysis of the differentially expressed circRNAs demonstrated that they were associated with fatty acid metabolism, receptor binding and membrane protein complexes. Kyoto Encyclopedia of Genes and Genomes pathway analysis predicted that protein digestion and absorption pathways were activated following TACE. A novel gene was screened out; hsa‑circRNA‑G004213 (circ‑G004213) was significantly upregulated following TACE (fold change >10, P < 0.01). Further analysis found circ‑G004213 significantly increased the cisplatin sensitivity of HepG2 cells and positively associated with the prognosis of tumor‑bearing mice. Based on the potential downstream miRNAs and mRNAs, the circRNA‑miRNA‑mRNA network was constructed. It was demonstrated that circ‑G004213 regulated cisplatin resistance via the miR‑513b‑5p/PRPF39 axis. Finally, the present study confirmed that circ‑G004213 was positively associated with the prognosis of patients with LC following TACE. Therefore, circ‑G004213 may be used as an indicator for predicting the efficacy of TACE.
Collapse
Affiliation(s)
- Ling Qin
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| | - Zibo Zhan
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| | - Chunxue Wei
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| | - Xuemei Li
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| | - Tongqin Zhang
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| | - Jun Li
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
13
|
Guo HJ, Li HY, Chen ZH, Zhou WJ, Li JJ, Zhang JY, Wang J, Luo XY, Zeng T, Shi Z, Mo CF. NAMPT promotes hepatitis B virus replication and liver cancer cell proliferation through the regulation of aerobic glycolysis. Oncol Lett 2021; 21:390. [PMID: 33777213 PMCID: PMC7988713 DOI: 10.3892/ol.2021.12651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a critical rate-limiting enzyme involved in NAD synthesis that has been shown to contribute to the progression of liver cancer. However, the potential role and mechanism of NAMPT in hepatitis B virus (HBV)-associated liver cancer remain unclear. The present study assessed the expression of NAMPT in HBV-positive and -negative liver cancer cells, and investigated whether HBV-induced NAMPT expression is dependent on HBV X protein (HBx). In addition, the role of NAMPT in HBV replication and transcription, and in HBV-mediated liver cancer cell growth was explored. The effects of NAMPT on the glycolytic pathway were also evaluated. Reverse transcription-quantitative PCR and western blotting results revealed that NAMPT expression levels were significantly higher in HBV-positive liver cancer cells than in HBV-negative liver cancer cells, and this effect was HBx-dependent. Moreover, the activation of NAMPT was demonstrated to be required for HBV replication and transcription. The NAMPT inhibitor FK866 repressed cell survival and promoted cell death in HBV-expressing liver cancer cells, and these effects were attenuated by nicotinamide mononucleotide. Furthermore, the inhibition of NAMPT was associated with decreased glucose uptake, decreased lactate production and decreased ATP levels in HBV-expressing liver cancer cells, indicating that NAMPT may promote the aerobic glycolysis. Collectively, these findings reveal a positive feedback loop in which HBV enhances NAMPT expression and the activation of NAMPT promotes HBV replication and HBV-mediated malignant cell growth in liver cancer. The present study highlights the important role of NAMPT in the regulation of aerobic glycolysis in HBV-mediated liver cancer, and suggests that NAMPT may be a promising treatment target for patients with HBV-associated liver cancer.
