1
|
Freitas R, Peixoto A, Santos LL, Ferreira JA. Glycan-based therapeutic approaches for bladder cancer: Overcoming clinical barriers. Biochim Biophys Acta Rev Cancer 2025; 1880:189327. [PMID: 40274080 DOI: 10.1016/j.bbcan.2025.189327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Bladder cancer (BLCA) remains a significant global health concern, being characterized by high incidence, recurrence, and mortality rates. Disease heterogeneity and rapid progression pose major challenges for effective management and identification of actionable biomarkers. Conventional therapies often fail to successfully achieve disease control, urging the development of novel, personalized approaches. In recent years, anti-tumour immunotherapy approaches in both pre-clinical and clinical settings have boomed. However, the efficacy of these strategies has been limited by the low mutational burden in some tumours, which hinders neoantigen presentation and the identification of BLCA-specific signatures. Cancer-associated aberrant glycosylation presents a unique opportunity for identifying BLCA-specific glycosignatures and developing innovative targeted therapeutics. This review provides a comprehensive overview of the clinical challenges in BLCA management and emerging novel therapies. Furthermore, it highlights the potential of glycosylation alterations as a unique opportunity for developing glycan-based therapies, potentially revolutionizing BLCA treatment strategies.
Collapse
Affiliation(s)
- Rui Freitas
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal; CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal; i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal; CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal; CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal; i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal; Health School of University Fernando Pessoa, 4249-004 Porto, Portugal; Department of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal; CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal..
| |
Collapse
|
2
|
Burlibasa L, Nicu AT, Chifiriuc MC, Medar C, Petrescu A, Jinga V, Stoica I. H3 histone methylation landscape in male urogenital cancers: from molecular mechanisms to epigenetic biomarkers and therapeutic targets. Front Cell Dev Biol 2023; 11:1181764. [PMID: 37228649 PMCID: PMC10203431 DOI: 10.3389/fcell.2023.1181764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
During the last decades, male urogenital cancers (including prostate, renal, bladder and testicular cancers) have become one of the most frequently encountered malignancies affecting all ages. While their great variety has promoted the development of various diagnosis, treatment and monitoring strategies, some aspects such as the common involvement of epigenetic mechanisms are still not elucidated. Epigenetic processes have come into the spotlight in the past years as important players in the initiation and progression of tumors, leading to a plethora of studies highlighting their potential as biomarkers for diagnosis, staging, prognosis, and even as therapeutic targets. Thus, fostering research on the various epigenetic mechanisms and their roles in cancer remains a priority for the scientific community. This review focuses on one of the main epigenetic mechanisms, namely, the methylation of the histone H3 at various sites and its involvement in male urogenital cancers. This histone modification presents a great interest due to its modulatory effect on gene expression, leading either to activation (e.g., H3K4me3, H3K36me3) or repression (e.g., H3K27me3, H3K9me3). In the last few years, growing evidence has demonstrated the aberrant expression of enzymes that methylate/demethylate histone H3 in cancer and inflammatory diseases, that might contribute to the initiation and progression of such disorders. We highlight how these particular epigenetic modifications are emerging as potential diagnostic and prognostic biomarkers or targets for the treatment of urogenital cancers.
Collapse
Affiliation(s)
| | | | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Amelia Petrescu
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Viorel Jinga
- Academy of Romanian Scientists, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
3
|
Yang Z, Bi Y, Xu W, Guo R, Hao M, Liang Y, Shen Z, Yin L, Yu C, Wang S, Wang J, Li J, Zhang J, Cheng R, Zhai Q, Wang H. Glabridin inhibits urothelial bladder carcinoma cell growth in vitro and in vivo by inducing cell apoptosis and cell cycle arrest. Chem Biol Drug Des 2023; 101:581-592. [PMID: 36098706 DOI: 10.1111/cbdd.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022]
Abstract
Glabridin (GLA) has a variety of biological activities and therapeutic effects in cancers. Whereas the effect of GLA on urothelial bladder carcinoma (UBC) cells and its underlying mechanisms remain unknown. The study revealed the effect of GLA on UBC and the potential mechanism of inducing cell apoptosis in vivo and in vitro. After treated with different concentrations of GLA, the cell activity decreased in a time- and dose-dependent manner. The IC50 values of BIU-87 and EJ cells at 48 h were 6.02 μg/ml (18.6 μm) and 4.36 μg/ml (13.4 μm), respectively. Additionally, GLA-induced apoptosis and cycle arrest of BIU-87 and EJ cells in G2 phase. Furthermore, wound healing experiments showed that GLA significantly reduced the migration activities of BIU-87 and EJ cells. Mechanically, GLA obviously increased the expression of BIM, BAK1, and CYCS in both mRNA and protein levels, which led to the activation of the endogenous apoptotic pathway. Finally, GLA remarkably inhibited the growth of UBC tumors in vivo. In summary, GLA inhibited UBC cells growth in vitro and in vivo by inducing cell apoptosis and cell cycle arrest, highlighting that GLA could be utilized as a component to design a novel anti-UBC drug.
