1
|
Xiong Y, Alnoud MAH, Ali H, Ali I, Ahmad S, Khan MU, Hassan SSU, Majid M, Khan MS, Ahmad RUS, Khan SU, Khan KA, White A. Beyond the silence: A comprehensive exploration of long non-coding RNAs as genetic whispers and their essential regulatory functions in cardiovascular disorders. Curr Probl Cardiol 2024; 49:102390. [PMID: 38232927 DOI: 10.1016/j.cpcardiol.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are RNA molecules that regulate gene expression at several levels, including transcriptional, post-transcriptional, and translational. They have a length of more than 200 nucleotides and cannot code. Many human diseases have been linked to aberrant lncRNA expression, highlighting the need for a better knowledge of disease etiology to drive improvements in diagnostic, prognostic, and therapeutic methods. Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. LncRNAs play an essential role in the complex process of heart formation, and their abnormalities have been associated with several CVDs. This Review article looks at the roles and relationships of long non-coding RNAs (lncRNAs) in a wide range of CVDs, such as heart failure, myocardial infarction, atherosclerosis, and cardiac hypertrophy. In addition, the review delves into the possible uses of lncRNAs in diagnostics, prognosis, and clinical treatments of cardiovascular diseases. Additionally, it considers the field's future prospects while examining how lncRNAs might be altered and its clinical applications.
Collapse
Affiliation(s)
- Yuchen Xiong
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University),410001,Hunan,China.
| | - Mohammed A H Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000.
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait.
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, 70112, LA, USA
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Syed Shams Ul Hassan
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China.
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad, 45550, Pakistan
| | - Muhammad Shehzad Khan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin city, (HKSAR), Hong Kong
| | - Rafi U Shan Ahmad
- Department of Biomedical Engineering, City university of Hong Kong, Kowloon City, Hong Kong.
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Alexandra White
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China.
| |
Collapse
|
2
|
Yedigaryan L, Sampaolesi M. Extracellular vesicles and Duchenne muscular dystrophy pathology: Modulators of disease progression. Front Physiol 2023; 14:1130063. [PMID: 36891137 PMCID: PMC9987248 DOI: 10.3389/fphys.2023.1130063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disorder and is considered to be one of the worst forms of inherited muscular dystrophies. DMD occurs as a result of mutations in the dystrophin gene, leading to progressive muscle fiber degradation and weakness. Although DMD pathology has been studied for many years, there are aspects of disease pathogenesis and progression that have not been thoroughly explored yet. The underlying issue with this is that the development of further effective therapies becomes stalled. It is becoming more evident that extracellular vesicles (EVs) may contribute to DMD pathology. EVs are vesicles secreted by cells that exert a multitude of effects via their lipid, protein, and RNA cargo. EV cargo (especially microRNAs) is also said to be a good biomarker for identifying the status of specific pathological processes that occur in dystrophic muscle, such as fibrosis, degeneration, inflammation, adipogenic degeneration, and dilated cardiomyopathy. On the other hand, EVs are becoming more prominent vehicles for custom-engineered cargos. In this review, we will discuss the possible contribution of EVs to DMD pathology, their potential use as biomarkers, and the therapeutic efficacy of both, EV secretion inhibition and custom-engineered cargo delivery.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Li X, Li N, Li B, Feng Y, Zhou D, Chen G. Noncoding RNAs and RNA-binding proteins in diabetic wound healing. Bioorg Med Chem Lett 2021; 50:128311. [PMID: 34438011 DOI: 10.1016/j.bmcl.2021.128311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Poor wound healing is a common complication in diabetic patients. It often leads to intractable infections and lower limb amputations and is associated with cardiovascular morbidity and mortality. NcRNAs, which can regulate gene expression, have emerged as important regulators of various physiological processes. Herein, we summarize the diverse roles of ncRNAs in the key stages of diabetic wound healing, including inflammation, angiogenesis, re-epithelialization, and extracellular matrix remodeling. Meanwhile, the potential use of ncRNAs as novel therapeutic targets for wound healing in diabetic patients is also discussed. In addition, we summarize the role of RNA-binding proteins (RBPs) in the regulation of gene expression and signaling pathways during skin repair, which may provide opportunities for therapeutic intervention for this potentially devastating disease. However, so far, research on the modulated drug based on ncRNAs that lead to significantly altered gene expression in diabetic patients is scarce. We have compiled some drugs that may be able to modulate ncRNAs, which significantly regulate the gene expression in diabetic patients.
Collapse
Affiliation(s)
- Xue Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bingxin Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China; Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, People's Republic of China.
| |
Collapse
|
4
|
Herault S, Naser J, Carassiti D, Chooi KY, Nikolopoulou R, Font ML, Patel M, Pedrigi R, Krams R. Mechanosensitive pathways are regulated by mechanosensitive miRNA clusters in endothelial cells. Biophys Rev 2021; 13:787-796. [PMID: 34777618 PMCID: PMC8555030 DOI: 10.1007/s12551-021-00839-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Shear stress is known to affect many processes in (patho-) physiology through a complex, multi-molecular mechanism, termed mechanotransduction. The sheer complexity of the process has raised questions how mechanotransduction is regulated. Here, we comprehensively evaluate the literature about the role of small non-coding miRNA in the regulation of mechanotransduction. Regulation of mRNA by miRNA is rather complex, depending not only on the concentration of mRNA to miRNA, but also on the amount of mRNA competing for a single mRNA. The only mechanism to counteract the latter factor is through overarching structures of miRNA. Indeed, two overarching structures are present miRNA families and miRNA clusters, and both will be discussed in details, regarding the latest literature and a previous conducted study focussed on mechanotransduction. Both the literature and our own data support a new hypothesis that miRNA-clusters predominantly regulate mechanotransduction, affecting 65% of signalling pathways. In conclusion, a new and important mode of regulation of mechanotransduction is proposed, based on miRNA clusters. This finding implicates new avenues for treatment of mechanotransduction and atherosclerosis.
Collapse
Affiliation(s)
- Sean Herault
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | | | - Daniele Carassiti
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | - K. Yean Chooi
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | | | - Marti Llopart Font
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | | | - Ryan Pedrigi
- College of Engineering, Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rob Krams
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| |
Collapse
|
5
|
Zhao R, Sa X, Ouyang N, Zhang H, Yang J, Pan J, Gu J, Zhou Y. A Pan-Cancer Analysis of Transcriptome and Survival Reveals Prognostic Differentially Expressed LncRNAs and Predicts Novel Drugs for Glioblastoma Multiforme Therapy. Front Genet 2021; 12:723725. [PMID: 34759954 PMCID: PMC8575119 DOI: 10.3389/fgene.2021.723725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have identified various prognostic long non-coding RNAs (LncRNAs) in a specific cancer type, but a comprehensive pan-cancer analysis for prediction of LncRNAs that may serve as prognostic biomarkers is of great significance to be performed. Glioblastoma multiforme (GBM) is the most common and aggressive malignant adult primary brain tumor. There is an urgent need to identify novel therapies for GBM due to its poor prognosis and universal recurrence. Using available LncRNA expression data of 12 cancer types and survival data of 30 cancer types from online databases, we identified 48 differentially expressed LncRNAs in cancers as potential pan-cancer prognostic biomarkers. Two candidate LncRNAs were selected for validation in GBM. By the expression detection in GBM cell lines and survival analysis in GBM patients, we demonstrated the reliability of the list of pan-cancer prognostic LncRNAs obtained above. By constructing LncRNA-mRNA-drug network in GBM, we predicted novel drug-target interactions for GBM correlated LncRNA. This analysis has revealed common prognostic LncRNAs among cancers, which may provide insights into cancer pathogenesis and novel drug target in GBM.
Collapse
Affiliation(s)
- Rongchuan Zhao
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Heifei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaohan Sa
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Heifei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Nan Ouyang
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Heifei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Hong Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Yang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jinlin Pan
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Heifei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jinhui Gu
- Department of Anorectum, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Yuanshuai Zhou
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
6
|
miR155 Deficiency Reduces Myofibroblast Density but Fails to Improve Cardiac Function after Myocardial Infarction in Dyslipidemic Mouse Model. Int J Mol Sci 2021; 22:ijms22115480. [PMID: 34067440 PMCID: PMC8197013 DOI: 10.3390/ijms22115480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction remains the most common cause of heart failure with adverse remodeling. MicroRNA (miR)155 is upregulated following myocardial infarction and represents a relevant regulatory factor for cardiac remodeling by engagement in cardiac inflammation, fibrosis and cardiomyocyte hypertrophy. Here, we investigated the role of miR155 in cardiac remodeling and dysfunction following myocardial infarction in a dyslipidemic mouse model. Myocardial infarction was induced in dyslipidemic apolipoprotein E-deficient (ApoE−/−) mice with and without additional miR155 knockout by ligation of the LAD. Four weeks later, echocardiography was performed to assess left ventricular (LV) dimensions and function, and mice were subsequently sacrificed for histological analysis. Echocardiography revealed no difference in LV ejection fractions, LV mass and LV volumes between ApoE−/− and ApoE−/−/miR155−/− mice. Histology confirmed comparable infarction size and unaltered neoangiogenesis in the myocardial scar. Notably, myofibroblast density was significantly decreased in ApoE−/−/miR155−/− mice compared to the control, but no difference was observed for total collagen deposition. Our findings reveal that genetic depletion of miR155 in a dyslipidemic mouse model of myocardial infarction does not reduce infarction size and consecutive heart failure but does decrease myofibroblast density in the post-ischemic scar.