Collapse
Affiliation(s)
- Hui-Jie Guo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Hong-Yu Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Zi-Hao Chen
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wen-Jing Zhou
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jia-Jie Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jia-Yi Zhang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jing Wang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Xing-Yan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ting Zeng
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Zhao Shi
- Department of Anatomy, Histology and Embryology, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Chun-Fen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
14
|
Adnan M, Rasul A, Hussain G, Shah MA, Sarfraz I, Nageen B, Riaz A, Khalid R, Asrar M, Selamoglu Z, Adem Ş, Sarker SD. Physcion and Physcion 8-O-β-D-glucopyranoside: Natural Anthraquinones with Potential Anticancer Activities. Curr Drug Targets 2021; 22:488-504. [PMID: 33050858 DOI: 10.2174/1389450121999201013154542] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
Nature has provided prodigious reservoirs of pharmacologically active compounds for drug development since times. Physcion and physcion 8-O-β-D-glucopyranoside (PG) are bioactive natural anthraquinones which exert anti-inflammatory and anticancer properties with minimum or no adverse effects. Moreover, physcion also exhibits anti-microbial and hepatoprotective properties, while PG is known to have anti-sepsis as well as ameliorative activities against dementia. This review aims to highlight the natural sources and anticancer activities of physcion and PG, along with associated mechanisms of actions. On the basis of the literature, physcion and PG regulate multitudinous cell signaling pathways through the modulation of various regulators of cell cycle, protein kinases, microRNAs, transcriptional factors, and apoptosis linked proteins resulting in the effective killing of cancerous cells in vitro as well as in vivo. Both compounds effectively suppress metastasis, furthermore, physcion acts as an inhibitor of 6PGD and also plays an important role in chemosensitization. This review article suggests that physcion and PG are potent anticancer drug candidates, but further investigations on their mechanism of action and pre-clinical trials are mandatory in order to comprehend the full potential of these natural cancer killers in anticancer remedies.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rida Khalid
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Asrar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Campus 51240, Turkey
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Cankiri Karatekin University, UluyazI Campus Cankiri, Turkey
| | - Satyajit D Sarker
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, England, United Kingdom
| |
Collapse
|
15
|
Genome-Wide Association Study and Pathway Analysis for Heterophil/Lymphocyte (H/L) Ratio in Chicken. Genes (Basel) 2020; 11:genes11091005. [PMID: 32867375 PMCID: PMC7563235 DOI: 10.3390/genes11091005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Disease control and prevention have been critical factors in the dramatic growth of the poultry industry. Disease resistance in chickens can be improved through genetic selection for immunocompetence. The heterophil/lymphocyte ratio (H/L) in the blood reflects the immune system status of chickens. Our objective was to conduct a genome-wide association study (GWAS) and pathway analysis to identify possible biological mechanisms involved in H/L traits. In this study, GWAS for H/L was performed in 1317 Cobb broilers to identify significant single-nucleotide polymorphisms (SNPs) associated with H/L. Eight SNPs (p < 1/8068) reached a significant level of association. The significant SNP on GGA 19 (chicken chromosome 19) was in the gene for complement C1q binding protein (C1QBP). The wild-type and mutant individuals showed significant differences in H/L at five identified SNPs (p < 0.05). According to the results of pathway analysis, nine associated pathways (p < 0.05) were identified. By combining GWAS with pathway analysis, we found that all SNPs after QC explained 12.4% of the phenotypic variation in H/L, and 52 SNPs associated with H/L explained as much as 9.7% of the phenotypic variation in H/L. Our findings contribute to understanding of the genetic regulation of H/L and provide theoretical support.
Collapse
|
16
|
Guo S, Li B, Xu X, Wang W, Wang S, Lv T, Wang H. Construction of a 14-lncRNA risk score system predicting survival of children with acute myelocytic leukemia. Exp Ther Med 2020; 20:1521-1531. [PMID: 32742384 PMCID: PMC7388210 DOI: 10.3892/etm.2020.8846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myelocytic leukemia (AML) is a frequent type of acute leukemia. The present study was performed to build a risk score system for the prognostic prediction of AML. AML RNA-sequencing data from samples from 111 children were downloaded from The Cancer Genome Atlas database. Using the DEseq and edgeR packages, the differentially expressed long non-coding RNAs (DE-lncRNAs) between bad and good prognosis groups were identified. A survival package was used to screen prognosis-associated lncRNAs and clinical factors. The optimal lncRNA combination was selected using the penalized package, and the risk-score system was built and evaluated. After the lncRNA-mRNA expression correlation network was constructed, the potential pathways involving the key lncRNAs were enriched using Gene Set Enrichment Analysis. Among the 61 DE-lncRNAs, 48 lncRNAs were significantly associated with prognosis. Relapse was an independent prognostic factor. The optimal 14-lncRNA risk score system was constructed. After 730 differentially expressed mRNAs were identified between the good and bad prognosis groups divided using a prognostic index, the lncRNA-mRNA expression correlation network was constructed. Enrichment analysis showed that semaphorin-3C [SEMA3C; regulated by probable leucine-tRNA ligase, mitochondrial (LARS2-AS1)] and secreted frizzled-related protein 5 [SFRP5; mediated by WASH complex subunit 5 (WASHC5)-antisense RNA 1 (AS1)] were involved in axon guidance and the Wnt signaling pathway, respectively. A 14-lncRNA (including paired box protein Pax8-AS1 and MYB AS1) risk-score system might be effective in predicting the prognosis of AML. Axon guidance (involving SEMA3C and LARS2-AS1) and the Wnt signaling pathway (involving SFRP5 and WASHC5-AS1) might be two important pathways affecting the prognosis of AML.