Collapse
Affiliation(s)
- Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.,College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, Xinjiang, China
| | - Ying Bi
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Wenkai Xu
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.,Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Guo
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Mingxuan Hao
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Youfeng Liang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Zongyi Shen
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Liqi Yin
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Shihui Wang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Jiansong Wang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Jinmei Li
- Department of Pathology, Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, First Central Hospital of Baoding City, Baoding, Hebei, China
| | - Jinku Zhang
- Department of Pathology, Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, First Central Hospital of Baoding City, Baoding, Hebei, China
| | - Runfen Cheng
- Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiongli Zhai
- Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Goel A, Ward DG, Noyvert B, Yu M, Gordon NS, Abbotts B, Colbourne JK, Kissane S, James ND, Zeegers MP, Cheng KK, Cazier JB, Whalley CM, Beggs AD, Palles C, Arnold R, Bryan RT. Combined exome and transcriptome sequencing of non-muscle-invasive bladder cancer: associations between genomic changes, expression subtypes, and clinical outcomes. Genome Med 2022; 14:59. [PMID: 35655252 PMCID: PMC9164468 DOI: 10.1186/s13073-022-01056-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Three-quarters of bladder cancer patients present with early-stage disease (non-muscle-invasive bladder cancer, NMIBC, UICC TNM stages Ta, T1 and Tis); however, most next-generation sequencing studies to date have concentrated on later-stage disease (muscle-invasive BC, stages T2+). We used exome and transcriptome sequencing to comprehensively characterise NMIBCs of all grades and stages to identify prognostic genes and pathways that could facilitate treatment decisions. Tumour grading is based upon microscopy and cellular appearances (grade 1 BCs are less aggressive, and grade 3 BCs are most aggressive), and we chose to also focus on the most clinically complex NMIBC subgroup, those patients with grade 3 pathological stage T1 (G3 pT1) disease. METHODS Whole-exome and RNA sequencing were performed in total on 96 primary NMIBCs including 22 G1 pTa, 14 G3 pTa and 53 G3 pT1s, with both exome and RNA sequencing data generated from 75 of these individual samples. Associations between genomic alterations, expression profiles and progression-free survival (PFS) were investigated. RESULTS NMIBCs clustered into 3 expression subtypes with different somatic alteration characteristics. Amplifications of ARNT and ERBB2 were significant indicators of worse PFS across all NMIBCs. High APOBEC mutagenesis and high tumour mutation burden were both potential indicators of better PFS in G3pT1 NMIBCs. The expression of individual genes was not prognostic in BCG-treated G3pT1 NMIBCs; however, downregulated interferon-alpha and gamma response pathways were significantly associated with worse PFS (adjusted p-value < 0.005). CONCLUSIONS Multi-omic data may facilitate better prognostication and selection of therapeutic interventions in patients with G3pT1 NMIBC. These findings demonstrate the potential for improving the management of high-risk NMIBC patients and warrant further prospective validation.
Collapse
Affiliation(s)
- Anshita Goel
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Douglas G Ward
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Boris Noyvert
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
- CRUK Birmingham Centre, University of Birmingham, Birmingham, UK
| | - Minghao Yu
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Naheema S Gordon
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Ben Abbotts
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Stephen Kissane
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Nicholas D James
- Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Maurice P Zeegers
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- CAPHRI School for Public Health and Primary Care, University of Maastricht, Maastricht, The Netherlands
| | - Kar Keung Cheng
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jean-Baptiste Cazier
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | | | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Genomics Birmingham, University of Birmingham, Birmingham, UK
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Roland Arnold
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK.
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Richard T Bryan
- Bladder Cancer Research Centre, University of Birmingham, Birmingham, UK.
