1
|
Garg P, Singhal G, Pareek S, Kulkarni P, Horne D, Nath A, Salgia R, Singhal SS. Unveiling the potential of gene editing techniques in revolutionizing Cancer treatment: A comprehensive overview. Biochim Biophys Acta Rev Cancer 2025; 1880:189233. [PMID: 39638158 DOI: 10.1016/j.bbcan.2024.189233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Gene editing techniques have emerged as powerful tools in biomedical research, offering precise manipulation of genetic material with the potential to revolutionize cancer treatment strategies. This review provides a comprehensive overview of the current landscape of gene editing technologies, including CRISPR-Cas systems, base editing, prime editing, and synthetic gene circuits, highlighting their applications and potential in cancer therapy. It discusses the mechanisms, advantages, and limitations of each gene editing approach, emphasizing their transformative impact on targeting oncogenes, tumor suppressor genes, and drug resistance mechanisms in various cancer types. The review delves into population-level interventions and precision prevention strategies enabled by gene editing technologies, including gene drives, synthetic gene circuits, and precision prevention tools, for controlling cancer-causing genes, targeting pre-cancerous lesions, and implementing personalized preventive measures. Ethical considerations, regulatory challenges, and future directions in gene editing research for cancer treatment are also addressed. This review highlights how gene editing could revolutionize precision medicine by enhancing patient care and advancing cancer treatments with targeted, personalized methods. For these benefits to be fully realized, collaboration among researchers, doctors, regulators, and patient advocates is crucial in fighting cancer and meeting clinical needs.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Gargi Singhal
- Undergraduate Medical Sciences, S.N. Medical College Agra, Uttar Pradesh 282002, India
| | - Siddhika Pareek
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
2
|
Khiabani NA, Doustvandi MA, Story D, Nobari SA, Hajizadeh M, Petersen R, Dunbar G, Rossignol J. Glioblastoma therapy: State of the field and future prospects. Life Sci 2024; 359:123227. [PMID: 39537100 DOI: 10.1016/j.lfs.2024.123227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GB) is a cancerous brain tumor that originates from glial cells and leads to thousands of deaths each year and a five-year survival of only 6.8 %. Treatments for GB include surgery, chemotherapy, radiation, and immunotherapy. GB is an incurable fatal disease, necessitating the development of innovative strategies to find a developing effective therapy. Genetic therapies may be crucial in treating GB by identifying the mutations and amplifications of multiple genes, which drive its proliferation and spread. Use of small interfering RNAs (siRNAs) provides a novel technology used to suppress the genes associated with disease, which forms a basis for targeted therapy in GB and its stem cell population, which are recognized for their ability to develop resistance to chemotherapy and tumorigenic capabilities. This review examines the use of siRNAs in GB, emphasizing their effectiveness in suppressing key oncogenes and signaling pathways associated with tumor development, invasion, stemness, and resistance to standard treatments. siRNA-based gene silencing is a promising approach for developing targeted therapeutics against GB and associated stem cell populations, potentially enhancing patient outcomes and survival rates in this devastating disease.
Collapse
Affiliation(s)
- Nadia Allahyarzadeh Khiabani
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Darren Story
- Department of Psychology, Saginaw Valley State University, University Center, MI 48710, USA
| | | | | | - Robert Petersen
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Gary Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
3
|
Samareh Salavatipour M, Poursalehi Z, Hosseini Rouzbahani N, Mohammadyar S, Vasei M. CRISPR-Cas9 in basic and translational aspects of cancer therapy. BIOIMPACTS : BI 2024; 14:30087. [PMID: 39493894 PMCID: PMC11530967 DOI: 10.34172/bi.2024.30087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 11/05/2024]
Abstract
Introduction The discovery of gene editing techniques has opened a new era within the field of biology and enabled scientists to manipulate nucleic acid molecules. CRISPR-Cas9 genome engineering has revolutionized this achievement by successful targeting the DNA molecule and editing its sequence. Since genomic changes are the basis of the birth and growth of many tumors, CRISPR-Cas9 method has been successfully applied to identify and manipulate the genes which are involved in initiating and driving some neoplastic processes. Methods By review of the existing literature on application of CRISPR-Cas9 in cancer, different databases, such as PubMed and Google Scholar, we started data collection for "CRISPR-Cas9", "Genome Editing", "Cancer", "Solid tumors", "Hematologic malignancy" "Immunotherapy", "Diagnosis", "Drug resistance" phrases. Clinicaltrials.gov, a resource that provides access to information on clinical trials, was also searched in this review. Results We have defined the basics of this technology and then mentioned some clinical and preclinical studies using this technology in the treatment of a variety of solid tumors as well as hematologic neoplasms. Finally, we described the progress made by this technology in boosting immune-mediated cell therapy in oncology, such as CAR-T cells, CAR-NK cells, and CAR-M cells. Conclusion CRISPR-Cas9 system revolutionized the therapeutic strategies in some solid malignant tumors and leukemia through targeting the key genes involved in the pathogenesis of these cancers.