Collapse
|
7
|
Cao Y, Wang Y, Xiao L, Xu JY, Liu Y, Jiang R, Li T, Jiang J. Endothelial-derived exosomes induced by lipopolysaccharide alleviate rat cardiomyocytes injury and apoptosis. Am J Transl Res 2021; 13:1432-1444. [PMID: 33841668 PMCID: PMC8014340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is one of the leading causes of death in sepsis. We hypothesized that exosomes released from ECs exposed to bacterial lipopolysaccharides (LPS) have some regulatory effect on cardiomyocytes (CMs). In this study, cultured rat ECs were exposed to 0.5 µg/ml of LPS, and exosomes were isolated from the conditioned medium through ultra-high-speed centrifugation. The exosomes were given to the cultured neonatal rat CMs to test the potential effects and proceed to small RNA sequencing to identify their miRNA expression. We found exosomes from ECs under LPS stimulation (LPS-EC-Exo) enhanced the cell viability and attenuated the injury of CMs. The RNA sequencing depicted the expression of several miRNAs increased in LPS-EC-Exo compared with the exosomes from the control ECs (NC-EC-Exo). Further analysis showed that some miRNAs could promote the survival of CMs by down-regulating the expression of apoptosis-related proteins such as BAK1, P53, and PTEN. This study showed that LPS-EC-Exo has a cardiac protective effect on CMs, which miRNAs may achieve.
Collapse
Affiliation(s)
- Yu Cao
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, China
| | - Yan Wang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Ling Xiao
- Chongqing University Central HospitalChongqing, China
| | - Jia-Ying Xu
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, China
| | - Ying Liu
- Department of Emergency, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical UniversityLuzhou 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical UniversityLuzhou 646000, China
| |
Collapse
|
8
|
Safaei S, Tahmasebi-Birgani M, Bijanzadeh M, Seyedian SM. Increased Expression Level of Long Noncoding RNA H19 in Plasma of Patients with Myocardial Infarction. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:122-129. [PMID: 32934949 PMCID: PMC7489114 DOI: 10.22088/ijmcm.bums.9.2.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/19/2020] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) are lengthy noncoding transcripts which are actively involved in crucial cellular pathways. Tissue-specific expression of lncRNAs besides its secretion into the body fluids, has made lncRNAs in attention as biomarkers of the diseases. According to the role of lncRNAs, especially H19 in cardiac regeneration, it is not surprising if their altered expression levels lead to cardiac diseases. In the present study, the relative expression of H19 was compared in the plasma of atherosclerotic myocardial infarction and control individuals by real time-PCR, and data were normalized using GAPDH. The association of plasma level of lipid and homocystine with H19 expression was also considered. The potential of H19 to discriminate the case from control was studied using the ROC analysis. We found that the plasma level of H19 transcript significantly increased in the plasma of patients in comparison with the control group. Additionally, the relative expression level of H19 was directly associated with the plasma homocystine level. The relative expression of H19 at threshold of 0.3 showed 70% sensitivity and 94% specificity to discriminate cases from controls. This study revealed that the expression level of H19 may be considered as a biomarker of myocardial infarction, although further studies are needed to generalize this finding.
Collapse
Affiliation(s)
- Shokouh Safaei
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Bijanzadeh
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Masoud Seyedian
- Department of Cardiology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cardiovascular Disease Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
MicroRNAs in Cancer Treatment-Induced Cardiotoxicity. Cancers (Basel) 2020; 12:cancers12030704. [PMID: 32192047 PMCID: PMC7140035 DOI: 10.3390/cancers12030704] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer treatment has made significant progress in the cure of different types of tumors. Nevertheless, its clinical use is limited by unwanted cardiotoxicity. Aside from the conventional chemotherapy approaches, even the most newly developed, i.e., molecularly targeted therapy and immunotherapy, exhibit a similar frequency and severity of toxicities that range from subclinical ventricular dysfunction to severe cardiomyopathy and, ultimately, congestive heart failure. Specific mechanisms leading to cardiotoxicity still remain to be elucidated. For instance, oxidative stress and DNA damage are considered key players in mediating cardiotoxicity in different treatments. microRNAs (miRNAs) act as key regulators in cell proliferation, cell death, apoptosis, and cell differentiation. Their dysregulation has been associated with adverse cardiac remodeling and toxicity. This review provides an overview of the cardiotoxicity induced by different oncologic treatments and potential miRNAs involved in this effect that could be used as possible therapeutic targets.
Collapse
|
10
|
Liu Y, Xu XY, Shen Y, Ye CF, Hu N, Yao Q, Lv XZ, Long SL, Ren C, Lang YY, Liu YL. Ghrelin protects against obesity-induced myocardial injury by regulating the lncRNA H19/miR-29a/IGF-1 signalling axis. Exp Mol Pathol 2020; 114:104405. [PMID: 32084395 DOI: 10.1016/j.yexmp.2020.104405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/10/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity is associated with the impairment of cardiac fitness and consequent ventricular dysfunction and heart failure. Ghrelin has been largely documented to be cardioprotective against ischaemia/reperfusion injury. However, the role of ghrelin in obesity-induced myocardial injury is largely unknown. This study sought to determine the cardiac effect of ghrelin against obesity-induced injury and the underlying mechanisms. METHODS The effect of ghrelin was evaluated in a mouse model of obesity and a palmitic acid (PA)-treated cardiomyocyte cell line with or without ghrelin transfection. Gene and protein expression levels were determined by real-time PCR and western blot, respectively. Cell apoptosis was measured by flow cytometry analysis. RESULTS In the present study, we found that both a high-fat diet (HFD) and PA treatment caused myocardial injury by increasing apoptosis and the expression of inflammatory cytokines. Overexpression of ghrelin reversed the effects induced by HFD or PA treatment. Knockdown of lncRNA H19 or overexpression of miR-29a abrogated the cardioprotective effects of ghrelin against apoptosis and inflammation. We also found that IGF-1 was a target gene of miR-29a and that H19 regulated IGF-1 expression via miR-29a. Overexpression of IGF-1 partially reversed the apoptosis and inflammation promoting effects of miR-29a. CONCLUSIONS Our findings suggested that ghrelin protected against obesity-induced myocardial injury by regulating the H19/miR-29a/IGF-1 signalling axis, providing further evidence for the clinical application of ghrelin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Xin-Yue Xu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Yang Shen
- Molecular medicine laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chun-Feng Ye
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Na Hu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Qing Yao
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Xiu-Zi Lv
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Sheng-Lan Long
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Chao Ren
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Yuan-Yuan Lang
- Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| | - Yan-Ling Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| |
Collapse
|
11
|
Matboli M, Habib EK, Hussein Mohamed R, Mahran NA, Seleem HS, Nosseir N, Hasanin AH. Pentoxifylline alleviated cardiac injury via modulating the cardiac expression of lncRNA-00654-miR-133a-SOX5 mRNA in the rat model of ischemia-reperfusion. Biomed Pharmacother 2020; 124:109842. [PMID: 31972363 DOI: 10.1016/j.biopha.2020.109842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022] Open
Abstract
Pentoxifylline (PTX) protects from many cardiovascular complications. It plays a critical role in stem cell proliferation and differentiation. Here, the effect of PTX administration on cardiac ischemia and dysfunction was explored. PTX in 3 doses (20, 30, and 40 mg/kg), was administered in vivo 5 min before a 45 min occlusion of the left anterior descending artery, followed by a 120 min reperfusion in male Wistar rats. The left ventricular end-diastolic pressure and dP/dtmax were assessed. Blood and cardiac tissue samples were collected for measuring the levels of cardiac enzymes and the expression of lncRNA-00654-miR-133a-SOX5. Samples of left ventricles were collected and processed for light microscopic, immunohistochemical staining for c-kit (a marker for cardiac progenitor cells) and transmission electron microscopic examination. PTX administration showed improvements in cardiac function tests, enzymes, and myocytes. Microscopic features showed minimal cardiac edema, hemorrhage, cellular inflammatory infiltration and fibrosis in addition to increased c-kit + cells in cardiac tissue samples. Notably, this treatment also produced a dose-dependent decrease in lncRNA-00654 with an increase in SOX5 mRNA and miRNA-133a-3p expressions. In conclusion, PTX has the potential to alleviate cardiac injury and increase the number of c-kit + cells following ischemia-reperfusion in the rat model via modulation of lncRNA-00654 and miR-133a-SOX5 mRNA expressions.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Eman K Habib
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University Cairo, Egypt
| | - Reham Hussein Mohamed
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nievin A Mahran
- Fellowship of Clinical Pathology Department, Al Hussein Hospital, Cairo, Egypt; Biochemistry Department, Faculty of Dentistry, Sainai University-Kantara, Egypt
| | - Hanan S Seleem
- Histology Department, Faculty of Medicine, Menoufia University, Shebin El Koum-Menofia, Egypt; Histology Department, Unaizah College of Medicine, Qassim University, Al Qassim region, Saudi Arabia
| | - Nermine Nosseir
- Anatomy Department, Faculty of Medicine, Suez University, Suez, Egypt
| | - Amany H Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
12
|
Jin L, Zhou Y, Han L, Piao J. MicroRNA302-367-PI3K-PTEN-AKT-mTORC1 pathway promotes the development of cardiac hypertrophy through controlling autophagy. In Vitro Cell Dev Biol Anim 2019; 56:112-119. [PMID: 31845077 DOI: 10.1007/s11626-019-00417-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Cardiac hypertrophy at a decompensated state eventually leads to heart failure that mostly contributes to deaths globally. Dysregulated cardiac autophagy is a hallmark of a diseased heart, and a close contact between cardiac autophagy and cardiac hypertrophy is emerging. MicroRNAs (miRNAs) have been recently reported to be prominently implicated in cardiac hypertrophy through regulating cardiac autophagy. However, the role and function of miR302-367 clusters in cardiac autophagy and cardiac hypertrophy remain largely masked. Therefore, to investigate the performance of miR302-367 in cardiac hypertrophy, the specific in vitro hypertrophic model was established in H9c2 cells upon Ang II treatment. Consequently, we discovered a distinct inhibition on autophagy and a remarkable upregulation of miR302-367 expression in hypertrophic H9c2 cells. Besides, loss- and gain-of-function assays demonstrated miR302-367 inhibited autophagy and then aggravated cardiac hypertrophy. Mechanically, PTEN was predicted and confirmed as the shared target of miR302-367. Further, we recognized the apparent inactivation of PI3K/AKT/mTORC1 signaling in the face of miR302-367 suppression in Ang II-induced hypertrophic H9c2 cells. Moreover, co-treatment of PTEN inhibitor re-activated the PI3K/AKT/mTORC1 pathway, therefore counteracting the pro-autophagic and anti-hypertrophic effects of miR302-367 depletion on cardiomyocytes. These findings unveiled the pivotal role of the miR302-367 cluster in regulating cardiac autophagy and therefore modulating cardiac hypertrophy through PTEN/PI3K/AKT/mTORC1 signaling, indicating a promising therapeutic strategy for cardiac hypertrophy and even heart failure. Graphical abstract .