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
5
|
|
6
|
Yang Z, Xu Y, Bi Y, Zhang N, Wang H, Xing T, Bai S, Shen Z, Naz F, Zhang Z, Yin L, Shi M, Wang L, Wang L, Wang S, Xu L, Su X, Wu S, Yu C. Immune escape mechanisms and immunotherapy of urothelial bladder cancer. J Clin Transl Res 2021; 7:485-500. [PMID: 34541363 PMCID: PMC8445627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/12/2021] [Accepted: 06/25/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND AIM Urothelial bladder cancer (UBC) is a common malignant tumor of the urogenital system with a high rate of recurrence. Due to the sophisticated and largely unexplored mechanisms of tumorigenesis of UBC, the classical therapeutic approaches including transurethral resection and radical cystectomy combined with chemotherapy have remained unchanged for decades. However, with increasingly in-depth understanding of the microenvironment and the composition of tumor-infiltrating lymphocytes of UBC, novel immunotherapeutic strategies have been developed. Bacillus Calmette-Guerin (BCG) therapy, immune checkpoint blockades, adoptive T cell immunotherapy, dendritic cell (DC) vaccines, etc., have all been intensively investigated as immunotherapies for UBC. This review will discuss the recent progress in immune escape mechanisms and immunotherapy of UBC. METHODS Based on a comprehensive search of the PubMed and ClinicalTrials.gov database, this review included the literature reporting the immune escape mechanisms of UBC and clinical trials assessing the effect of immunotherapeutic strategies on tumor or immune cells in UBC patients published in English between 1999 and 2020. RESULTS Immune surveillance, immune balance, and immune escape are the three major processes that occur during UBC tumorigenesis. First, the role of immunosuppressive cells, immunosuppressive molecules, immunosuppressive signaling molecules, and DCs in tumor microenvironment is introduced elaborately in the immune escape mechanisms of UBC section. In addition, recent progress of immunotherapies including BCG, checkpoint inhibitors, cytokines, adoptive T cell immunotherapy, DCs, and macrophages on UBC patients are summarized in detail. Finally, the need to explore the mechanisms, molecular characteristics and immune landscape during UBC tumorigenesis and development of novel and robust immunotherapies for UBC are also proposed and discussed. CONCLUSION At present, BCG and immune checkpoint blockades have been approved by the US Food and Drug Administration for the treatment of UBC patients and have achieved encouraging therapeutic results, expanding the traditional chemotherapy and surgery-based treatment for UBC. RELEVANCE FOR PATIENTS Immunotherapy has achieved desirable results in the treatment of UBC, which not only improve the overall survival but also reduce the recurrence rate and the occurrence of treatment-related adverse events of UBC patients. In addition, the indicators to predict the effectiveness and novel therapy strategies, such as combination regimen of checkpoint inhibitor with checkpoint inhibitor or chemotherapy, should be further studied.
Collapse
Affiliation(s)
- Zhao Yang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China,2Department of Bioscience, College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar 843300, Xinjiang, China,
Corresponding authors: Zhao Yang College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar 843300, Xinjiang, China. E-mail:
| | - Yinyan Xu
- 3Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Ying Bi
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nan Zhang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wang
- 4Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Tianying Xing
- 5Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Suhang Bai
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zongyi Shen
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Faiza Naz
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zichen Zhang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqi Yin
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengran Shi
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Luyao Wang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Wang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shihui Wang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lida Xu
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Song Wu
- 3Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China,
Song Wu Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China.
| | - Changyuan Yu
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China,
Changyuan Yu College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Tsui DWY, Cheng ML, Shady M, Yang JL, Stephens D, Won H, Srinivasan P, Huberman K, Meng F, Jing X, Patel J, Hasan M, Johnson I, Gedvilaite E, Houck-Loomis B, Socci ND, Selcuklu SD, Seshan VE, Zhang H, Chakravarty D, Zehir A, Benayed R, Arcila M, Ladanyi M, Funt SA, Feldman DR, Li BT, Razavi P, Rosenberg J, Bajorin D, Iyer G, Abida W, Scher HI, Rathkopf D, Viale A, Berger MF, Solit DB. Tumor fraction-guided cell-free DNA profiling in metastatic solid tumor patients. Genome Med 2021; 13:96. [PMID: 34059130 PMCID: PMC8165771 DOI: 10.1186/s13073-021-00898-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cell-free DNA (cfDNA) profiling is increasingly used to guide cancer care, yet mutations are not always identified. The ability to detect somatic mutations in plasma depends on both assay sensitivity and the fraction of circulating DNA in plasma that is tumor-derived (i.e., cfDNA tumor fraction). We hypothesized that cfDNA tumor fraction could inform the interpretation of negative cfDNA results and guide the choice of subsequent assays of greater genomic breadth or depth. METHODS Plasma samples collected from 118 metastatic cancer patients were analyzed with cf-IMPACT, a modified version of the FDA-authorized MSK-IMPACT tumor test that can detect genomic alterations in 410 cancer-associated genes. Shallow whole genome sequencing (sWGS) was also performed in the same samples to estimate cfDNA tumor fraction based on genome-wide copy number alterations using z-score statistics. Plasma samples with no somatic alterations detected by cf-IMPACT were triaged based on sWGS-estimated tumor fraction for analysis with either a less comprehensive but more sensitive assay (MSK-ACCESS) or broader whole exome sequencing (WES). RESULTS cfDNA profiling using cf-IMPACT identified somatic mutations in 55/76 (72%) patients for whom MSK-IMPACT tumor profiling data were available. A significantly higher concordance of mutational profiles and tumor mutational burden (TMB) was observed between plasma and tumor profiling for plasma samples with a high tumor fraction (z-score≥5). In the 42 patients from whom tumor data was not available, cf-IMPACT identified mutations in 16/42 (38%). In total, cf-IMPACT analysis of plasma revealed mutations in 71/118 (60%) patients, with clinically actionable alterations identified in 30 (25%), including therapeutic targets of FDA-approved drugs. Of the 47 samples without alterations detected and low tumor fraction (z-score<5), 29 had sufficient material to be re-analyzed using a less comprehensive but more sensitive assay, MSK-ACCESS, which revealed somatic mutations in 14/29 (48%). Conversely, 5 patients without alterations detected by cf-IMPACT and with high tumor fraction (z-score≥5) were analyzed by WES, which identified mutational signatures and alterations in potential oncogenic drivers not covered by the cf-IMPACT panel. Overall, we identified mutations in 90/118 (76%) patients in the entire cohort using the three complementary plasma profiling approaches. CONCLUSIONS cfDNA tumor fraction can inform the interpretation of negative cfDNA results and guide the selection of subsequent sequencing platforms that are most likely to identify clinically-relevant genomic alterations.