Collapse
Affiliation(s)
- Maryam Samareh Salavatipour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Poursalehi
- Department of Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Negin Hosseini Rouzbahani
- Department of Medical Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Sohaib Mohammadyar
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Vasei
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Mistry T, Nath A, Pal R, Ghosh S, Mahata S, Kumar Sahoo P, Sarkar S, Choudhury T, Nath P, Alam N, Nasare VD. Emerging Futuristic Targeted Therapeutics: A Comprising Study Towards a New Era for the Management of TNBC. Am J Clin Oncol 2024; 47:132-148. [PMID: 38145412 DOI: 10.1097/coc.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Triple-negative breast cancer is characterized by high lethality attributed to factors such as chemoresistance, transcriptomic, and genomic heterogeneity, leading to a poor prognosis and limiting available targeted treatment options. While the identification of molecular targets remains pivotal for therapy involving chemo drugs, the current challenge lies in the poor response rates, low survival rates, and frequent relapses. Despite various clinical investigations exploring molecular targeted therapies in conjunction with conventional chemo treatment, the outcomes have been less than optimal. The critical need for more effective therapies underscores the urgency to discover potent novel treatments, including molecular and immune targets, as well as emerging strategies. This review provides a comprehensive analysis of conventional treatment approaches and explores emerging molecular and immune-targeted therapeutics, elucidating their mechanisms to address the existing obstacles for a more effective management of triple-negative breast cancer.
Collapse
Affiliation(s)
- Tanuma Mistry
- Departments of Pathology and Cancer Screening
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal
| | - Arijit Nath
- Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, School of Biotechnology, Bhubaneswar, Odisha, India
| | - Ranita Pal
- Departments of Pathology and Cancer Screening
| | | | | | | | | | | | | | - Neyaz Alam
- Surgical Oncology, Chittaranjan National Cancer Institute
| | | |
Collapse
|
5
|
Sahranavard T, Mehrabadi S, Pourali G, Maftooh M, Akbarzade H, Hassanian SM, Mobarhan MG, Ferns GA, Khazaei M, Avan A. The Potential Therapeutic Applications of CRISPR/Cas9 in Colorectal Cancer. Curr Med Chem 2024; 31:5768-5778. [PMID: 37724673 DOI: 10.2174/0929867331666230915103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023]
Abstract
The application of the CRISPR-associated nuclease 9 (Cas9) system in tumor studies has led to the discovery of several new treatment strategies for colorectal cancer (CRC), including the recognition of novel target genes, the construction of animal mass models, and the identification of genes related to chemotherapy resistance. CRISPR/Cas9 can be applied to genome therapy for CRC, particularly regarding molecular-targeted medicines and suppressors. This review summarizes some aspects of using CRISPR/- Cas9 in treating CRC. Further in-depth and systematic research is required to fully realize the potential of CRISPR/Cas9 in CRC treatment and integrate it into clinical practice.
Collapse
Affiliation(s)
- Toktam Sahranavard
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Mehrabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City QLD 4000, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
6
|
Hillman T. The use of plant-derived exosome-like nanoparticles as a delivery system of CRISPR/Cas9-based therapeutics for editing long non-coding RNAs in cancer colon cells. Front Oncol 2023; 13:1194350. [PMID: 37388221 PMCID: PMC10301836 DOI: 10.3389/fonc.2023.1194350] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023] Open
Abstract
Colon cancer is one of the leading causes of cancer in the United States. Colon cancer develops from the many gene mutations found in the genomes of colon cancer cells. Long non-coding RNAs (lncRNAs) can cause the development and progression of many cancers, including colon cancer. LncRNAs have been and could be corrected through the gene-editing technology of the clustered repeats of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) system to reduce the proliferation of cancer cells in the colon. However, many current delivery systems for transporting CRISPR/Cas9-based therapeutics in vivo need more safety and efficiency. CRISPR/Cas9-based therapeutics require a safe and effective delivery system to more directly and specifically target cancer cells present in the colon. This review will present pertinent evidence for the increased efficiency and safety of using plant-derived exosome-like nanoparticles as nanocarriers for delivering CRISPR/Cas9-based therapeutics to target colon cancer cells directly.