Collapse
Affiliation(s)
- Lianhua Jin
- Cardiology Department of Pediatric of the First Hospital of Jilin University, No.71 Xinmin Street, Changchun City, 130021, Jilin Province, China
| | - Yan Zhou
- Cardiology Department of Pediatric of the First Hospital of Jilin University, No.71 Xinmin Street, Changchun City, 130021, Jilin Province, China
| | - Lizhi Han
- Cardiology Department of Pediatric of the First Hospital of Jilin University, No.71 Xinmin Street, Changchun City, 130021, Jilin Province, China
| | - Jinhua Piao
- Cardiology Department of Pediatric of the First Hospital of Jilin University, No.71 Xinmin Street, Changchun City, 130021, Jilin Province, China.
| |
Collapse
|
13
|
Poon ENY, Hao B, Guan D, Jun Li M, Lu J, Yang Y, Wu B, Wu SCM, Webb SE, Liang Y, Miller AL, Yao X, Wang J, Yan B, Boheler KR. Integrated transcriptomic and regulatory network analyses identify microRNA-200c as a novel repressor of human pluripotent stem cell-derived cardiomyocyte differentiation and maturation. Cardiovasc Res 2019; 114:894-906. [PMID: 29373717 DOI: 10.1093/cvr/cvy019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/22/2018] [Indexed: 11/12/2022] Open
Abstract
Aims MicroRNAs (miRNAs) are crucial for the post-transcriptional control of protein-encoding genes and together with transcription factors (TFs) regulate gene expression; however, the regulatory activities of miRNAs during cardiac development are only partially understood. In this study, we tested the hypothesis that integrative computational approaches could identify miRNAs that experimentally could be shown to regulate cardiomyogenesis. Methods and results We integrated expression profiles with bioinformatics analyses of miRNA and TF regulatory programs to identify candidate miRNAs involved with cardiac development. Expression profiling showed that miR-200c, which is not normally detected in adult heart, is progressively down-regulated both during cardiac development and in vitro differentiation of human embryonic stem cells (hESCs) to cardiomyocytes (CMs). We employed computational methodologies to predict target genes of both miR-200c and five key cardiac TFs to identify co-regulated gene networks. The inferred cardiac networks revealed that the cooperative action of miR-200c with these five key TFs, including three (GATA4, SRF and TBX5) targeted by miR-200c, should modulate key processes and pathways necessary for CM development and function. Experimentally, over-expression (OE) of miR-200c in hESC-CMs reduced the mRNA levels of GATA4, SRF and TBX5. Cardiac expression of Ca2+, K+ and Na+ ion channel genes (CACNA1C, KCNJ2 and SCN5A) were also significantly altered by knockdown or OE of miR-200c. Luciferase reporter assays validated miR-200c binding sites on the 3' untranslated region of CACNA1C. In hESC-CMs, elevated miR-200c increased beating frequency, and repressed both Ca2+ influx, mediated by the L-type Ca2+ channel and Ca2+ transients. Conclusions Our analyses demonstrate that miR-200c represses hESC-CM differentiation and maturation. The integrative computation and experimental approaches described here, when applied more broadly, will enhance our understanding of the interplays between miRNAs and TFs in controlling cardiac development and disease processes.
Collapse
Affiliation(s)
- Ellen Ngar-Yun Poon
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Baixia Hao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Daogang Guan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Mulin Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Centre of Genomics Sciences, LKS Faculty of Medicine, The University of Hong Kong. Hong Kong, China
| | - Jun Lu
- School of Biomedical Sciences, LSK Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Yang
- Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave, Shenzhen, Guangdong 518055, China
| | - Binbin Wu
- Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave, Shenzhen, Guangdong 518055, China
| | - Stanley Chun-Ming Wu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yan Liang
- Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave, Shenzhen, Guangdong 518055, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Marine Biology Laboratory, Woods Hole, MA 02543, USA
| | - Xiaoqiang Yao
- School of Biomedical Sciences, LSK Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Junwen Wang
- Centre of Genomics Sciences, LKS Faculty of Medicine, The University of Hong Kong. Hong Kong, China.,Center for Individualized Medicine, Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ 85259, USA and Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ 85259, USA
| | - Bin Yan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre of Genomics Sciences, LKS Faculty of Medicine, The University of Hong Kong. Hong Kong, China.,Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave, Shenzhen, Guangdong 518055, China
| | - Kenneth R Boheler
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Bellassai N, D'Agata R, Jungbluth V, Spoto G. Surface Plasmon Resonance for Biomarker Detection: Advances in Non-invasive Cancer Diagnosis. Front Chem 2019; 7:570. [PMID: 31448267 PMCID: PMC6695566 DOI: 10.3389/fchem.2019.00570] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Biomarker-based cancer analysis has great potential to lead to a better understanding of disease at the molecular level and to improve early diagnosis and monitoring. Unlike conventional tissue biopsy, liquid biopsy allows the detection of a large variety of circulating biomarkers, such as microRNA (miRNA), exosomes, circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and proteins, in an easily accessible and minimally invasive way. In this review, we describe and evaluate the relevance and applicability of surface plasmon resonance (SPR) and localized SPR (LSPR)-based platforms for the detection of different classes of cancer biomarkers in liquid biopsy samples. Firstly, we critically discuss unsolved problems and issues in capturing and analyzing biomarkers. Secondly, we highlight current challenges which need to be resolved in applying SPR biosensors into clinical practice. Then, we mainly focus on applications of SPR-based platforms that process a patient sample aiming to detect and quantify biomarkers as a minimally invasive liquid biopsy tool for cancer patients appearing over the last 5 years. Finally, we describe the analytical performances of selected SPR biosensor assays and their significant advantages in terms of high sensitivity and specificity as well as accuracy and workflow simplicity.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Vanessa Jungbluth
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
- Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Catania, Catania, Italy
| |
Collapse
|
15
|
Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Parouchev A, Cacciapuoti I, Al-Daccak R, Benhamouda N, Blons H, Agbulut O, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Charron D, Tartour E, Tachdjian G, Desnos M, Larghero J. Transplantation of Human Embryonic Stem Cell-Derived Cardiovascular Progenitors for Severe Ischemic Left Ventricular Dysfunction. J Am Coll Cardiol 2019; 71:429-438. [PMID: 29389360 DOI: 10.1016/j.jacc.2017.11.047] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND In addition to scalability, human embryonic stem cells (hESCs) have the unique advantage of allowing their directed differentiation toward lineage-specific cells. OBJECTIVES This study tested the feasibility of leveraging the properties of hESCs to generate clinical-grade cardiovascular progenitor cells and assessed their safety in patients with severe ischemic left ventricular dysfunction. METHODS Six patients (median age 66.5 years [interquartile range (IQR): 60.5 to 74.7 years]; median left ventricular ejection fraction 26% [IQR: 22% to 32%]) received a median dose of 8.2 million (IQR: 5 to 10 million) hESC-derived cardiovascular progenitors embedded in a fibrin patch that was epicardially delivered during a coronary artery bypass procedure. The primary endpoint was safety at 1 year and focused on: 1) cardiac or off-target tumor, assessed by imaging (computed tomography and fluorine-18 fluorodeoxyglucose positron emission tomography scans); 2) arrhythmias, detected by serial interrogations of the cardioverter-defibrillators implanted in all patients; and 3) alloimmunization, assessed by the presence of donor-specific antibodies. Patients were followed up for a median of 18 months. RESULTS The protocol generated a highly purified (median 97.5% [IQR: 95.5% to 98.7%]) population of cardiovascular progenitors. One patient died early post-operatively from treatment-unrelated comorbidities. All others had uneventful recoveries. No tumor was detected during follow-up, and none of the patients presented with arrhythmias. Three patients developed clinically silent alloimmunization. All patients were symptomatically improved with an increased systolic motion of the cell-treated segments. One patient died of heart failure after 22 months. CONCLUSIONS This trial demonstrates the technical feasibility of producing clinical-grade hESC-derived cardiovascular progenitors and supports their short- and medium-term safety, thereby setting the grounds for adequately powered efficacy studies. (Transplantation of Human Embryonic Stem Cell-derived Progenitors in Severe Heart Failure [ESCORT]; NCT02057900).