Collapse
Affiliation(s)
- Dana W Y Tsui
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Weill Cornell Medical College, Weill Cornell University, New York, USA.
- Present Address: PetDx, Inc., La Jolla, USA.
| | - Michael L Cheng
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
- Present Address: Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Maha Shady
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Present Address: Graduate School of Arts and Sciences, Harvard University, Cambridge, USA
| | - Julie L Yang
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Dennis Stephens
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Helen Won
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Preethi Srinivasan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Kety Huberman
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Fanli Meng
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Xiaohong Jing
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Present Address: NYU Langone Health, New York, USA
| | - Juber Patel
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Maysun Hasan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ian Johnson
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Erika Gedvilaite
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Brian Houck-Loomis
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Nicholas D Socci
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - S Duygu Selcuklu
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Venkatraman E Seshan
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Hongxin Zhang
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Debyani Chakravarty
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Maria Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Samuel A Funt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Darren R Feldman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bob T Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jonathan Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Dean Bajorin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Gopa Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Dana Rathkopf
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Agnes Viale
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Michael F Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Weill Cornell Medical College, Weill Cornell University, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - David B Solit
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
8
|
Deepak Singh D, Han I, Choi EH, Yadav DK. CRISPR/Cas9 based genome editing for targeted transcriptional control in triple-negative breast cancer. Comput Struct Biotechnol J 2021; 19:2384-2397. [PMID: 34025931 PMCID: PMC8120801 DOI: 10.1016/j.csbj.2021.04.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women at the global level and the highest mortality rate has been observed with triple-negative breast cancer (TNBC). Accumulation of genetic lesions an aberrant gene expression and protein degradation are considered to underlie the onset of tumorigenesis and metastasis. Therefore, the challenge to identify the genes and molecules that could be potentially used as potent biomarkers for personalized medicine against TNBC with minimal or no associated side effects. Discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) arrangement and an increasing repertoire of its new variants has provided a much-needed fillip towards editing TNBC genomes. In this review, we discuss the CRISPR/Cas9 genome editing, CRISPR Technology for diagnosis of (Triple-negative breast cancer) TNBC, Drug Resistance, and potential applications of CRISPR/Cas9 and its variants in deciphering or engineering intricate molecular and epigenetic mechanisms associated with TNBC. Furthermore, we have also explored the TNBC and CRISPR/Cas9 genome editing potential for repairing, genetic modifications in TNBC.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon City, Republic of Korea
| |
Collapse
|
9
|
Soave A, Kluwe L, Yu H, Rink M, Gild P, Vetterlein MW, Marks P, Sauter G, Fisch M, Meyer CP, Ludwig T, Dahlem R, Minner S, Pantel K, Steinbach B, Schwarzenbach H. Copy number variations in primary tumor, serum and lymph node metastasis of bladder cancer patients treated with radical cystectomy. Sci Rep 2020; 10:21562. [PMID: 33298978 PMCID: PMC7725833 DOI: 10.1038/s41598-020-75869-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/22/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to analyze copy number variations (CNV) of multiple oncogenes and tumor suppressor genes in genomic DNA from primary tumor tissue, lymph node metastasis and cell-free DNA (cfDNA) from serum of 72 urothelial carcinoma of bladder (UCB) patients treated with radical cystectomy (RC), using multiplex ligation-dependent probe amplification (MLPA). We hypothesized that primary tumor and lymph node metastasis show similar CNV profiles, and CNV are more present in lymph node metastasis compared to primary tumor tissue. Samples from 43 (59.7%) patients could be analyzed. In total, 35 (83%), 26 (68%) and 8 (42%) patients had CNV in primary tumor, serum and lymph node metastasis, respectively. MYC, CCND1, ERBB2 and CCNE1 displayed the most frequent amplifications. In particular, CNV in ERBB2 was associated with aggressive tumor characteristics. CNV in both ERBB2 and TOP2A were risk factors for disease recurrence. The current findings show that CNV are present in various oncogenes and tumor suppressor genes in genomic DNA from primary tumor, lymph node metastasis and cfDNA from serum. CNV were more present in genomic DNA from primary tumor tissue compared to cfDNA from serum and genomic DNA from lymph node metastasis. Patients with CNV in ERBB2 and TOP2A are at increased risk for disease recurrence following RC. Further studies are necessary to validate, whether these genes may represent promising candidates for targeted-therapy.