Collapse
|
7
|
Rabaan AA, AlSaihati H, Bukhamsin R, Bakhrebah MA, Nassar MS, Alsaleh AA, Alhashem YN, Bukhamseen AY, Al-Ruhimy K, Alotaibi M, Alsubki RA, Alahmed HE, Al-Abdulhadi S, Alhashem FA, Alqatari AA, Alsayyah A, Farahat RA, Abdulal RH, Al-Ahmed AH, Imran M, Mohapatra RK. Application of CRISPR/Cas9 Technology in Cancer Treatment: A Future Direction. Curr Oncol 2023; 30:1954-1976. [PMID: 36826113 PMCID: PMC9955208 DOI: 10.3390/curroncol30020152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Gene editing, especially with clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9), has advanced gene function science. Gene editing's rapid advancement has increased its medical/clinical value. Due to its great specificity and efficiency, CRISPR/Cas9 can accurately and swiftly screen the whole genome. This simplifies disease-specific gene therapy. To study tumor origins, development, and metastasis, CRISPR/Cas9 can change genomes. In recent years, tumor treatment research has increasingly employed this method. CRISPR/Cas9 can treat cancer by removing genes or correcting mutations. Numerous preliminary tumor treatment studies have been conducted in relevant fields. CRISPR/Cas9 may treat gene-level tumors. CRISPR/Cas9-based personalized and targeted medicines may shape tumor treatment. This review examines CRISPR/Cas9 for tumor therapy research, which will be helpful in providing references for future studies on the pathogenesis of malignancy and its treatment.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Rehab Bukhamsin
- Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Muhammed A. Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Majed S. Nassar
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Yousef N. Alhashem
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Ammar Y. Bukhamseen
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Khalil Al-Ruhimy
- Department of Public Health, Ministry of Health, Riyadh 14235, Saudi Arabia
| | - Mohammed Alotaibi
- Department of Public Health, Ministry of Health, Riyadh 14235, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Hejji E. Alahmed
- Department of Laboratory and Blood Bank, King Fahad Hospital, Al Hofuf 36441, Saudi Arabia
| | - Saleh Al-Abdulhadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Riyadh 11942, Saudi Arabia
- Saleh Office for Medical Genetic and Genetic Counseling Services, The House of Expertise, Prince Sattam Bin Abdulaziz University, Dammam 32411, Saudi Arabia
| | - Fatemah A. Alhashem
- Laboratory Medicine Department, Hematopathology Division, King Fahad Hospital of the University, Al-Khobar 31441, Saudi Arabia
| | - Ahlam A. Alqatari
- Hematopathology Department, Clinical Pathology, Al-Dorr Specialist Medical Center, Qatif 31911, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | | | - Rwaa H. Abdulal
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali H. Al-Ahmed
- Dammam Health Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| |
Collapse
|
8
|
Goebel J, Chmielewski J, Hrycyna CA. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: future opportunities for structure-based drug design of inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:784-804. [PMID: 34993424 PMCID: PMC8730335 DOI: 10.20517/cdr.2021.19] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp) and ABCG2 are multidrug transporters that confer drug resistance to numerous anti-cancer therapeutics in cell culture. These findings initially created great excitement in the medical oncology community, as inhibitors of these transporters held the promise of overcoming clinical multidrug resistance in cancer patients. However, clinical trials of P-gp and ABCG2 inhibitors in combination with cancer chemotherapeutics have not been successful due, in part, to flawed clinical trial designs resulting from an incomplete molecular understanding of the multifactorial basis of multidrug resistance (MDR) in the cancers examined. The field was also stymied by the lack of high-resolution structural information for P-gp and ABCG2 for use in the rational structure-based drug design of inhibitors. Recent advances in structural biology have led to numerous structures of both ABCG2 and P-gp that elucidated more clearly the mechanism of transport and the polyspecific nature of their substrate and inhibitor binding sites. These data should prove useful helpful for developing even more potent and specific inhibitors of both transporters. As such, although possible pharmacokinetic interactions would need to be evaluated, these inhibitors may show greater effectiveness in overcoming ABC-dependent multidrug resistance in combination with chemotherapeutics in carefully selected subsets of cancers. Another perhaps even more compelling use of these inhibitors may be in reversibly inhibiting endogenously expressed P-gp and ABCG2, which serve a protective role at various blood-tissue barriers. Inhibition of these transporters at sanctuary sites such as the brain and gut could lead to increased penetration by chemotherapeutics used to treat brain cancers or other brain disorders and increased oral bioavailability of these agents, respectively.