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France; University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France.
| | - Valérie Vanneaux
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Albert Hagège
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France; Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Alain Bel
- Department of Cardiovascular Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Bernard Cholley
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Anesthesiology and Intensive Care, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Alexandre Parouchev
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Isabelle Cacciapuoti
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Reem Al-Daccak
- INSERM U976, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nadine Benhamouda
- Department of Biological Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Blons
- INSERM Mixed Research Units (UMR)-S1147, National Scientific Research Center (CNRS) Non CNRS Structure 5014, Sorbonne Paris Cité, Department of Biochemistry, Pharmacogenetic and Molecular Oncology Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, Université Pierre et Marie Curie, University Paris-6, Institut de Biologie Paris-Seine, UMR CNRS 8256, Biological Adaptation and Ageing, Paris, France
| | - Lucie Tosca
- Assistance Publique-Hôpitaux de Paris, University Paris Sud, Histology-Embryology-Cytogenetics, Hôpitaux Universitaires Paris Sud, Clamart, France
| | - Jean-Hugues Trouvin
- School of Pharmacy, University Paris Descartes, Paris, France; Central Pharmacy, Pharmaceutical Innovation Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Roch Fabreguettes
- Central Pharmacy, Clinical Trials Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Valérie Bellamy
- National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France
| | - Dominique Charron
- Human Leukocyte Antigen and Médecine, Hôpital Saint-Louis, INSERM U976, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Eric Tartour
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France; Department of Biological Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Gérard Tachdjian
- Assistance Publique-Hôpitaux de Paris, University Paris Sud, Histology-Embryology-Cytogenetics, Hôpitaux Universitaires Paris Sud, Clamart, France
| | - Michel Desnos
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France; Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Jérôme Larghero
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
16
|
Zhang Q, Wang F, Wang F, Wu N. Long noncoding RNA MAGI1-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway. J Cell Physiol 2019; 235:245-253. [PMID: 31222747 DOI: 10.1002/jcp.28964] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 01/05/2023]
Abstract
Cardiac hypertrophy (CH) is an adaptive cardiac response to overload whose decompensation eventually leads to heart failure or sudden death. Recently, accumulating studies have indicated the implication of long noncoding RNAs (lncRNAs) in CH progression. MAGI1-IT1 is a newly-identified lncRNA that is highly associated with CH, while its specific role in CH progression remains masked. In this study, we uncovered that MAGI1-IT1 was distinctly downregulated in angiotensin (Ang) II-induced hypertrophic H9c2 cells. Also, MAGI1-IT1 overexpression in Ang II-treated H9c2 cells strikingly abolished the enlarged surface area and the enhanced levels of hypertrophic markers such as ANP, BNP, and β-MHC. Mechanically, we found MAGI1-IT1 sponged miR-302e which was identified as a hypertrophy-facilitator here, and that miR-302e upregulation countervailed the inhibition of MAGI1-IT1 overexpression on hypertrophic cells. Moreover, it was confirmed that MAGI1-IT1 boosted DKK1 expression by absorbing miR-302e. Subsequently, we also illustrated that MAGI1-IT1 inactivated Wnt/beta-catenin signaling through a DKK1-dependent pathway. Finally, both the DKK1 inhibition and LiCI (Wnt activator) supplement abrogated the hypertrophy-suppressive impact of MAGI1-IT1 on Ang II-simulated hypertrophic H9c2 cells. Jointly, our findings disclosed that MAGI1-IT1 functioned as a negative regulator in CH through inactivating Wnt/beta-catenin pathway via targeting miR-302e/DKK1 axis, revealing a novel road for CH treatment.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Cardiovascular Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fengshuang Wang
- Pharmacy Intravenous Admixture Services, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fenghua Wang
- Medical Services Section, the 1st Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Naishi Wu
- Department of Cardiovascular Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 2019; 285:1-9. [PMID: 30939341 DOI: 10.1016/j.atherosclerosis.2019.03.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
The stem cell-based therapy has emerged as a promising therapeutic strategy for treating cardiovascular ischemic diseases (CVIDs), such as myocardial infarction (MI). However, some important functional shortcomings of stem cell transplantation, such as immune rejection, tumorigenicity and infusional toxicity, have overshadowed stem cell therapy in the setting of cardiovascular diseases (CVDs). Accumulating evidence suggests that the therapeutic effects of transplanted stem cells are predominately mediated by secreting paracrine factors, importantly, microRNAs (miRs) present in the secreted exosomes. Therefore, novel cell-free therapy based on the stem cell-secreted exosomal miRs can be considered as a safe and effective alternative tool to stem cell therapy for the treatment of CVDs. Stem cell-derived miRs have recently been found to transfer, via exosomes, from a transplanted stem cell into a recipient cardiac cell, where they regulate various cellular process, such as proliferation, apoptosis, stress responses, as well as differentiation and angiogenesis. The present review aimed to summarize cardioprotective exosomal miRs secreted by transplanted stem cells from various sources, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and cardiac stem/progenitor cells, which showed beneficial modulatory effects on the myocardial infracted heart. In summary, stem cell-exosomal miRs, including miR-19a, mirR-21, miR-21-5p, miR-21-a5p, miR-22 miR-24, miR-26a, miR-29, miR-125b-5p, miR-126, miR-201, miR-210, and miR-294, have been shown to have cardioprotective effects by enhancing cardiomyocyte survival and function and attenuating cardiac fibrosis. Additionally, MCS-exosomal miRs, including miR-126, miR-210, miR-21, miR-23a-3p and miR-130a-3p, are found to exert cardioprotective effects through induction of angiogenesis in ischemic heart after MI.
Collapse
|
18
|
Germano JF, Sawaged S, Saadaeijahromi H, Andres AM, Feuer R, Gottlieb RA, Sin J. Coxsackievirus B infection induces the extracellular release of miR-590-5p, a proviral microRNA. Virology 2019; 529:169-176. [PMID: 30711774 DOI: 10.1016/j.virol.2019.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/23/2022]
Abstract
Coxsackievirus B is a significant human pathogen and is a leading cause of myocarditis. We and others have observed that certain enteroviruses including coxsackievirus B cause infected cells to shed extracellular vesicles containing infectious virus. Recent reports have shown that vesicle-bound virus can infect more efficiently than free virus. Though microRNAs are differentially regulated in cells following infection, few have been associated with the vesicles shed from infected cells. Here we report exclusive trafficking of specific microRNAs into viral vesicles compared to vesicles from non-infected cells. We found that the most highly-expressed unique microRNA in viral vesicles was miR-590-5p, which facilitates prolonged viral replication by blocking apoptotic factors. Cells over-expressing this miR were significantly more susceptible to infection. This may be a mechanism by which coxsackievirus B boosts subsequent rounds of infection by co-packaging virus and a select set of pro-viral microRNAs in extracellular vesicles.
Collapse
Affiliation(s)
- Juliana F Germano
- The Smidt Heart Institute and the Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Savannah Sawaged
- The Smidt Heart Institute and the Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Hannaneh Saadaeijahromi
- The Smidt Heart Institute and the Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Allen M Andres
- The Smidt Heart Institute and the Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ralph Feuer
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University San Diego State University, San Diego, CA, United States
| | - Roberta A Gottlieb
- The Smidt Heart Institute and the Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jon Sin
- The Smidt Heart Institute and the Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
19
|
Emerging Roles for Immune Cells and MicroRNAs in Modulating the Response to Cardiac Injury. J Cardiovasc Dev Dis 2019; 6:jcdd6010005. [PMID: 30650599 PMCID: PMC6462949 DOI: 10.3390/jcdd6010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
Stimulating cardiomyocyte regeneration after an acute injury remains the central goal in cardiovascular regenerative biology. While adult mammals respond to cardiac damage with deposition of rigid scar tissue, adult zebrafish and salamander unleash a regenerative program that culminates in new cardiomyocyte formation, resolution of scar tissue, and recovery of heart function. Recent studies have shown that immune cells are key to regulating pro-inflammatory and pro-regenerative signals that shift the injury microenvironment toward regeneration. Defining the genetic regulators that control the dynamic interplay between immune cells and injured cardiac tissue is crucial to decoding the endogenous mechanism of heart regeneration. In this review, we discuss our current understanding of the extent that macrophage and regulatory T cells influence cardiomyocyte proliferation and how microRNAs (miRNAs) regulate their activity in the injured heart.
Collapse
|
20
|
Dilaveris P, Antoniou CK, Manolakou P, Tsiamis E, Gatzoulis K, Tousoulis D. Biomarkers Associated with Atrial Fibrosis and Remodeling. Curr Med Chem 2019; 26:780-802. [PMID: 28925871 DOI: 10.2174/0929867324666170918122502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Atrial fibrillation is the most common rhythm disturbance encountered in clinical practice. Although often considered as solely arrhythmic in nature, current evidence has established that atrial myopathy constitutes both the substrate and the outcome of atrial fibrillation, thus initiating a vicious, self-perpetuating cycle. This myopathy is triggered by stress-induced (including pressure/volume overload, inflammation, oxidative stress) responses of atrial tissue, which in the long term become maladaptive, and combine elements of both structural, especially fibrosis, and electrical remodeling, with contemporary approaches yielding potentially useful biomarkers of these processes. Biomarker value becomes greater given the fact that they can both predict atrial fibrillation occurrence and treatment outcome. This mini-review will focus on the biomarkers of atrial remodeling (both electrical and structural) and fibrosis that have been validated in human studies, including biochemical, histological and imaging approaches.