Collapse
Affiliation(s)
- Armin Soave
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lan Kluwe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hang Yu
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Gild
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte W Vetterlein
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Marks
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian P Meyer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Ludwig
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Dahlem
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Bettina Steinbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
10
|
Yang Z, Wang H, Zhang N, Xing T, Zhang W, Wang G, Li C, Yu C. Chaetocin Abrogates the Self-Renewal of Bladder Cancer Stem Cells via the Suppression of the KMT1A-GATA3-STAT3 Circuit. Front Cell Dev Biol 2020; 8:424. [PMID: 32626701 PMCID: PMC7311639 DOI: 10.3389/fcell.2020.00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer stem cells (BCSCs) have the abilities of self-renewal, differentiation, and metastasis; confer drug resistance; and exhibit high tumorigenicity. We previously identified that the KMT1A–GATA3–STAT3 axis drives the self-renewal of BCSCs. However, the therapeutic effect of targeting KMT1A in BCSCs remains unknown. In this study, we confirmed that the expression of KMT1A was remarkably higher in BCSCs (3–5-fold) than those in bladder cancer non-stem cells or normal bladder epithelial cells. Among the six KMT1A inhibitors, chaetocin significantly suppressed the cell propagation (inhibition ratio: 65%–88%, IC50 = 24.4–32.5 nM), induced apoptosis (2–5-fold), and caused G1 phase cell cycle arrest (68.9 vs 55.5%) of bladder cancer (BC) cells, without influencing normal bladder epithelial cells. More importantly, chaetocin abrogated the self-renewal of BCSCs (inhibition ratio: 80.1%) via the suppression of the KMT1A–GATA3–STAT3 circuit and other stemness-related pathways. Finally, intravesical instillation of chaetocin remarkably inhibited the growth of xenograft tumors (inhibition ratio: 71–82%) and prolonged the survival of tumor-bearing mice (70 vs 53 days). In sum, chaetocin abrogated the stemness maintenance and tumor growth of BCSCs via the suppression of the KMT1A–GATA3–STAT3 circuit. Chaetocin is an effective inhibitor targeting KMT1A in BCSCs and could be a promising therapeutic strategy for BC.
Collapse
Affiliation(s)
- Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Haifeng Wang
- Department of Urology, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Nan Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Tianying Xing
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, China
| | - Guoqing Wang
- Department of Pathogenobiology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
11
|
Tanadi C, Bambang A, Wendi IP, Sidharta VM, Hananta L, Sumarpo A. The predictive value of PRDM2 in solid tumor: a systematic review and meta-analysis. PeerJ 2020; 8:e8826. [PMID: 32391195 PMCID: PMC7195840 DOI: 10.7717/peerj.8826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many studies have reported the presence of Positive Regulatory/Su(var)3-9, Enhancer-of-zeste and Trithorax Domain 2 (PRDM2) downregulation in cancer. However, its potential as a diagnostic biomarker is still unclear. Hence, a systematic review and meta-analysis were conducted to address this issue. INTRODUCTION As of 2018, cancer has become the second leading cause of death worldwide. Thus, cancer control is exceptionally vital in reducing mortality. One such example is through early diagnosis of cancer using tumor biomarkers. Having a function as a tumor suppressor gene (TSG), PRDM2 has been linked with carcinogenesis in several solid tumor. This study aims to assess the relationship between PRDM2 downregulation and solid tumor, its relationship with clinicopathological data, and its potential as a diagnostic biomarker. This study also aims to evaluate the quality of the studies, data reliability and confidence in cumulative evidence. MATERIALS & METHODS A protocol of this study is registered at the International Prospective Register of Systematic Reviews (PROSPERO) with the following registration number: CRD42019132156. PRISMA was used as a guideline to conduct this review. A comprehensive electronic search was performed from inception to June 2019 in Pubmed, Cochrane Library, ProQuest, EBSCO and ScienceDirect. Studies were screened and included studies were identified based on the criteria made. Finally, data synthesis and quality assessment were conducted. RESULTS There is a significant relationship between PRDM2 downregulation with solid tumor (RR 4.29, 95% CI [2.58-7.13], P < 0.00001). The overall sensitivity and specificity of PRDM2 downregulation in solid tumors is 84% (95% CI [39-98%]) and 86% (95% CI [71-94%]), respectively. There is a low risk of bias for the studies used. TSA results suggested the presence of marked imprecision. The overall quality of evidence for this study is very low. DISCUSSION We present the first meta-analysis that investigated the potential of PRDM2 downregulation as a diagnostic biomarker in solid tumor. In line with previous studies, our results demonstrated that PRDM2 downregulation occurs in solid tumor. A major source of limitation in this study is the small number of studies. CONCLUSIONS Our review suggested that PRDM2 is downregulated in solid tumor. The relationship between PRDM2 downregulation and clinicopathological data is still inconclusive. Although the sensitivity and specificity of PRDM2 downregulation are imprecise, its high values, in addition to the evidence that suggested PRDM2 downregulation in solid tumor, hinted that it might still have a potential to be used as a diagnostic biomarker. In order to further strengthen these findings, more research regarding PRDM2 in solid tumors are encouraged.