Collapse
Affiliation(s)
- Jason Goebel
- Department of Chemistry, Purdue University West Lafayette, IN 47907, USA
| | - Jean Chmielewski
- Department of Chemistry, Purdue University West Lafayette, IN 47907, USA
| | | |
Collapse
|
9
|
Targeting Cancer with CRISPR/Cas9-Based Therapy. Int J Mol Sci 2022; 23:ijms23010573. [PMID: 35008996 PMCID: PMC8745084 DOI: 10.3390/ijms23010573] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a devastating condition characterised by the uncontrolled division of cells with many forms remaining resistant to current treatment. A hallmark of cancer is the gradual accumulation of somatic mutations which drive tumorigenesis in cancerous cells, creating a mutation landscape distinctive to a cancer type, an individual patient or even a single tumour lesion. Gene editing with CRISPR/Cas9-based tools now enables the precise and permanent targeting of mutations and offers an opportunity to harness this technology to target oncogenic mutations. However, the development of safe and effective gene editing therapies for cancer relies on careful design to spare normal cells and avoid introducing other mutations. This article aims to describe recent advancements in cancer-selective treatments based on the CRISPR/Cas9 system, especially focusing on strategies for targeted delivery of the CRISPR/Cas9 machinery to affected cells, controlling Cas9 expression in tissues of interest and disrupting cancer-specific genes to result in selective death of malignant cells.
Collapse
|
10
|
Zhao Z, Li C, Tong F, Deng J, Huang G, Sang Y. Review of applications of CRISPR-Cas9 gene-editing technology in cancer research. Biol Proced Online 2021; 23:14. [PMID: 34261433 PMCID: PMC8281662 DOI: 10.1186/s12575-021-00151-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Characterized by multiple complex mutations, including activation by oncogenes and inhibition by tumor suppressors, cancer is one of the leading causes of death. Application of CRISPR-Cas9 gene-editing technology in cancer research has aroused great interest, promoting the exploration of the molecular mechanism of cancer progression and development of precise therapy. CRISPR-Cas9 gene-editing technology provides a solid basis for identifying driver and passenger mutations in cancer genomes, which is of great value in genetic screening and for developing cancer models and treatments. This article reviews the current applications of CRISPR-Cas9 gene-editing technology in various cancer studies, the challenges faced, and the existing solutions, highlighting the potential of this technology for cancer treatment.
Collapse
Affiliation(s)
- Ziyi Zhao
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Chenxi Li
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Fei Tong
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330008, China
| | - Jingkuang Deng
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Guofu Huang
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China.
| | - Yi Sang
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China.
| |
Collapse
|
11
|
Deepak Singh D, Han I, Choi EH, Yadav DK. CRISPR/Cas9 based genome editing for targeted transcriptional control in triple-negative breast cancer. Comput Struct Biotechnol J 2021; 19:2384-2397. [PMID: 34025931 PMCID: PMC8120801 DOI: 10.1016/j.csbj.2021.04.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women at the global level and the highest mortality rate has been observed with triple-negative breast cancer (TNBC). Accumulation of genetic lesions an aberrant gene expression and protein degradation are considered to underlie the onset of tumorigenesis and metastasis. Therefore, the challenge to identify the genes and molecules that could be potentially used as potent biomarkers for personalized medicine against TNBC with minimal or no associated side effects. Discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) arrangement and an increasing repertoire of its new variants has provided a much-needed fillip towards editing TNBC genomes. In this review, we discuss the CRISPR/Cas9 genome editing, CRISPR Technology for diagnosis of (Triple-negative breast cancer) TNBC, Drug Resistance, and potential applications of CRISPR/Cas9 and its variants in deciphering or engineering intricate molecular and epigenetic mechanisms associated with TNBC. Furthermore, we have also explored the TNBC and CRISPR/Cas9 genome editing potential for repairing, genetic modifications in TNBC.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon City, Republic of Korea
| |
Collapse
|
12
|
Is the ZIKV Congenital Syndrome and Microcephaly Due to Syndemism with Latent Virus Coinfection? Viruses 2021; 13:v13040669. [PMID: 33924398 PMCID: PMC8069280 DOI: 10.3390/v13040669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 01/04/2023] Open
Abstract
The emergence of the Zika virus (ZIKV) mirrors its evolutionary nature and, thus, its ability to grow in diversity or complexity (i.e., related to genome, host response, environment changes, tropism, and pathogenicity), leading to it recently joining the circle of closed congenital pathogens. The causal relation of ZIKV to microcephaly is still a much-debated issue. The identification of outbreak foci being in certain endemic urban areas characterized by a high-density population emphasizes that mixed infections might spearhead the recent appearance of a wide range of diseases that were initially attributed to ZIKV. Globally, such coinfections may have both positive and negative effects on viral replication, tropism, host response, and the viral genome. In other words, the possibility of coinfection may necessitate revisiting what is considered to be known regarding the pathogenesis and epidemiology of ZIKV diseases. ZIKV viral coinfections are already being reported with other arboviruses (e.g., chikungunya virus (CHIKV) and dengue virus (DENV)) as well as congenital pathogens (e.g., human immunodeficiency virus (HIV) and cytomegalovirus (HCMV)). However, descriptions of human latent viruses and their impacts on ZIKV disease outcomes in hosts are currently lacking. This review proposes to select some interesting human latent viruses (i.e., herpes simplex virus 2 (HSV-2), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), human parvovirus B19 (B19V), and human papillomavirus (HPV)), whose virological features and co-exposition with ZIKV may provide evidence of the syndemism process, shedding some light on the emergence of the ZIKV-induced global congenital syndrome in South America.