Collapse
Affiliation(s)
- Shuli Guo
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Bo Li
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Xiaoyan Xu
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Wanli Wang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Songyun Wang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Tao Lv
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Huirui Wang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| |
Collapse
|
17
|
Cui XX, Zhou C, Lu H, Han YL, Wang FM, Fan WR, Ren Y, Zhang R. High expression of ZNF93 promotes proliferation and migration of ovarian cancer cells and relates to poor prognosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:944-953. [PMID: 32509065 PMCID: PMC7270678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
Ovarian cancer (OC) is most common type of gynecologic cancer and is frequently lethal. It is important to determine the pathologic mechanisms underlying OC. ZNF93 is a member of the zinc finger protein family. Abnormal expression of ZNF93 has been observed in various tumor cells. However, its clinical significance and biologic function in ovarian cancer remain unclear. In the present study, we established that ZNF93 expression was highly up-regulated in OC samples and was closely correlated with clinical stage, indicating poor prognosis. We then established that ZNF93 promoted OC cell proliferation and migration. The results of our study may provide insight into the use of ZNF93 as a marker of clinical outcome and as a potential therapeutic target in OC.
Collapse
Affiliation(s)
- Xiao-Xiao Cui
- Anhui University of Science and TechnologyHuainan, P. R. China
- Department of Obstetrics and Gynecology, Health Sciences Affiliated Sixth People’s Hospital South CampusShanghai, P. R. China
| | - Chen Zhou
- Department of Gynecology, Changzhou No. 2 People’s HospitalJiangsu, P. R. China
| | - Huan Lu
- Department of Obstetrics and Gynecology, Health Sciences Affiliated Sixth People’s Hospital South CampusShanghai, P. R. China
| | - Yan-Li Han
- Anhui University of Science and TechnologyHuainan, P. R. China
| | - Feng-Mian Wang
- Department of Obstetrics and Gynecology, Health Sciences Affiliated Sixth People’s Hospital South CampusShanghai, P. R. China
| | - Wei-Rong Fan
- Department of Obstetrics and Gynecology, Health Sciences Affiliated Sixth People’s Hospital South CampusShanghai, P. R. China
| | - Yuan Ren
- Anhui University of Science and TechnologyHuainan, P. R. China
- Department of Obstetrics and Gynecology, Health Sciences Affiliated Sixth People’s Hospital South CampusShanghai, P. R. China
| | - Rong Zhang
- Anhui University of Science and TechnologyHuainan, P. R. China
- Department of Obstetrics and Gynecology, Health Sciences Affiliated Sixth People’s Hospital South CampusShanghai, P. R. China
| |
Collapse
|
18
|
Zhang J, Luo J, Jiang H, Xie T, Zheng J, Tian Y, Li R, Wang B, Lin J, Xu A, Huang X, Yuan Y. The Tumor Suppressor Role of Zinc Finger Protein 671 ( ZNF671) in Multiple Tumors Based on Cancer Single-Cell Sequencing. Front Oncol 2019; 9:1214. [PMID: 31781507 PMCID: PMC6857622 DOI: 10.3389/fonc.2019.01214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023] Open
Abstract
In humans, zinc finger protein 671 (ZNF671) is a type of transcription factor. However, the contribution of tumor heterogeneity to the functional role of ZNF671 remains unknown. The present study aimed to determine the functional states of ZNF671 in cancer single cells based on single-cell sequencing datasets (scRNA-seq). We collected cancer-related ZNF671 scRNA-seq datasets and analyzed ZNF671 in the datasets. We evaluated 14 functional states of ZNF671 in cancers and performed ZNF671 expression and function state correlation analysis. We further applied t-distributed stochastic neighbor embedding to describe the distribution of cancer cells and to explore the functional state of ZNF671 in cancer subgroups. We found that ZNF671 was downregulated in eight cancer-related ZNF671 scRNA-seq datasets. Functional analysis identified that ZNF671 might play a tumor suppressor role in cancer. The heterogeneous functional states of cell subgroups and correlation analysis showed that ZNF671 played tumor suppressor roles in heterogeneous cancer cell populations. Western blot and transwell assays identified that ZNF671 inhibited EMT, migration, and invasion of CNS cancers, lung cancer, melanoma, and breast carcinoma in vitro. These results from cancer single-cell sequencing indicated that ZNF671 played a tumor suppressor role in multiple tumors and may provide us with new insights into the role of ZNF671 for cancer treatment.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jianli Luo