Collapse
Affiliation(s)
- Caroline Tanadi
- Undergraduate Medical Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Alfredo Bambang
- Department of Chemistry and Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Indra Putra Wendi
- Department of Chemistry and Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Veronika M. Sidharta
- Department of Histology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Linawati Hananta
- Department of Pharmacology and Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Anton Sumarpo
- Department of Chemistry and Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
12
|
Martinez VG, Munera-Maravilla E, Bernardini A, Rubio C, Suarez-Cabrera C, Segovia C, Lodewijk I, Dueñas M, Martínez-Fernández M, Paramio JM. Epigenetics of Bladder Cancer: Where Biomarkers and Therapeutic Targets Meet. Front Genet 2019; 10:1125. [PMID: 31850055 PMCID: PMC6902278 DOI: 10.3389/fgene.2019.01125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the most common neoplasia of the urothelial tract. Due to its high incidence, prevalence, recurrence and mortality, it remains an unsolved clinical and social problem. The treatment of BC is challenging and, although immunotherapies have revealed potential benefit in a percentage of patients, it remains mostly an incurable disease at its advanced state. Epigenetic alterations, including aberrant DNA methylation, altered chromatin remodeling and deregulated expression of non-coding RNAs are common events in BC and can be driver events in BC pathogenesis. Accordingly, these epigenetic alterations are now being used as potential biomarkers for these disorders and are being envisioned as potential therapeutic targets for the future management of BC. In this review, we summarize the recent findings in these emerging and exciting new aspects paving the way for future clinical treatment of this disease.
Collapse
Affiliation(s)
- Victor G. Martinez
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Ester Munera-Maravilla
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alejandra Bernardini
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Cristian Suarez-Cabrera
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Cristina Segovia
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Iris Lodewijk
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mónica Martínez-Fernández
- Genomes & Disease Lab, CiMUS (Center for Research in Molecular Medicine and Chronic Diseases), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesus Maria Paramio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
13
|
Jiang C, Meng L, Yang B, Luo X. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment. Clin Genet 2019; 97:73-88. [PMID: 31231788 DOI: 10.1111/cge.13589] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
In recent years, gene editing, especially that using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9, has made great progress in the field of gene function. Rapid development of gene editing techniques has contributed to their significance in the field of medicine. Because the CRISPR/Cas9 gene editing tool is not only powerful but also has features such as strong specificity and high efficiency, it can accurately and rapidly screen the whole genome, facilitating the administration of gene therapy for specific diseases. In the field of tumor research, CRISPR/Cas9 can be used to edit genomes to explore the mechanisms of tumor occurrence, development, and metastasis. In these years, this system has been increasingly applied in tumor treatment research. CRISPR/Cas9 can be used to treat tumors by repairing mutations or knocking out specific genes. To date, numerous preliminary studies have been conducted on tumor treatment in related fields. CRISPR/Cas9 holds great promise for gene-level tumor treatment. Personalized and targeted therapy based on CRISPR/Cas9 will possibly shape the development of tumor therapy in the future. In this study, we review the findings of CRISPR/Cas9 for tumor treatment research to provide references for related future studies on the pathogenesis and clinical treatment of tumors.
Collapse
Affiliation(s)
- Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Lingxiang Meng
- Department of Anorectal Surgery, Anorectal Surgery Center, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Bingjun Yang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xin Luo
- Department of Radiotherapy, The Second Hospital of PingLiang City, Second Affiliated Hospital of Gansu Medical College, PingLiang, People's Republic of China
| |
Collapse
|
14
|
Su H, Jiang H, Tao T, Kang X, Zhang X, Kang D, Li S, Li C, Wang H, Yang Z, Zhang J, Li C. Hope and challenge: Precision medicine in bladder cancer. Cancer Med 2019; 8:1806-1816. [PMID: 30907072 PMCID: PMC6488142 DOI: 10.1002/cam4.1979] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer (BC) is a complex disease and could be classified into nonmuscle‐invasive BC (NMIBC) or muscle‐invasive BC (MIBC) subtypes according to the distinct genetic background and clinical prognosis. Until now, the golden standard and confirmed diagnosis of BC is cystoscopy and the major problems of BC are the high rate of recurrence and high costs in the clinic. Recent molecular and genetic studies have provided perspectives on the novel biomarkers and potential therapeutic targets of BC. In this article, we provided an overview of the traditional diagnostic approaches of BC, and introduced some new imaging, endoscopic, and immunological diagnostic technology in the accurate diagnosis of BC. Meanwhile, the minimally invasive precision treatment technique, immunotherapy, chemotherapy, gene therapy, and targeted therapy of BC were also included. Here, we will overview the diagnosis and therapy methods of BC used in clinical practice, focusing on their specificity, efficiency, and safety. On the basis of the discussion of the benefits of precision medicine in BC, we will also discuss the challenges and limitations facing the non‐invasive methods of diagnosis and precision therapy of BC. The molecularly targeted and immunotherapeutic approaches, and gene therapy methods to BC treatment improved the prognosis and overall survival of BC patients.