Collapse
Affiliation(s)
- Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiota Manolakou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Tsiamis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Ren J, Liu W, Li GC, Jin M, You ZX, Liu HG, Hu Y. Atorvastatin Attenuates Myocardial Hypertrophy Induced by Chronic Intermittent Hypoxia In Vitro Partly through miR-31/PKCε Pathway. Curr Med Sci 2018; 38:405-412. [PMID: 30074205 DOI: 10.1007/s11596-018-1893-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Atorvastatin is proven to ameliorate cardiac hypertrophy induced by chronic intermittent hypoxia (CIH). However, little is known about the mechanism by which atorvastatin modulates CIH-induced cardiac hypertrophy, and whether specific hypertrophyrelated microRNAs are involved in the modulation. MiR-31 plays key roles in the development of cardiac hypertrophy induced by ischemia/hypoxia. This study examined whether miR-31 was involved in the protective role of atorvastatin against CIH-induced myocardial hypertrophy. H9c2 cells were subjected to 8-h intermittent hypoxia per day in the presence or absence of atorvastatin for 5 days. The size of cardiomyocytes, and the expression of caspase 3 and miR-31 were determined by Western blotting and RT-PCR, respectively. MiR-31 mimic or Ro 31-8220, a specific inhibitor of protein kinase C epsilon (PKCε), was used to determine the role of miR-31 in the anti-hypertrophic effect of atorvastatin on cardiomyocytes. PKCε in the cardiomyocytes with miR-31 upregulation or downregulation was detected using RT-PCR and Western blotting. The results showed that CIH induced obvious enlargement of cardiomyocytes, which was paralleled with increased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and slow/beta cardiac myosin heavy-chain (MYH7) mRNA levels. All these changes were reversed by the treatment with atorvastatin. Meanwhile, miR-31 was increased by CIH in vitro. Of note, the atorvastatin pretreatment significantly increased the mRNA and protein expression of PKCe and decreased that of miR-31. Moreover, overexpression of miR-31 abolished the anti-hypertrophic effect of atorvastatin on cardiomyocytes. Upregulation and downregulation of miR-31 respectively decreased and increased the mRNA and protein expression of PKCε. These results suggest that atorvastatin provides the cardioprotective effects against CIH probably via up-regulating PKCε and down-regulating miR-31.
Collapse
Affiliation(s)
- Jie Ren
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Guang-Cai Li
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Jin
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen-Xi You
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yi Hu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430010, China.
| |
Collapse
|
22
|
Liu A, Sun Y, Yu B. MicroRNA-208a Correlates Apoptosis and Oxidative Stress Induced by H 2O 2 through Protein Tyrosine Kinase/Phosphatase Balance in Cardiomyocytes. Int Heart J 2018; 59:829-836. [PMID: 29877301 DOI: 10.1536/ihj.17-276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, have been implicated as critical regulatory molecules in ischemia-/reperfusion-induced cardiac injury. In the present study, we report on the role of miR-208a in myocardial I/R injury and the underlying cardio-protective mechanism. The gain-of-function and loss-of-function were used to explore the effects of miR-208a on cardiac injury induced by H2O2 in cardiomyocytes. As predicted, knockdown of endogenous miR-208a significantly decreased the level of cellular reactive oxygen species (ROS) and reduced cardiomyocyte apoptosis. In addition, miR-208a overexpression increased the ROS level and attenuated cell apoptosis in cardiomyocytes. Furthermore, protein tyrosine phosphatase receptor type G (PTPRG) and protein tyrosine phosphatase, non-receptor type 4 (PTPN4), which participate in regulating the level of cellular protein tyrosine phosphorylation balance, were predicted and verified as potential miR-208a targets using bioinformatics and luciferase assay. In summary, this study demonstrated that miR-208a plays a critical protective role in ROS-induced cardiac apoptosis.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Cardiology, The First Affiliated Hospital of China Medical University.,Department of Cardiology, Benxi Central Hospital
| | - Yiping Sun
- Department of Cardiac Surgery, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Bo Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University
| |
Collapse
|
23
|
Hao YL, Fang HC, Zhao HL, Li XL, Luo Y, Wu BQ, Fu MJ, Liu W, Liang JJ, Chen XH. The role of microRNA-1 targeting of MAPK3 in myocardial ischemia-reperfusion injury in rats undergoing sevoflurane preconditioning via the PI3K/Akt pathway. Am J Physiol Cell Physiol 2018; 315:C380-C388. [PMID: 29741915 DOI: 10.1152/ajpcell.00310.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have uncovered the vital roles played by microRNAs in regulating cardiac injury. Among them, the cardiac enriched microRNA-1 (miR-1) has been extensively studied and proven to be detrimental to cardiac myocytes. Hence, the current study aimed to explore whether miR-1 affects myocardial ischemia-reperfusion injury (MIRI) in rats undergoing sevoflurane preconditioning and the underlying mechanism. After successful model establishment, rats with MIRI were transfected with mimics or inhibitors of miR-1, or siRNA against MAPK3, and then were injected with sevoflurane. A luciferase reporter gene assay was conducted to evaluate the targeting relationship between miR-1 and MAPK3. Reverse transcription quantitative polymerase chain reaction and Western blot analysis were employed to evaluate the expressions of miR-1, MAPK3, phosphatidylinositol 3-kinase (PI3K), and Akt. Additionally, the concentration of lactate dehydrogenase (LDH) was determined. Cell apoptosis and viability were assessed using TUNEL and cell counting kit-8 assays, and the ischemic area at risk and infarct size were detected using Evans blue and triphenyltetrazolium chloride staining. MAPK3 was found to be the target gene of miR-1. miR-1 expressed at a high level whereas MAPK3 expressed at a low level in MIRI rats. Overexpressing miR-1 or silencing MAPK3 blocked the PI3K/Akt pathway to increase cell apoptosis, ischemic area at risk, and infarct area but decreased cell viability and increased LDH concentration. In contrast, miR-1 downregulation abrogated the effects induced by miR-1 mimics or siRNA against MAPK3. These findings indicate that inhibition of miR-1 promotes MAPK3 to protect against MIRI in rats undergoing sevoflurane preconditioning through activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yun-Ling Hao
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Hong-Cheng Fang
- Shenzhen Baoan Shajing People's Hospital of Guangzhou Medical University , Shenzhen , People's Republic of China
| | - Hong-Lei Zhao
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Xiao-Li Li
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Ying Luo
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Bao-Quan Wu
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Ming-Jie Fu
- Beijing Anzhen Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Wei Liu
- Beijing Anzhen Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Jin-Jie Liang
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Xie-Hui Chen
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| |
Collapse
|
24
|
Effects of microRNA-292-5p on myocardial ischemia-reperfusion injury through the peroxisome proliferator-activated receptor-α/-γ signaling pathway. Gene Ther 2018; 25:234-248. [PMID: 29670247 DOI: 10.1038/s41434-018-0014-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/10/2018] [Accepted: 02/26/2018] [Indexed: 12/30/2022]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of cardiac damage following various pathological processes, such as free radical damage and cell apoptosis. This study aims to investigate whether microRNA-292-5p (miR-292-5p) protects against myocardial ischemia-reperfusion injury (IRI) via the peroxisome proliferator-activated receptor (PPAR)-α/-γ signaling pathway in myocardial IRI mice models. Mouse models of myocardial IRI were established. Adult male C57BL/6 mice were divided into different groups. The hemodynamic indexes, levels of related inflammatory factors and serum myocardial enzymes, and malondialdehyde (MDA) content and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were detected. The 2,3,5-triphenyltetrazolium chloride (TTC) staining was applied to determine infarct size. TUNEL staining was used to detect cardiomyocyte apoptosis. RT-qPCR and western blotting were performed to measure the related gene expressions. Compared with the model group and the T0070907 + miR-292-5p inhibitor, the miR-292-5p inhibitor group exhibited decreased incidence and duration time of ventricular tachycardia and ventricular fibrillation, serum myocardial enzymes, TNF-α, IL-6, IL-1β, MDA, cardiomyocyte apoptosis, expressions of Bax and p53 in addition to increased SOD and GSH-Px activity, and increased expressions of Bcl-2, PPARα, PPARγ, PLIN5, AQP7, and PCK1. The T0070907 group exhibited opposite results compared to the miR-292-5p inhibitor group. The results indicate that miR-292-5p downregulation protects against myocardial IRI through activation of the PPAR-α/PPAR-γ signaling pathway.
Collapse
|
25
|
Liu S, Yang Y, Jiang S, Tang N, Tian J, Ponnusamy M, Tariq MA, Lian Z, Xin H, Yu T. Understanding the role of non-coding RNA (ncRNA) in stent restenosis. Atherosclerosis 2018; 272:153-161. [PMID: 29609130 DOI: 10.1016/j.atherosclerosis.2018.03.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 02/02/2023]
Abstract
Coronary heart disease (CHD) is one of the leading disorders with the highest mortality rate. Percutaneous angioplasty and stent implantation are the currently available standard methods for the treatment of obstructive coronary artery disease. However, the stent being an exogenous substance causes several complications by promoting the proliferation of vascular smooth muscle cells, immune responses and neointima formation after implantation, leading to post-stent restenosis (ISR) and late thrombosis. The prevention of these adverse vascular events is important to achieve long-term proper functioning of the heart after stent implantation. Non-coding ribonucleic acids (ncRNAs) are RNA molecules not translated into proteins, theyhave a great potential in regulating endothelial cell and vascular smooth muscle function as well as inflammatory reactions. In this review, we outline the regulatory functions of different classes of ncRNA in cardiovascular disease and propose ncRNAs as new targets for stent restonosis treatment.