Collapse
|
13
|
Komisarenko SV, Romaniuk SI. Prospects of genome editing using CRISPR/CAS or how to master genetic scissors. Nobel Prize in Chemistry 2020. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.01.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Martinez-Escobar A, Luna-Callejas B, Ramón-Gallegos E. CRISPR-dCas9-Based Artificial Transcription Factors to Improve Efficacy of Cancer Treatment With Drug Repurposing: Proposal for Future Research. Front Oncol 2021; 10:604948. [PMID: 33614489 PMCID: PMC7887379 DOI: 10.3389/fonc.2020.604948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Due to the high resistance that cancer has shown to conventional therapies, it is difficult to treat this disease, particularly in advanced stages. In recent decades, treatments have been improved, being more specific according to the characteristics of the tumor, becoming more effective, less toxic, and invasive. Cancer can be treated by the combination of surgery, radiation therapy, and/or drug administration, but therapies based on anticancer drugs are the main cancer treatment. Cancer drug development requires long-time preclinical and clinical studies and is not cost-effective. Drug repurposing is an alternative for cancer therapies development since it is faster, safer, easier, cheaper, and repurposed drugs do not have serious side effects. However, cancer is a complex, heterogeneous, and highly dynamic disease with multiple evolving molecular constituents. This tumor heterogeneity causes several resistance mechanisms in cancer therapies, mainly the target mutation. The CRISPR-dCas9-based artificial transcription factors (ATFs) could be used in cancer therapy due to their possibility to manipulate DNA to modify target genes, activate tumor suppressor genes, silence oncogenes, and tumor resistance mechanisms for targeted therapy. In addition, drug repurposing combined with the use of CRISPR-dCas9-based ATFs could be an alternative cancer treatment to reduce cancer mortality. The aim of this review is to describe the potential of the repurposed drugs combined with CRISPR-dCas9-based ATFs to improve the efficacy of cancer treatment, discussing the possible advantages and disadvantages.
Collapse
Affiliation(s)
- Alejandro Martinez-Escobar
- Environmental Cytopathology Laboratory, Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Benjamín Luna-Callejas
- Environmental Cytopathology Laboratory, Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eva Ramón-Gallegos
- Environmental Cytopathology Laboratory, Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
15
|
Klaver-Flores S, Zittersteijn HA, Canté-Barrett K, Lankester A, Hoeben RC, Gonçalves MAFV, Pike-Overzet K, Staal FJT. Genomic Engineering in Human Hematopoietic Stem Cells: Hype or Hope? Front Genome Ed 2021; 2:615619. [PMID: 34713237 PMCID: PMC8525357 DOI: 10.3389/fgeed.2020.615619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Many gene editing techniques are developed and tested, yet, most of these are optimized for transformed cell lines, which differ from their primary cell counterparts in terms of transfectability, cell death propensity, differentiation capability, and chromatin accessibility to gene editing tools. Researchers are working to overcome the challenges associated with gene editing of primary cells, namely, at the level of improving the gene editing tool components, e.g., the use of modified single guide RNAs, more efficient delivery of Cas9 and RNA in the ribonucleoprotein of these cells. Despite these efforts, the low efficiency of proper gene editing in true primary cells is an obstacle that needs to be overcome in order to generate sufficiently high numbers of corrected cells for therapeutic use. In addition, many of the therapeutic candidate genes for gene editing are expressed in more mature blood cell lineages but not in the hematopoietic stem cells (HSCs), where they are tightly packed in heterochromatin, making them less accessible to gene editing enzymes. Bringing HSCs in proliferation is sometimes seen as a solution to overcome lack of chromatin access, but the induction of proliferation in HSCs often is associated with loss of stemness. The documented occurrences of off-target effects and, importantly, on-target side effects also raise important safety issues. In conclusion, many obstacles still remain to be overcome before gene editing in HSCs for gene correction purposes can be applied clinically. In this review, in a perspective way, we will discuss the challenges of researching and developing a novel genetic engineering therapy for monogenic blood and immune system disorders.