Collapse
Affiliation(s)
- Hongwei Su
- Department of Urology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Haitao Jiang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, China
| | - Tao Tao
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Xing Kang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xu Zhang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Danyue Kang
- Michigan State University, East Lansing, Michigan
| | - Shucheng Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chengxi Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haifeng Wang
- Department of Urology, The Second Affliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jinku Zhang
- Department of pathology, First Central Hospital of Baoding, Baoding, Hebei, China
| | - Chong Li
- Department of Urology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.,Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Beijing Jianlan Institute of Medicine, Beijing, China
| |
Collapse
|
15
|
Abstract
Dogs are second only to humans in medical surveillance and preventative health care, leading to a recent perception of increased cancer incidence. Scientific priorities in veterinary oncology have thus shifted, with a demand for cancer genetic screens, better diagnostics, and more effective therapies. Most dog breeds came into existence within the last 300 years, and many are derived from small numbers of founders. Each has undergone strong artificial selection, in which dog fanciers selected for many traits, including body size, fur type, color, skull shape, and behavior, to create novel breeds. The adoption of the breed barrier rule-no dog may become a registered member of a breed unless both its dam and its sire are registered members-ensures a relatively closed genetic pool within each breed. As a result, there is strong phenotypic homogeneity within breeds but extraordinary phenotypic variation between breeds. One consequence of this is the high level of breed-associated genetic disease. We and others have taken advantage of this to identify genes for a large number of canine maladies for which mouse models do not exist, particularly with regard to cancer.
Collapse
Affiliation(s)
- Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Dayna L Dreger
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jacquelyn M Evans
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
16
|
Johansson P, Klein-Hitpass L, Choidas A, Habenberger P, Mahboubi B, Kim B, Bergmann A, Scholtysik R, Brauser M, Lollies A, Siebert R, Zenz T, Dührsen U, Küppers R, Dürig J. SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia. Blood Cancer J 2018; 8:11. [PMID: 29352181 PMCID: PMC5802577 DOI: 10.1038/s41408-017-0036-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 01/19/2023] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is an aggressive malignancy with a median survival of the patients of less than two years. Besides characteristic chromosomal translocations, frequent mutations affect the ATM gene, JAK/STAT pathway members, and epigenetic regulators. We here performed a targeted mutation analysis for 40 genes selected from a RNA sequencing of 10 T-PLL in a collection of 28 T-PLL, and an exome analysis of five further cases. Nonsynonymous mutations were identified in 30 of the 40 genes, 18 being recurrently mutated. We identified recurrently mutated genes previously unknown to be mutated in T-PLL, which are SAMHD1, HERC1, HERC2, PRDM2, PARP10, PTPRC, and FOXP1. SAMHD1 regulates cellular deoxynucleotide levels and acts as a potential tumor suppressor in other leukemias. We observed destructive mutations in 18% of cases as well as deletions in two further cases. Taken together, we identified additional genes involved in JAK/STAT signaling (PTPRC), epigenetic regulation (PRDM2), or DNA damage repair (SAMHD1, PARP10, HERC1, and HERC2) as being recurrently mutated in T-PLL. Thus, our study considerably extends the picture of pathways involved in molecular pathogenesis of T-PLL and identifies the tumor suppressor gene SAMHD1 with ~20% of T-PLL affected by destructive lesions likely as major player in T-PLL pathogenesis.