Collapse
Affiliation(s)
- Shaoyan Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 266000, People's Republic of China
| | - Yanyan Yang
- Institue for Translational Medicine, Qingdao University, 266021, People's Republic of China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, 266000, People's Republic of China
| | - Ningning Tang
- Institue for Translational Medicine, Qingdao University, 266021, People's Republic of China
| | - Jiawei Tian
- Department of Emergency, The Affiliated Hospital of Qingdao University, 266000, People's Republic of China
| | - Murugavel Ponnusamy
- Institue for Translational Medicine, Qingdao University, 266021, People's Republic of China
| | - Muhammad Akram Tariq
- Department of Biomolecular Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, CA, United states
| | - Zhexun Lian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 266000, People's Republic of China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 266000, People's Republic of China.
| | - Tao Yu
- Institue for Translational Medicine, Qingdao University, 266021, People's Republic of China.
| |
Collapse
|
26
|
Serum levels of miR-320 family members are associated with clinical parameters and diagnosis in prostate cancer patients. Oncotarget 2017. [PMID: 29535815 PMCID: PMC5828216 DOI: 10.18632/oncotarget.23781] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We studied the association of the serum levels of the microRNA family members miR-320a/-b/-c with clinico-pathological data to assess their applicability as diagnostic biomarker in prostate cancer (PCa) patients. The levels of miR-320a/-b/-c in 3 groups were evaluated by qRT-PCR (145 patients with PCa, 31 patients with benign prostatic hyperplasia (BPH) and 19 healthy controls). The levels of the three family members of miR-320 were directly correlated within each group (P < 0.001), but they differed significantly among the three groups (P < 0.001). The serum levels of the miR-320 family members were significantly increased in older patients compared to younger patients (≤ 66 years vs. > 66 years, P ≤ 0.001). In addition, the levels of all three miR-320 family members were significantly different in patients with low tumor stage compared with those with high tumor stage (miR-320a: P = 0.034; miR-320b: P = 0.006; miR-320c: P = 0.007) and in patients with low serum PSA compared with those with high serum PSA (≤ 4 ng vs. > 4 ng; miR-320a: P = 0.003; miR-320b: P = 0.003; miR-320c: P = 0.006). The levels of these miRNAs were inversely correlated with serum PSA levels. Detection in the serum samples of PCa patients with or without PSA relapse revealed higher levels of miR-320a/-b/-c in the group without PSA relapse before/after radical prostatectomy than in that with PCa relapse. In summary, the differences among the PCa/BPH/healthy control groups with respect to miR-320a/-b/-c levels in conjunction with higher levels in patients without a PSA relapse than in those with a relapse suggest the diagnostic potential of these miRNA-320 family members in PCa patients.
Collapse
|
27
|
|
28
|
Chen Y, Zhao Y, Chen W, Xie L, Zhao ZA, Yang J, Chen Y, Lei W, Shen Z. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther 2017; 8:268. [PMID: 29178928 PMCID: PMC5702098 DOI: 10.1186/s13287-017-0722-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Background Our study aim was to evaluate the therapeutic efficacy and mechanisms of miR-133-overexpressing mesenchymal stem cells (MSCs) on acute myocardial infarction. Methods Rat MSCs were isolated and purified by whole bone marrow adherent culturing. After transfection with the agomir or antagomir of miR-133, MSCs were collected for assay of cell vitality, apoptosis, and cell cycle progression. At the same time, exosomes were isolated from the supernatant to analyze the paracrine miR-133. For in-vivo studies, constitutive activation of miR-133 in MSCs was achieved by lentivirus-mediated miR-133 overexpression. A rat myocardial infarction model was created by ligating the left anterior descending coronary artery, while control MSCs (vector-MSCs) or miR-133-overexpressed MSCs (miR-133-MSCs) were injected into the zone around the myocardial infarction. Subsequently, myocardial function was evaluated by echocardiography on days 7 and 28 post infarction. Finally the infarcted hearts were collected on days 7 and 28 for myocardial infarct size measurement and detection of snail 1 expression. Results Hypoxia-induced apoptosis of MSCs obviously reduced, along with enhanced expression of total poly ADP-ribose polymerase protein, after miR-133 agomir transfection, while the apoptosis rate increased in MSCs transfected with miR-133 antagomir. However, no change in cell viability and cell-cycle distribution was observed in control, miR-133-overexpressed, and miR-133-interfered MSCs. Importantly, rats transplanted with miR-133-MSCs displayed more improved cardiac function after acute myocardial infarction, compared with those that received vector-MSC injection. Further studies indicated that cardiac expression of snail 1 was significantly repressed by adjacent miR-133-overexpressing MSCs, and both the inflammatory level and the infarct size decreased in miR-133-MSC-injected rat hearts. Conclusions miR-133-MSCs obviously improved cardiac function in a rat model of myocardial infarction. Transplantation of miR-133-overexpressing MSCs provides an effective strategy for cardiac repair and modulation of cardiac-related diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0722-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yueqiu Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 215007, 708 Renmin Rd, Bldg 1, Suzhou, China
| | - Yunfeng Zhao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 215007, 708 Renmin Rd, Bldg 1, Suzhou, China.,Nantong First People's Hospital, 226001, North Rd, Haier alley, Nantong, China
| | - Weiqian Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 215007, 708 Renmin Rd, Bldg 1, Suzhou, China
| | - Lincen Xie
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 215007, 708 Renmin Rd, Bldg 1, Suzhou, China
| | - Zhen-Ao Zhao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 215007, 708 Renmin Rd, Bldg 1, Suzhou, China
| | - Junjie Yang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 215007, 708 Renmin Rd, Bldg 1, Suzhou, China
| | - Yihuan Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 215007, 708 Renmin Rd, Bldg 1, Suzhou, China
| | - Wei Lei
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 215007, 708 Renmin Rd, Bldg 1, Suzhou, China.
| | - Zhenya Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 215007, 708 Renmin Rd, Bldg 1, Suzhou, China.
| |
Collapse
|
29
|
Sommese L, Zullo A, Schiano C, Mancini FP, Napoli C. Possible Muscle Repair in the Human Cardiovascular System. Stem Cell Rev Rep 2017; 13:170-191. [PMID: 28058671 DOI: 10.1007/s12015-016-9711-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The regenerative potential of tissues and organs could promote survival, extended lifespan and healthy life in multicellular organisms. Niches of adult stemness are widely distributed and lead to the anatomical and functional regeneration of the damaged organ. Conversely, muscular regeneration in mammals, and humans in particular, is very limited and not a single piece of muscle can fully regrow after a severe injury. Therefore, muscle repair after myocardial infarction is still a chimera. Recently, it has been recognized that epigenetics could play a role in tissue regrowth since it guarantees the maintenance of cellular identity in differentiated cells and, therefore, the stability of organs and tissues. The removal of these locks can shift a specific cell identity back to the stem-like one. Given the gradual loss of tissue renewal potential in the course of evolution, in the last few years many different attempts to retrieve such potential by means of cell therapy approaches have been performed in experimental models. Here we review pathways and mechanisms involved in the in vivo repair of cardiovascular muscle tissues in humans. Moreover, we address the ongoing research on mammalian cardiac muscle repair based on adult stem cell transplantation and pro-regenerative factor delivery. This latter issue, involving genetic manipulations of adult cells, paves the way for developing possible therapeutic strategies in the field of cardiovascular muscle repair.
Collapse
Affiliation(s)
- Linda Sommese
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.
| | - Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.,CEINGE Advanced Biotechnologies, s.c.ar.l, Naples, Italy
| | | | - Francesco P Mancini
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Claudio Napoli
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.,IRCCS Foundation SDN, Naples, Italy
| |
Collapse
|
30
|
Wada T, Toma T, Matsuda Y, Yachie A, Itami S, Taguchi YH, Murakami Y. Microarray analysis of circulating microRNAs in familial Mediterranean fever. Mod Rheumatol 2017; 27:1040-1046. [PMID: 28165838 DOI: 10.1080/14397595.2017.1285845] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/09/2017] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Familial Mediterranean fever (FMF) is an autoinflammatory disease caused by mutations in MEFV. Mutations in exon 10 are associated with typical FMF phenotypes, whereas the pathogenic role of variants in exons 2 and 3 remains uncertain. Recent evidence suggests that circulating microRNAs (miRNAs) are potentially useful biomarkers in several diseases. Therefore, their expression was assessed in FMF. METHODS The subjects were 24 patients with FMF who were between attacks: eight with exon 10 mutations (group A), eight with exon 3 mutations (group B), and eight without exon 3 or 10 mutations (group C). We also investigated eight cases of PFAPA as disease controls. Exosome-rich fractionated RNA was subjected to miRNA profiling by microarray. RESULTS Using the expression patterns of 26 miRNAs, we classified FMF (groups A, B, and C) and PFAPA with 78.1% accuracy. In FMF patients, groups A and B, A and C, and B and C were distinguished with 93.8, 87.5, and 100% accuracy using 24, 30, and 25 miRNA expression patterns, respectively. CONCLUSIONS These findings suggest that expression patterns of circulating miRNAs differ among FMF subgroups based on MEFV mutations between FMF episodes. These patterns may serve as a useful biomarker for detecting subgroups of FMF.