Collapse
Affiliation(s)
| | - Hidde A. Zittersteijn
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Arjan Lankester
- Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
16
|
Caobi A, Dutta RK, Garbinski LD, Esteban-Lopez M, Ceyhan Y, Andre M, Manevski M, Ojha CR, Lapierre J, Tiwari S, Parira T, El-Hage N. The Impact of CRISPR-Cas9 on Age-related Disorders: From Pathology to Therapy. Aging Dis 2020; 11:895-915. [PMID: 32765953 PMCID: PMC7390517 DOI: 10.14336/ad.2019.0927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
With advances in medical technology, the number of people over the age of 60 is on the rise, and thus, increasing the prevalence of age-related pathologies within the aging population. Neurodegenerative disorders, cancers, metabolic and inflammatory diseases are some of the most prevalent age-related pathologies affecting the growing population. It is imperative that a new treatment to combat these pathologies be developed. Although, still in its infancy, the CRISPR-Cas9 system has become a potent gene-editing tool capable of correcting gene-mediated age-related pathology, and therefore ameliorating or eliminating disease symptoms. Deleting target genes using the CRISPR-Cas9 system or correcting for gene mutations may ameliorate many different neurodegenerative disorders detected in the aging population. Cancer cells targeted by the CRISPR-Cas9 system may result in an increased sensitivity to chemotherapeutics, lower proliferation, and higher cancer cell death. Finally, reducing gene targeting inflammatory molecules production through microRNA knockout holds promise as a therapeutic strategy for both arthritis and inflammation. Here we present a review based on how the expanding world of genome editing can be applied to disorders and diseases affecting the aging population.
Collapse
Affiliation(s)
- Allen Caobi
- 1Departments of Immunology and Nano-medicine
| | | | - Luis D Garbinski
- 3Cell Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer death globally, mainly due to lack of effective treatments – a problem that gene therapy is poised to solve. Successful gene therapy requires safe and efficient delivery vectors, and recent advances in both viral and nonviral vectors have made an important impact on HCC gene therapy delivery. This review explores how adenoviral, retroviral and adeno-associated viral vectors have been modified to increase safety and delivery capacity, highlighting studies and clinical trials using these vectors for HCC gene therapy. Nanoparticles, liposomes, exosomes and virosomes are also featured in their roles as HCC gene delivery vectors. Finally, new discoveries in gene editing technology and their impacts on HCC gene therapy are discussed.
Collapse
|
18
|
Ryu JY, Won EJ, Lee HAR, Kim JH, Hui E, Kim HP, Yoon TJ. Ultrasound-activated particles as CRISPR/Cas9 delivery system for androgenic alopecia therapy. Biomaterials 2019; 232:119736. [PMID: 31901692 DOI: 10.1016/j.biomaterials.2019.119736] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/27/2019] [Accepted: 12/25/2019] [Indexed: 01/18/2023]
Abstract
Compared to a plasmid, viral, and other delivery systems, direct Cas9/sgRNA protein delivery has several advantages such as low off-targeting effects and non-integration, but it still has limitations due to low transfer efficiency. As such, the CRISPR/Cas9 system is being developed in combination with nano-carrier technology to enhance delivery efficiency and biocompatibility. We designed a microbubble-nanoliposomal particle as a Cas9/sgRNA riboprotein complex carrier, which effectively facilitates local delivery to a specific site when agitated by ultrasound activation. In practice, we successfully transferred the protein constructs into dermal papilla cells in the hair follicle of androgenic alopecia animals by microbubble cavitation induced sonoporation of our particle. The delivered Cas9/sgRNA recognized and edited specifically the target gene with high efficiency in vitro and in vivo, thus recovering hair growth. We demonstrated the topical application of ultrasound-activated nanoparticles for androgenic alopecia therapy through the suppression of SRD5A2 protein production by CRISPR-based genomic editing.