- Department of General Disease, Health Center of Shuichun Town, Shanwei, China
| | - Huali Jiang
- Department of Cardiovascularology, Tungwah Hospital of Sun Yat-sen University, Dongguan, China
| | - Tao Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jieling Zheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Anan Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Barna J, Dimén D, Puska G, Kovács D, Csikós V, Oláh S, Udvari EB, Pál G, Dobolyi Á. Complement component 1q subcomponent binding protein in the brain of the rat. Sci Rep 2019; 9:4597. [PMID: 30872665 PMCID: PMC6418184 DOI: 10.1038/s41598-019-40788-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/19/2019] [Indexed: 12/17/2022] Open
Abstract
Complement component 1q subcomponent binding protein (C1qbp) is a multifunctional protein involved in immune response, energy homeostasis of cells as a plasma membrane receptor, and a nuclear, cytoplasmic or mitochondrial protein. Recent reports suggested its neuronal function, too, possibly in axon maintenance, synaptic function, and neuroplasticity. Therefore, we addressed to identify C1qbp in the rat brain using in situ hybridization histochemistry and immunolabelling at light and electron microscopic level. C1qbp has a topographical distribution in the brain established by the same pattern of C1qbp mRNA-expressing and protein-containing neurons with the highest abundance in the cerebral cortex, anterodorsal thalamic nucleus, hypothalamic paraventricular (PVN) and arcuate nuclei, spinal trigeminal nucleus. Double labelling of C1qbp with the neuronal marker NeuN, with the astrocyte marker S100, and the microglia marker Iba1 demonstrated the presence of C1qbp in neurons but not in glial cells in the normal brain, while C1qbp appeared in microglia following their activation induced by focal ischemic lesion. Only restricted neurons expressed C1qbp, for example, in the PVN, magnocellular neurons selectively contained C1qbp. Further double labelling by using the mitochondria marker Idh3a antibody suggested the mitochondrial localization of C1qbp in the brain, confirmed by correlated light and electron microscopy at 3 different brain regions. Post-embedding immunoelectron microscopy also suggested uneven C1qbp content of mitochondria in different brain areas but also heterogeneity within single neurons. These data suggest a specific function of C1qbp in the brain related to mitochondria, such as the regulation of local energy supply in neuronal cells.
Collapse
Affiliation(s)
- János Barna
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Diána Dimén
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Gina Puska
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Dávid Kovács
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Edina B Udvari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Pál
- Hungarian Defence Forces Military Hospital, Budapest, Hungary
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
20
|
Song X, Li C, Li J, Liu L, Meng L, Ding H, Long W. The long noncoding RNA uc.294 is upregulated in early-onset pre-eclampsia and inhibits proliferation, invasion of trophoblast cells (HTR-8/SVneo). J Cell Physiol 2018; 234:11001-11008. [PMID: 30569493 DOI: 10.1002/jcp.27916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
Recently, a large number of long noncoding RNAs (lncRNAs) have been reported in human diseases that are evolutionarily conserved and are likely to play a role in many biological events including pre-eclampsia. In our previous research, we selected thousands of lncRNAs for their relationship with early-onset pre-eclampsia. Among these lncRNAs, a lncRNA named uc.294 attracted our attention, was once reported to specifically be expressed at a high level in the early-onset of pre-eclampsia. This study aims to investigate the function of uc.294 in early-onset pre-eclampsia and the possible mechanism. The uc.294 expression level in early-onset pre-eclampsia or in normal placenta tissues was evaluated by quantitative real-time polymerase chain reaction. To detect the proliferation, invasion, and apoptosis capacity of the trophoblast cells, we performed the Cell Counting Kit-8 assay, transwell assay, and flow cytometry, respectively. Here we report, for the first time, that uc.294 inhibits proliferation, invasion, and promotes apoptosis of trophoblast cells HTR-8/SVneo by working in key aspects of biological behaviors. However, how uc.294 acts to regulate gene functions in early-onset pre-eclampsia needs further exploration.