Collapse
Affiliation(s)
- Patricia Johansson
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany. .,Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ludger Klein-Hitpass
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Bijan Mahboubi
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Anke Bergmann
- Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig Holstein, Kiel, Germany
| | - René Scholtysik
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martina Brauser
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Lollies
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Reiner Siebert
- Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig Holstein, Kiel, Germany.,Institute of Human Genetics, University of Ulm and University Hospital of Ulm, Ulm, Germany
| | - Thorsten Zenz
- Department of Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ulrich Dührsen
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jan Dürig
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
17
|
Zhang J, Zhou W, Wang X, Wang L. The CRISPR-Cas9 system: a promising tool for discovering potential approaches to overcome drug resistance in cancer. RSC Adv 2018; 8:33464-33472. [PMID: 35548117 PMCID: PMC9086466 DOI: 10.1039/c8ra04509g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/18/2018] [Indexed: 12/26/2022] Open
Abstract
The CRISPR-Cas system was identified in bacteria as an immune defense mechanism against threats from the external environment. A common form of this system, called CRISPR-Cas9, is now widely used in gene editing, especially in mammalian cells. Through CRISPR-Cas9, gene knock-ins or knock-outs have become more feasible, thus deepening our understanding of the mechanisms of human diseases, including cancers, and suggesting possible treatment strategies. In this review, we discuss how CRISPR-Cas9 can be used as a tool to discover more about drug-resistance in cancers, including both the underlying mechanisms and ways to overcome them. The CRISPR-Cas system was identified in bacteria as an immune defense mechanism against threats from the external environment.![]()
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang
- PR China
| | - Wenlong Zhou
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang
- PR China
| | - Xiaoxuan Wang
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang
- PR China
| | - Lihui Wang
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang
- PR China
| |
Collapse
|
18
|
Zhang GH, Yuan JM, Qian G, Gu CX, Wei K, Mo DL, Qin JK, Peng Y, Zhou ZP, Pan CX, Su GF. Phthalazino[1,2-b]quinazolinones as p53 Activators: Cell Cycle Arrest, Apoptotic Response and Bak–Bcl-xl Complex Reorganization in Bladder Cancer Cells. J Med Chem 2017; 60:6853-6866. [DOI: 10.1021/acs.jmedchem.6b01769] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guo-Hai Zhang
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
- Guangxi
Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology,
School of Life Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Jing-Mei Yuan
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Gang Qian
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Chen-Xi Gu
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Kai Wei
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Jiang-Ke Qin
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Yan Peng
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Zu-Ping Zhou
- Guangxi
Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology,
School of Life Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Cheng-Xue Pan
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Gui-Fa Su
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
19
|
Mills AA. The Chromodomain Helicase DNA-Binding Chromatin Remodelers: Family Traits that Protect from and Promote Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026450. [PMID: 28096241 DOI: 10.1101/cshperspect.a026450] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A plethora of mutations in chromatin regulators in diverse human cancers is emerging, attesting to the pivotal role of chromatin dynamics in tumorigenesis. A recurrent theme is inactivation of the chromodomain helicase DNA-binding (CHD) family of proteins-ATP-dependent chromatin remodelers that govern the cellular machinery's access to DNA, thereby controlling fundamental processes, including transcription, proliferation, and DNA damage repair. This review highlights what is currently known about how genetic and epigenetic perturbation of CHD proteins and the pathways that they regulate set the stage for cancer, providing new insight for designing more effective anti-cancer therapies.
Collapse
Affiliation(s)
- Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724
| |
Collapse
|
20
|
Genetic and Epigenetic Alterations in Bladder Cancer. Int Neurourol J 2016; 20:S84-94. [PMID: 27915480 PMCID: PMC5169086 DOI: 10.5213/inj.1632752.376] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer is one of the most common cancers worldwide, with a high rate of recurrence and poor outcomes as a result of relapse. Bladder cancer patients require lifelong invasive monitoring and treatment, making bladder cancer one of the most expensive malignancies. Lines of evidence increasingly point to distinct genetic and epigenetic alteration patterns in bladder cancer, even between the different stages and grades of disease. In addition, genetic and epigenetic alterations have been demonstrated to play important roles during bladder tumorigenesis. This review will focus on bladder cancer-associated genomic and epigenomic alterations, which are common in bladder cancer and provide potential diagnostic markers and therapeutic targets for bladder cancer treatment.
Collapse
|
21
|
Yang Z, Wu S, Cai Z, Li C. Reply from Authors re: Xue-Ru Wu. Attention to Detail by Single-cell sequencing. Eur Urol 2017;71:13-4. Eur Urol 2016; 71:15-16. [PMID: 27842721 DOI: 10.1016/j.eururo.2016.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Zhao Yang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Song Wu
- Department of Urological Surgery, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Zhiming Cai
- Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Beijing Jianlan Institute of Medicine, Beijing, China.
| |
Collapse
|
22
|
PS341 inhibits hepatocellular and colorectal cancer cells through the FOXO3/CTNNB1 signaling pathway. Sci Rep 2016; 6:22090. [PMID: 26915315 PMCID: PMC4768146 DOI: 10.1038/srep22090] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) are among the most common cancers across the world. Particularly, a large number of patients with CRC also have liver metastasis. Currently, there are just a few targeted drugs against these two kinds of tumors which can only benefit a very small population of patients. Therefore, the need of more effective therapeutic drugs or strategies for these two types of cancers is urgent. PS341 (Bortezomib) is the first proteasome inhibitor drug which has been approved in clinical treatment for multiple myeloma. Here we demonstrated that PS341 negatively regulated HCC and CRC both in vitro and in vivo, including the inhibition of cell proliferation, epithelial-mesenchymal transition (EMT), the expression of stemness-related genes, cell migration and invasiveness. Mechanically, PS341 upregulated the expression of FOXO3, which inhibited the transcriptional activation of CTNNB1. The downregualtion of CTNNB1 led to apoptosis, cell cycle arrest, and the inhibition of migration, invasion, self-renewal and tumor formation of these two cancer types. In sum, our findings shed light on the PS341 mediated targeted therapy against both HCC and CRC in the future.
Collapse
|