Collapse
Affiliation(s)
- Taizo Wada
- a Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kanazawa , Japan
| | - Tomoko Toma
- a Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kanazawa , Japan
| | - Yusuke Matsuda
- a Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kanazawa , Japan
| | - Akihiro Yachie
- a Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kanazawa , Japan
| | - Saori Itami
- b Department of Hepatology, Graduate School of Medicine , Osaka City University , Osaka , Japan
| | - Y-H Taguchi
- c Department of Physics , Chuo University , Tokyo , Japan
| | - Yoshiki Murakami
- b Department of Hepatology, Graduate School of Medicine , Osaka City University , Osaka , Japan
| |
Collapse
|
31
|
Noncoding RNA and Cardiomyocyte Proliferation. Stem Cells Int 2017; 2017:6825427. [PMID: 29225628 PMCID: PMC5684596 DOI: 10.1155/2017/6825427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/20/2017] [Indexed: 01/04/2023] Open
Abstract
It is acknowledged that postnatal mammalian cardiomyocytes (CMs) turn over with a very limited efficacy in both physiological and pathological conditions. Recent studies showed that those newly formed CMs are derived from preexisting CMs. Thus, stimulating CM proliferation becomes a promising strategy for inducing cardiac regeneration. Noncoding RNAs were found differently expressed in CMs with different proliferation potential. Moreover, manipulation of noncoding RNAs, in particular microRNAs, was proved to promote or suppress CM proliferation, indicating that noncoding RNAs are involved in the underlying mechanism of CM proliferation. This review mainly summarizes the roles of noncoding RNAs, as a class of influential factors, in the regulation of CM proliferation.
Collapse
|
32
|
Cappetta D, De Angelis A, Sapio L, Prezioso L, Illiano M, Quaini F, Rossi F, Berrino L, Naviglio S, Urbanek K. Oxidative Stress and Cellular Response to Doxorubicin: A Common Factor in the Complex Milieu of Anthracycline Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1521020. [PMID: 29181122 PMCID: PMC5664340 DOI: 10.1155/2017/1521020] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
The production of reactive species is a core of the redox cycling profile of anthracyclines. However, these molecular characteristics can be viewed as a double-edged sword acting not only on neoplastic cells but also on multiple cellular targets throughout the body. This phenomenon translates into anthracycline cardiotoxicity that is a serious problem in the growing population of paediatric and adult cancer survivors. Therefore, better understanding of cellular processes that operate within but also go beyond cardiomyocytes is a necessary step to develop more effective tools for the prevention and treatment of progressive and often severe cardiomyopathy experienced by otherwise successfully treated oncologic patients. In this review, we focus on oxidative stress-triggered cellular events such as DNA damage, senescence, and cell death implicated in anthracycline cardiovascular toxicity. The involvement of progenitor cells of cardiac and extracardiac origin as well as different cardiac cell types is discussed, pointing to molecular signals that impact on cell longevity and functional competence.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigi Sapio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Prezioso
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michela Illiano
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Silvio Naviglio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
33
|
Guo L, Huang X, Liang P, Zhang P, Zhang M, Ren L, Zeng J, Cui X, Huang X. Role of XIST/miR-29a/LIN28A pathway in denatured dermis and human skin fibroblasts (HSFs) after thermal injury. J Cell Biochem 2017; 119:1463-1474. [PMID: 28771809 DOI: 10.1002/jcb.26307] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/02/2017] [Indexed: 12/26/2022]
Abstract
Denatured dermis is a part of the dermis in deep burn wound and has the ability to restore normal morphology and function. In our previous study, we revealed that miR-29a downregulation in denatured dermis may help burn wound healing in the later phase, and further enhance type I collagen synthesis. LIN28A, a highly-conserved RNA binding protein expressed during embryogenesis, plays roles in development, pluripotency, metabolism, as well as tissue repair in adults. In the present study, we investigated the functional roles of LIN28A in human skin fibroblasts (HSFs) and extracellular matrix (ECM), and the interaction between miR-29a and LIN28A. In recent years, long non-coding RNAs have been reported to play a key role in normal development and physiology, as well as in disease development. By using online tools, we screened out several candidate lncRNAs of miR-29a, among which XIST was inversely regulated by miR-29a. XIST, one of the first found cancer-associated lncRNAs, has been frequently reported to play major role in several biological processes. Further, we evaluated the roles and mechanism of XIST in HSF proliferation, migration, and ECM synthesis. Through regulation of miR-29a/LIN28A, XIST knockdown suppressed HSF proliferation, migration, and ECM synthesis. In denatured dermis tissues, XIST, and LIN28A expression was upregulated, miR-29a expression was downregulated. Taken together, promoting XIST expression in denatured dermis, thus to inhibit miR-29a and promote LIN28A expression, further promote HSF proliferation, migration, and ECM synthesis presents a promising strategy for denatured dermis repair.
Collapse
Affiliation(s)
- Le Guo
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Xu Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Minghua Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Licheng Ren
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Jizhang Zeng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Xv Cui
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Xiaoyuan Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
34
|
Ran X, Xiao CH, Xiang GM, Ran XZ. Regulation of Embryonic Stem Cell Self-Renewal and Differentiation by MicroRNAs. Cell Reprogram 2017; 19:150-158. [PMID: 28277752 DOI: 10.1089/cell.2016.0048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are posttranscriptional regulators of gene expression. They play an important role in various cellular processes such as apoptosis, differentiation, secretion, and proliferation. Embryonic stem cells (ESCs) are derived from the inner cell mass of the blastocyst stage of the embryo. miRNAs are critical factors for the self-renewal and differentiation of ESCs. In this review, we will focus on the role of miRNAs in the self-renewal and directional differentiation of ESCs. We will present the current knowledge on key points related to miRNA biogenesis and their function in ESCs.
Collapse
Affiliation(s)
- Xi Ran
- 1 Department of Medical Laboratory, Xinqiao Hospital, Third Military Medical University , Chongqing, China .,2 State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University , Chongqing, China
| | - Chun-Hong Xiao
- 3 Qingdao First Sanatorium of Jinan Military Command , Qingdao, China
| | - Gui-Ming Xiang
- 1 Department of Medical Laboratory, Xinqiao Hospital, Third Military Medical University , Chongqing, China
| | - Xin-Ze Ran
- 2 State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University , Chongqing, China
| |
Collapse
|
35
|
Han D, Gao Q, Cao F. Long noncoding RNAs (LncRNAs) - The dawning of a new treatment for cardiac hypertrophy and heart failure. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2078-2084. [PMID: 28259753 DOI: 10.1016/j.bbadis.2017.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 01/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) represent a category of noncoding RNAs with the potential for genetic and epigenetic regulations. As important regulators of gene expression, increasing evidence has proven that lncRNAs play a significant regulatory role in various cardiovascular pathologies. In particular, lncRNAs have been proved to be participating in gene regulatory mechanisms involved in heart growth and development that can be exploited to repair the injured adult heart. Furthermore, lncRNAs have been revealed as possible therapeutic targets for heart failure with different causes and in different stages. In the journey from a healthy heart to heart failure, lncRNAs have been shown to participate in almost every landmark of heart failure pathogenesis including ischemic injury, cardiac hypertrophy, and cardiac fibrosis. Furthermore, the manipulation of lncRNAs palliates the progression of heart failure by attenuating ischemic heart injury, cardiac hypertrophy and cardiac fibrosis, as well as facilitating heart regeneration and therapeutic angiogenesis. This review will highlight recent updates regarding the involvement of lncRNAs in cardiac hypertrophy and heart failure and their potential as novel therapeutic targets. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Dong Han
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Quansheng Gao
- Laboratory of the Animal Center, Academy of Military Medical Sciences, Beijing 100850, China
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
36
|
Yang P, Cai L, Zhang G, Bian Z, Han G. The role of the miR-17-92 cluster in neurogenesis and angiogenesis in the central nervous system of adults. J Neurosci Res 2016; 95:1574-1581. [PMID: 27869313 DOI: 10.1002/jnr.23991] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 02/03/2023]
Abstract
It is well known that neurogenesis is not the only concern for the fully functional recovery after brain or spinal cord injury, as it has been shed light on the critical role of angiogenesis in improving neurological functional recovery. Angiogenesis and neurogenesis coordinately interact with each other in the developing and adult brain, during which they may respond to similar mediators and receptors, in which they share a common posttranscriptional regulator: the miR-17-92 cluster. The miR-17-92 cluster was initially described as an oncogene and was later demonstrated to drive key physiological and pathological responses during development and diseases respectively. It has been reported that the miR-17-92 cluster regulates both neurogenesis and angiogenesis. The miR-17-92 cluster modulates neural progenitor cells proliferation not only during development but also during neurological disorders such as stroke. It has also been shown that the endothelial miR-17-92 cluster regulates angiogenesis during embryonic stage and adulthood. In this review, we have discussed the actions of the miR-17-92 cluster in neuronal and vascular plasticity, and its potential as a novel therapeutic strategy for CNS injury. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ping Yang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, PR China
| | - Linghu Cai
- Cadet Brigade, Third Military Medical University, Chongqing, 400038, PR China
| | - Guan Zhang
- Cadet Brigade, Third Military Medical University, Chongqing, 400038, PR China
| | - Zhiqun Bian