Collapse
Affiliation(s)
- Xuejing Song
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Chunyan Li
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.,Department of Clinical Medicine, Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Jingyun Li
- Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Lan Liu
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Li Meng
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Hongjuan Ding
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Wei Long
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
21
|
Li Y, Gong D, Zhang L, Li H, Zhang S, Zhang J, Li K, Zheng Q, Zhao G, Zhang Y, Chen Y, Guo Y, Xiang R, Lin P, Wei Y. Zinc finger protein 32 promotes breast cancer stem cell-like properties through directly promoting GPER transcription. Cell Death Dis 2018; 9:1162. [PMID: 30478301 PMCID: PMC6255875 DOI: 10.1038/s41419-018-1144-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the leading causes of death in women. Due to the existence of a small fraction of stem cell-like subpopulations, some breast cancer subtypes exhibit very high malignancy and resistance to multiple therapies. The underlying mechanisms of how these subtypes acquire stem cell-like properties and progress more aggressively remain largely unknown. Zinc finger protein 32 (ZNF32), a newly discovered transcription factor, has been reported to be associated with breast cancer progression. However, many questions remain about its target genes and its exact mechanisms in regulating stem cell-like properties and drug resistance. In the present study, we examined the relationship between ZNF32 and GPER, a membrane-associated estrogen receptor, and we addressed their roles in stemness regulation in human breast cancer cell lines. Our results showed that ZNF32 could induce expansion of stem cell-like subpopulations and increase drug resistance by upregulating GPER expression, in which ERK activation was also implicated. We also illustrated that ZNF32 induced GPER expression via a ZNF32 binding sequence located within the GPER promoter region. A correlation between ZNF32/GPER expression and increased tumor incidence and burden was observed in xenograft mouse models. We conclude that ZNF32 can engage GPER/ERK signalling and confer breast cancer stem cell-like properties, which may indicate poor prognosis of breast cancer patients. ZNF32 and GPER targeted therapies might provide new solutions for breast cancer treatment.
Collapse
Affiliation(s)
- Yanyan Li
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Di Gong
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Le Zhang
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Hongjiang Li
- Department of Thyroid and Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Huaxi Biobank, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kai Li
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - QianWen Zheng
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Gang Zhao
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yue Zhang
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yue Chen
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yafei Guo
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Rong Xiang
- Department of clinical medicine, School of Medicine, Nankai University, and Collaborative Innovation Center for Biotherapy, Tianjin, China
| | - Ping Lin
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Yuquan Wei
- Division of Cancer Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
22
|
ZNF32 induces anoikis resistance through maintaining redox homeostasis and activating Src/FAK signaling in hepatocellular carcinoma. Cancer Lett 2018; 442:271-278. [PMID: 30439540 DOI: 10.1016/j.canlet.2018.09.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
Tumor cells need to attain anoikis resistance to survive prior to metastasis making it a vital trait of malignancy. The molecular mechanism by which hepatocellular carcinoma (HCC) cells resist anoikis remains not fully understood. Here, we report that ZNF32 expression is markedly upregulated in HCC cells upon detachment. Enforced ZNF32 expression significantly promotes the anchorage-independent growth capability of HepG2 and Huh7 cells, whereas knockdown of ZNF32 results in increased apoptosis of HCC cells after detachment. Mechanistically, we demonstrate that ZNF32 overexpression suppresses the reactive oxygen species (ROS) accumulation and maintains mitochondrial membrane potential, leading to ATP, GSH and NADPH elevation and promoting HCC cell survival in response to suspension. Moreover, ZNF32 enhances the phosphorylation and activation of Src/FAK signaling. Src and FAK inhibitors effectively reverse ZNF32-induced anoikis resistance in HCC cells. Collectively, our findings not only reveal a novel and important mechanism by which ZNF32 contributes to anoikis resistance through maintaining redox homeostasis and activating Src/FAK signaling, but also suggest the potential therapeutic value of ZNF32 in HCC patients.