Collapse
Affiliation(s)
- Jee-Yeon Ryu
- Lab. of NanoPharmacy, College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou Universtiy, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Eun-Jeong Won
- Lab. of NanoPharmacy, College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou Universtiy, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Han A Reum Lee
- Lab. of NanoPharmacy, College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou Universtiy, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jin Hyun Kim
- Lab. of NanoPharmacy, College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou Universtiy, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Emmanuel Hui
- Lab. of NanoPharmacy, College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou Universtiy, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Hong Pyo Kim
- Lab. of NanoPharmacy, College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou Universtiy, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea.
| | - Tae-Jong Yoon
- Lab. of NanoPharmacy, College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou Universtiy, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea.
| |
Collapse
|
19
|
Jiang C, Lin X, Zhao Z. Applications of CRISPR/Cas9 Technology in the Treatment of Lung Cancer. Trends Mol Med 2019; 25:1039-1049. [DOI: 10.1016/j.molmed.2019.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/12/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022]
|
20
|
El-Kenawy A, Benarba B, Neves AF, de Araujo TG, Tan BL, Gouri A. Gene surgery: Potential applications for human diseases. EXCLI JOURNAL 2019; 18:908-930. [PMID: 31762718 PMCID: PMC6868916 DOI: 10.17179/excli2019-1833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
Gene therapy became in last decade a new emerging therapeutic era showing promising results against different diseases such as cancer, cardiovascular diseases, diabetes, and neurological disorders. Recently, the genome editing technique for eukaryotic cells called CRISPR-Cas (Clustered Regulatory Interspaced Short Palindromic Repeats) has enriched the field of gene surgery with enhanced applications. In the present review, we summarized the different applications of gene surgery for treating human diseases such as cancer, diabetes, nervous, and cardiovascular diseases, besides the molecular mechanisms involved in these important effects. Several studies support the important therapeutic applications of gene surgery in a large number of health disorders and diseases including β-thalassemia, cancer, immunodeficiencies, diabetes, and neurological disorders. In diabetes, gene surgery was shown to be effective in type 1 diabetes by triggering different signaling pathways. Furthermore, gene surgery, especially that using CRISPR-Cas possessed important application on diagnosis, screening and treatment of several cancers such as lung, liver, pancreatic and colorectal cancer. Nevertheless, gene surgery still presents some limitations such as the design difficulties and costs regarding ZFNs (Zinc Finger Nucleases) and TALENs (Transcription Activator-Like Effector Nucleases) use, off-target effects, low transfection efficiency, in vivo delivery-safety and ethical issues.
Collapse
Affiliation(s)
- Ayman El-Kenawy
- Department of Pathology, College of Medicine, Taif University, Saudi Arabia
- Department of Molecular Biology, GEBRI, University of Sadat City, P.O. Box 79, Sadat City, Egypt
| | - Bachir Benarba
- Laboratory Research on Biological Systems and Geomatics, Faculty of Nature and Life Sciences, University of Mascara, Algeria
| | - Adriana Freitas Neves
- Institute of Biotechnology, Molecular Biology Laboratory, Universidade Federal de Goias, Catalao, Brazil
| | - Thaise Gonçalves de Araujo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, Brazil
| | - Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Faculty of Medicine, University of Annaba, Algeria
| |
Collapse
|
21
|
Tian X, Gu T, Patel S, Bode AM, Lee MH, Dong Z. CRISPR/Cas9 - An evolving biological tool kit for cancer biology and oncology. NPJ Precis Oncol 2019; 3:8. [PMID: 30911676 PMCID: PMC6423228 DOI: 10.1038/s41698-019-0080-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
The development of genetic engineering in the 1970s marked a new frontier in genome-editing technology. Gene-editing technologies have provided a plethora of benefits to the life sciences. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/ Cas9) system is a versatile technology that provides the ability to add or remove DNA in the genome in a sequence-specific manner. Serious efforts are underway to improve the efficiency of CRISPR/Cas9 targeting and thus reduce off-target effects. Currently, various applications of CRISPR/Cas9 are used in cancer biology and oncology to perform robust site-specific gene editing, thereby becoming more useful for biological and clinical applications. Many variants and applications of CRISPR/Cas9 are being rapidly developed. Experimental approaches that are based on CRISPR technology have created a very promising tool that is inexpensive and simple for developing effective cancer therapeutics. This review discusses diverse applications of CRISPR-based gene-editing tools in oncology and potential future cancer therapies.