- Cadet Brigade, Third Military Medical University, Chongqing, 400038, PR China
| | - Gaofeng Han
- Cadet Brigade, Third Military Medical University, Chongqing, 400038, PR China
| |
Collapse
|
37
|
Grandi E, Sanguinetti MC, Bartos DC, Bers DM, Chen-Izu Y, Chiamvimonvat N, Colecraft HM, Delisle BP, Heijman J, Navedo MF, Noskov S, Proenza C, Vandenberg JI, Yarov-Yarovoy V. Potassium channels in the heart: structure, function and regulation. J Physiol 2016; 595:2209-2228. [PMID: 27861921 DOI: 10.1113/jp272864] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022] Open
Abstract
This paper is the outcome of the fourth UC Davis Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias Symposium, a biannual event that aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2016 symposium was 'K+ Channels and Regulation'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies and challenges on the topic of cardiac K+ channels. This paper summarizes the topics of formal presentations and informal discussions from the symposium on the structural basis of voltage-gated K+ channel function, as well as the mechanisms involved in regulation of K+ channel gating, expression and membrane localization. Given the critical role for K+ channels in determining the rate of cardiac repolarization, it is hardly surprising that essentially every aspect of K+ channel function is exquisitely regulated in cardiac myocytes. This regulation is complex and highly interrelated to other aspects of myocardial function. K+ channel regulatory mechanisms alter, and are altered by, physiological challenges, pathophysiological conditions, and pharmacological agents. An accompanying paper focuses on the integrative role of K+ channels in cardiac electrophysiology, i.e. how K+ currents shape the cardiac action potential, and how their dysfunction can lead to arrhythmias, and discusses K+ channel-based therapeutics. A fundamental understanding of K+ channel regulatory mechanisms and disease processes is fundamental to reveal new targets for human therapy.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Michael C Sanguinetti
- Department of Internal Medicine, University of Utah, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, UT, 84112, USA
| | - Daniel C Bartos
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA.,Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA, 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA, 95616, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Sergei Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado - Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
38
|
Miao J, Wang J, Guo J, Gao H, Han K, Jiang C, Miao P. A plasmonic colorimetric strategy for visual miRNA detection based on hybridization chain reaction. Sci Rep 2016; 6:32219. [PMID: 27534372 PMCID: PMC4989231 DOI: 10.1038/srep32219] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/03/2016] [Indexed: 01/07/2023] Open
Abstract
In this work, a novel colorimetric strategy for miRNA analysis is proposed based on hybridization chain reaction (HCR)-mediated localized surface plasmon resonance (LSPR) variation of silver nanoparticles (AgNPs). miRNA in the sample to be tested is able to release HCR initiator from a solid interface to AgNPs colloid system by toehold exchange-mediated strand displacement, which then triggers the consumption of fuel strands with single-stranded tails for HCR. The final produced long nicked double-stranded DNA loses the ability to protect AgNPs from salt-induced aggregation. The stability variation of the colloid system can then be monitored by recording corresponding UV-vis spectrum and initial miRNA level is thus determined. This sensing system involves only four DNA strands which is quite simple. The practical utility is confirmed to be excellent by employing different biological samples.
Collapse
Affiliation(s)
- Jie Miao
- Department of Clinical Laboratory, the 404th Hospital of PLA, Weihai 264200, P. R. China
| | - Jingsheng Wang
- Department of Clinical Laboratory, the 404th Hospital of PLA, Weihai 264200, P. R. China
| | - Jinyang Guo
- Department of Clinical Laboratory, the 404th Hospital of PLA, Weihai 264200, P. R. China
| | - Huiguang Gao
- Department of Clinical Laboratory, the 404th Hospital of PLA, Weihai 264200, P. R. China
| | - Kun Han
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Chengmin Jiang
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| |
Collapse
|
39
|
Zhong C, Wang K, Liu Y, Lv D, Zheng B, Zhou Q, Sun Q, Chen P, Ding S, Xu Y, Huang H. miR-19b controls cardiac fibroblast proliferation and migration. J Cell Mol Med 2016; 20:1191-7. [PMID: 27061862 PMCID: PMC4882982 DOI: 10.1111/jcmm.12858] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/28/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiac fibrosis is a fundamental constituent of a variety of cardiac dysfunction, making it a leading cause of death worldwide. However, no effective treatment for cardiac fibrosis is available. Therefore, novel therapeutics for cardiac fibrosis are highly needed. Recently, miR‐19b has been found to be able to protect hydrogen peroxide (H2O2)‐induced apoptosis and improve cell survival in H9C2 cardiomyocytes, while down‐regulation of miR‐19b had opposite effects, indicating that increasing miR‐19b may be a new therapeutic strategy for attenuating cellular apoptosis during myocardial ischaemia–reperfusion injury. However, considering the fact that microRNAs might exert a cell‐specific role, it is highly interesting to determine the role of miR‐19b in cardiac fibroblasts. Here, we found that miR‐19b was able to promote cardiac fibroblast proliferation and migration. However, miR‐19b mimics and inhibitors did not modulate the expression level of collagen I. Pten was identified as a target gene of miR‐19b, which was responsible for the effect of miR‐19b in controlling cardiac fibroblast proliferation and migration. Our data suggest that the role of miR‐19b is cell specific, and systemic miR‐19b targeting in cardiac remodelling might be problematic. Therefore, it is highly needed and also urgent to investigate the role of miR‐19b in cardiac remodelling in vivo.
Collapse
Affiliation(s)
- Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Kun Wang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Ying Liu
- Department of Cardiology, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongchao Lv
- School of Life Science, Shanghai University, Shanghai, China
| | - Bo Zheng
- Shanghai Institute of Biological Products Co., Ltd, Shanghai, China
| | - Qiulian Zhou
- School of Life Science, Shanghai University, Shanghai, China
| | - Qi Sun
- School of Life Science, Shanghai University, Shanghai, China
| | - Ping Chen
- School of Life Science, Shanghai University, Shanghai, China
| | - Shengguang Ding
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Yiming Xu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Haitao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| |
Collapse
|
40
|
Bei Y, Zhou Q, Sun Q, Xiao J. Telocytes in cardiac regeneration and repair. Semin Cell Dev Biol 2016; 55:14-21. [PMID: 26826525 DOI: 10.1016/j.semcdb.2016.01.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/24/2016] [Indexed: 02/08/2023]
Abstract
Telocytes (TCs) are a novel type of stromal cells reported by Popescu's group in 2010. The unique feature that distinguishes TCs from other "classical" stromal cells is their extremely long and thin telopodes (Tps). As evidenced by electron microscopy, TCs are widely distributed in almost all tissues and organs. TCs contribute to form a three-dimensional interstitial network and play as active regulators in intercellular communication via homocellular/heterocellular junctions or shed vesicles. Interestingly, increasing evidence suggests the potential role of TCs in regenerative medicine. Although the heart retains some limited endogenous regenerative capacity, cardiac regenerative and repair response is however insufficient to make up the loss of cardiomyocytes upon injury. Developing novel strategies to increase cardiomyocyte renewal and repair is of great importance for the treatment of cardiac diseases. In this review, we focus on the role of TCs in cardiac regeneration and repair. We particularly describe the intercellular communication between TCs and cardiomyocytes, stem/progenitor cells, endothelial cells, and fibroblasts. Also, we discuss the current knowledge about TCs in cardiac repair after myocardial injury, as well as their potential roles in cardiac development and aging. TC-based therapy or TC-derived exosome delivery might be used as novel therapeutic strategies to promote cardiac regeneration and repair.
Collapse
Affiliation(s)
- Yihua Bei
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qiulian Zhou
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qi Sun
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
41
|
Abstract
Telocytes (TCs) are a novel type of interstitial cells, with extremely long and thin cellular prolongations termed telopodes (Tps). TCs were first identified by Popescu et al. and described their finding as "cells with telopodes." The presence of TCs has been reported in the majority of tissues and organs (for details please visit www.telocytes.com ). TCs have been ignored or overlooked for a long time due to our inability to observe these cells via a light microscopy. TCs represent a distinct cell population, different from other types of interstitial cells, based on their distinct (ultra)structure, immunophenotype, microRNA profile, gene feature, proteome signature, and secretome features. As TCs have been suggested as new cellular targets for forthcoming therapies, developing specific methods to modulate TC numbers represents an important objective.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| |
Collapse
|
42
|
Yang YN, Zhu HH, Dong XY, Yu WX, Yue AJ. Clinical significance of microRNA-499-5P expression in colorectal cancer and colorectal polyps. Shijie Huaren Xiaohua Zazhi 2015; 23:5465-5471. [DOI: 10.11569/wcjd.v23.i34.5465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of microRNA-499-5p (miR-499-5p) and its association with clinicopathological features in colorectal cancer and colorectal polyps.
METHODS: The expression levels of miR-499-5p in colorectal cancer, colorectal polyps and normal colorectal tissues were detected by stem-loop real-time quantitative PCR (qRT-PCR), and its correlation with clinicopathologic features of colorectal cancer was analyzed.
RESULTS: The miR-499-5p expression levels in colon cancer and colorectal polyps were significantly higher than that in normal colorectal tissues (P = 0.01, P < 0.001). The expression of miR-499-5p was associated with TNM stage (P < 0.016), depth of invasion (P < 0.001), tumor differentiation (P < 0.001) and lymph node metastasis (P = 0.008).
CONCLUSION: The miR-499-5p expression level is increased significantly in colon cancer and colorectal polyps compared with normal colorectal tissues. MiR-499-5p expression is related to clinical stage, depth of invasion, tumor differentiation and lymph node metastasis in colon cancer.
Collapse
|