Collapse
|
23
|
Song X, Rui C, Meng L, Zhang R, Shen R, Ding H, Li J, Li J, Long W. Long non-coding RNA RPAIN regulates the invasion and apoptosis of trophoblast cell lines via complement protein C1q. Oncotarget 2018; 8:7637-7646. [PMID: 28032589 PMCID: PMC5352349 DOI: 10.18632/oncotarget.13826] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/01/2016] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulatory molecules that are involved in a variety of biological processes and human diseases. Their impact on early onset preeclampsia remains unclear. In this study, we tested the expression of RPAIN (transcript variant 12 of RPA interacting protein, a non-coding RNA, NR_027683.1) in placenta tissues derived from 25 pregnant women with PE and 15 healthy pregnant women using quantitative real-time PCR. The effect of RPAIN on trophoblast proliferation, invasion, and apoptosis and the underlying mechanisms were examined in trophoblast cell lines (HTR-8/SVneo). The results showed that RPAIN expression levels were significantly increased in early onset preeclamptic placentas compared to normal controls. The proliferation and invasive abilities of the trophoblast cells were significantly inhibited, and the apoptosis abilities of the trophoblast cells were significantly promoted when RPAIN was overexpressed. In addition, the overexpression of RPAIN inhibited the expression of complement protein C1q. Furthermore, C1q overexpression rescued the decreased cell invasion and enhanced cell apoptosis in RPAIN-overexpressing trophoblast cells. Our results suggest that increased RPAIN levels may contribute to the development of preeclampsia through regulating trophoblast invasion and apoptosis via C1q. Therefore, we proposed RPAIN as a novel lncRNA molecule, which might contribute to the development of PE (preeclampsia) and might compose a potential diagnostic and therapeutic target for this disease.
Collapse
Affiliation(s)
- Xuejing Song
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Can Rui
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Li Meng
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Rui Zhang
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Rong Shen
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hongjuan Ding
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jun Li
- State key Laboratory of Reproductive Medicine, Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jingyun Li
- State key Laboratory of Reproductive Medicine, Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Wei Long
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Kim CK, He P, Bialkowska AB, Yang VW. SP and KLF Transcription Factors in Digestive Physiology and Diseases. Gastroenterology 2017; 152:1845-1875. [PMID: 28366734 PMCID: PMC5815166 DOI: 10.1053/j.gastro.2017.03.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022]
Abstract
Specificity proteins (SPs) and Krüppel-like factors (KLFs) belong to the family of transcription factors that contain conserved zinc finger domains involved in binding to target DNA sequences. Many of these proteins are expressed in different tissues and have distinct tissue-specific activities and functions. Studies have shown that SPs and KLFs regulate not only physiological processes such as growth, development, differentiation, proliferation, and embryogenesis, but pathogenesis of many diseases, including cancer and inflammatory disorders. Consistently, these proteins have been shown to regulate normal functions and pathobiology in the digestive system. We review recent findings on the tissue- and organ-specific functions of SPs and KLFs in the digestive system including the oral cavity, esophagus, stomach, small and large intestines, pancreas, and liver. We provide a list of agents under development to target these proteins.
Collapse
Affiliation(s)
- Chang-Kyung Kim
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Ping He
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Agnieszka B. Bialkowska
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| | - Vincent W. Yang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| |
Collapse
|
25
|
Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, Zhang J, Huang L, Li Y, Fuller-Pace FV, Lin P, Wei Y. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett 2017; 400:194-202. [PMID: 28259822 DOI: 10.1016/j.canlet.2017.02.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 02/05/2023]
Abstract
Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective for non-small cell lung cancer (NSCLC) patients with EGFR mutations, almost all these patients will eventually develop acquired resistance to EGFR-TKI. However, the molecular mechanisms responsible for gefitinib resistance remain still not fully understood. Here, we report that elevated DDX17 levels are observed in gefitinib-resistant NSCLC cells than gefitinib-sensitive cells. Upregulation of DDX17 enhances the gefitinib resistance, whereas DDX17-silenced cells partially restore gefitinib sensitivity. Mechanistically, we demonstrate that DDX17 disassociates the E-cadherin/β-catenin complex, resulting in β-catenin nuclear translocation and subsequently augmenting the transcription of β-catenin target genes. Moreover, we identify two nuclear localization signal (NLS) and four nuclear export signal (NES) sequences mediated DDX17 nucleocytoplasmic shuttling via an exportin/importin-dependent pathways. Interruption of dynamic nucleocytoplasmic shuttling of DDX17 impairs DDX17-mediating the activation of β-catenin and acquired resistance in NSCLC cells. In conclusion, our findings reveal a novel and important mechanism by which DDX17 contributes to acquired gefitinib resistance through exportin/importin-dependent cytoplasmic shuttling and followed by activation of β-catenin, and DDX17 inhibition may be a promising strategy to overcome acquired resistance of gefitinib in NSCLC patients.
Collapse
Affiliation(s)
- Kai Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Chunfen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Di Gong
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yan Chen
- Lab of Cancer Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Zhao Huang
- Lab of Cancer Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yanyan Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jie Zhang
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Lugang Huang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Frances V Fuller-Pace
- Division of Cancer Research, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Ping Lin
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| | - Yuquan Wei
- Lab of Cancer Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
26
|
Di Daniele N, Noce A, Vidiri MF, Moriconi E, Marrone G, Annicchiarico-Petruzzelli M, D’Urso G, Tesauro M, Rovella V, De Lorenzo A. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget 2017; 8:8947-8979. [PMID: 27894098 PMCID: PMC5352455 DOI: 10.18632/oncotarget.13553] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
Obesity symbolizes a major public health problem. Overweight and obesity are associated to the occurrence of the metabolic syndrome and to adipose tissue dysfunction. The adipose tissue is metabolically active and an endocrine organ, whose dysregulation causes a low-grade inflammatory state and ectopic fat depositions. The Mediterranean Diet represents a possible therapy for metabolic syndrome, preventing adiposopathy or "sick fat" formation.The Mediterranean Diet exerts protective effects in elderly subjects with and without baseline of chronic diseases. Recent studies have demonstrated a relationship between cancer and obesity. In the US, diet represents amount 30-35% of death causes related to cancer. Currently, the cancer is the second cause of death after cardiovascular diseases worldwide. Furthermore, populations living in the Mediterranean area have a decreased incidence of cancer compared with populations living in Northern Europe or the US, likely due to healthier dietary habits. The bioactive food components have a potential preventive action on cancer. The aims of this review are to evaluate the impact of Mediterranean Diet on onset, progression and regression of metabolic syndrome, cancer and on longevity.
Collapse
Affiliation(s)
- Nicola Di Daniele
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Annalisa Noce
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Maria Francesca Vidiri
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| | - Eleonora Moriconi
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| | - Giulia Marrone
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | | | - Gabriele D’Urso
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Valentina Rovella
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Antonino De Lorenzo
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| |
Collapse
|
27
|
ZNF32 contributes to the induction of multidrug resistance by regulating TGF-β receptor 2 signaling in lung adenocarcinoma. Cell Death Dis 2016; 7:e2428. [PMID: 27763636 PMCID: PMC5133992 DOI: 10.1038/cddis.2016.328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/06/2016] [Accepted: 09/14/2016] [Indexed: 02/05/2023]
Abstract
Multidrug resistance (MDR) is one of the most important contributors to the high mortality of cancer and remains a major concern. We previously found that zinc finger protein 32 (ZNF32), an important transcription factor associated with cancer in Homo sapiens, protects tumor cells against cell death induced by oxidative stress and other stimuli. We thus hypothesized that ZNF32 might enable the tolerance of cancer cells to anti-tumor drugs because higher ZNF32 expression has been found in cancer tissues and in drug-resistant lung adenocarcinoma (AC) cells. In this study, we found that ZNF32 is upregulated by Sp1 (specificity protein 1) in response to drug treatment and that ZNF32 promotes drug resistance and protects AC cells against cisplatin or gefitinib treatment. ZNF32 overexpression in AC cells conferred resistance to EGFR (epidermal growth factor receptor) inhibitors by enhancing MEK/ERK activation. Moreover, ZNF32 was found to directly bind to the TGF-βR2 (transforming growth factor-beta receptor 2) promoter to promote its expression, and ZNF32-induced resistance was mediated by enhancing TGF-βR2 expression and activating the TGF-βR2/SMAD2 pathway. In both a mouse model and ex vivo cultured patient samples, a high level of ZNF32 expression was closely associated with worse overall survival and cisplatin resistance. ZNF32 appears to be a potential inducer of drug resistance that could increase the expression of the drug resistance-associated gene TGF-βR2 and subsequently facilitate the induction of drug resistance during both conventional chemotherapy and novel target therapy. Thus, ZNF32-associated target therapy is a potential novel adjuvant therapy that might effectively prevent the occurrence of multidrug resistance (MDR) during chemotherapy and improve the survival of patients with AC.
Collapse
|
28
|
Wang Q, Wang Y, Xing Y, Yan Y, Guo P, Zhuang J, Qin F, Zhang J. RETRACTED: Physcion 8-O-β-glucopyranoside induces apoptosis, suppresses invasion and inhibits epithelial to mesenchymal transition of hepatocellular carcinoma HepG2 cells. Biomed Pharmacother 2016; 83:372-380. [PMID: 27416558 DOI: 10.1016/j.biopha.2016.06.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 06/22/2016] [Accepted: 06/25/2016] [Indexed: 12/12/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Panels from Figure 4A appear similar to panels from Figure 1 of the article previously published by Z. Ding, F. Xu, J. Tang, G. Li, P. Jiang, Z. Tang and H. Wu in Neoplasma 63(3) (2016) 351–361 http://www.elis.sk/index.php?page=shop.product_details&flypage=flypage.tpl&product_id=4703&category_id=128&option=com_virtuemart&vmcchk=1&Itemid=1. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Qiang Wang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yong Wang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yuqing Xing
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yi Yan
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Peng Guo
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jianguang Zhuang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Fawei Qin
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jie Zhang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
29
|
Gao H, Tian Y, Wang W, Yao D, Zheng T, Meng Q. Levels of interleukin-6, superoxide dismutase and malondialdehyde in the lung tissue of a rat model of hypoxia-induced acute pulmonary edema. Exp Ther Med 2015; 11:993-997. [PMID: 26998026 DOI: 10.3892/etm.2015.2962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/30/2015] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to investigate the levels of malondialdehyde (MDA), superoxide dismutase (SOD) and interleukin (IL)-6 in the lung tissue of a rat model of acute pulmonary edema induced by acute hypoxia, and its pathophysiological significance. A total of 48 adult Wistar rats were randomly divided into group A, a normal group; group B, a model of acute pulmonary edema induced by hypoxia for 24 h; group C, a model of acute pulmonary edema induced by hypoxia for 48 h; and group D, a model of acute pulmonary edema induced by hypoxia for 72 h. The rats in groups B-D were intraperitoneally injected with 6% ammonium chloride to establish the model of acute pulmonary edema, and were subsequently sacrificed following successful modeling for 24, 48 and 72 h. The plasma of rats was isolated and the lungs of the rats were removed. Subsequently, a 10% lung homogenate was prepared and the contents and the activities of MDA, SOD and IL-6 in the lung tissue and IL-6 in the plasma were detected by enzyme-linked immunosorbent assay. MDA and IL-6 expression levels increased and SOD activity decreased in the lung tissue in group B as compared with group A; however the difference did not reach significance (P>0.05). MDA, IL-6 and SOD levels in the lung tissue of rats were significantly altered following the increased duration of pulmonary edema in groups C and D, as compared group A (P<0.05). The plasma IL-6 levels of the rats in groups B-D significantly increased, as compared with those in group A (P<0.05). In conclusion, the results of the present study demonstrated that the incidence of acute pulmonary edema may be associated with oxidative stress. Furthermore, decreased antioxidant capacity and increased free radical levels may be associated with pulmonary edema, as in the present study the levels of IL-6, SOD and MDA in the lung tissue were observed to be associated with the pathological changes of the disease.
Collapse
Affiliation(s)
- Hengbo Gao
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yingping Tian
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wei Wang
- Department of Hepatology, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei 050021, P.R. China
| | - Dongqi Yao
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Tuokang Zheng
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Qingbing Meng
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|