Collapse
Affiliation(s)
- Xueli Tian
- Basic Medical College, Zhengzhou University, 450001 Zhengzhou, Henan China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
| | - Tingxuan Gu
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
| | - Satyananda Patel
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, Austin, 55912 USA
| | - Mee-Hyun Lee
- Basic Medical College, Zhengzhou University, 450001 Zhengzhou, Henan China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Zigang Dong
- Basic Medical College, Zhengzhou University, 450001 Zhengzhou, Henan China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
- The Hormel Institute, University of Minnesota, Austin, 55912 USA
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
22
|
Karimian A, Azizian K, Parsian H, Rafieian S, Shafiei‐Irannejad V, Kheyrollah M, Yousefi M, Majidinia M, Yousefi B. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol 2019; 234:12267-12277. [PMID: 30697727 DOI: 10.1002/jcp.27972] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
- Cancer & Immunology Research Center, Kurdistan University of Medical Sciences Sanandaj Iran
- Student Research Committee, Babol University of Medical Sciences Babol Iran
| | - Khalil Azizian
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Science Tabriz Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Sona Rafieian
- Department of Oral and Maxillofacial Pathology School of Dentistry, Zanjan University of Medical Sciences Zanjan Iran
| | | | - Maryam Kheyrollah
- Department of Molecular Medicine National Institue of Genetic Engeneering and Biotechnology Tehran Iran
| | - Mehdi Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Majidinia
- Tumor Research Center, Urmia University of Medical Sciences Urmia Iran
| | - Bahman Yousefi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences Tehran Iran
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| |
Collapse
|
23
|
Tiloke C, Anand K, Gengan RM, Chuturgoon AA. Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomed Pharmacother 2018; 108:457-466. [DOI: 10.1016/j.biopha.2018.09.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
|
24
|
Liu Q, Fan D, Adah D, Wu Z, Liu R, Yan QT, Zhang Y, Du ZY, Wang D, Li Y, Bao SY, Liu LP. CRISPR/Cas9‑mediated hypoxia inducible factor‑1α knockout enhances the antitumor effect of transarterial embolization in hepatocellular carcinoma. Oncol Rep 2018; 40:2547-2557. [PMID: 30226584 PMCID: PMC6151876 DOI: 10.3892/or.2018.6667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Transarterial embolization (TAE) is a palliative option commonly used for the treatment of advanced, unresectable hepatocellular carcinoma (HCC). However, patient prognosis in regards to overall survival has not improved with this method, mainly due to hypoxia-inducible factor-1α (HIF-1α)-induced angiogenesis and invasiveness. Thus, it is hypothesized that HIF-1α may be an ideal knockout target for the treatment of HCC in combination with TAE. Thus, in the present study, HIF-1α knockout was conducted in human liver cancer SMMC-7721 cells and a xenograft HCC model was established using a lentivirus-mediated CRISPR/Cas system (LV-Cas) with small guide RNA-721 (LV-H721). Furthermore, hepatic artery ligation (HAL) was used to mimic human transarterial chemoembolization in mice. The results revealed that HIF-1α was highly expressed in both HCC patient tissues and SMMC-7721-induced tumor tissues. The HIF-1α knockout in SMMC-7721 cells significantly suppressed cell invasiveness and migration, and induced cell apoptosis under CoCl2-mimicking hypoxic conditions. Compared with the control groups, HAL + LV-H721 inhibited SMMC-7721 tumor growth in orthotopic HCC and markedly prolonged the survival of HCC-bearing mice, which was accompanied by a lower CD31 expression (tumor angiogenesis) and increased apoptosis in the tumor cells. These findings demonstrated a valuable antitumor synergism in combining CRISPR/Cas9-mediated HIF-1α knockout with TAE in mice and highlighted the possibility that HIF-1α may be an effective therapeutic knockout target in combination with TAE for HCC treatment.
Collapse
Affiliation(s)
- Quan Liu
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Dahua Fan
- Department of Chinese and Western Integrative Medicine, The Eighth Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Dickson Adah
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhengzhi Wu
- Department of Chinese and Western Integrative Medicine, The Eighth Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Renyan Liu
- Department of Pharmacology, Upstate Medical University, State University of New York, Syracuse, NY 13210, USA
| | - Qiao-Ting Yan
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Zhi-Yong Du
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Dou Wang
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Yan Li
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Shi-Yun Bao
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Li-Ping Liu
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
25
|
Estêvão D, Rios Costa N, da Costa RG, Medeiros R. CRISPR-Cas9 therapies in experimental mouse models of cancer. Future Oncol 2018; 14:2083-2095. [PMID: 30027767 DOI: 10.2217/fon-2018-0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The CRISPR-Cas9, a part of the defence mechanism from bacteria, has rapidly become the simplest, fastest and the most precise genome-editing tool available. The therapeutic applications of CRISPR are boundless: correction of mutations in several disorders, inactivation of oncogenes and viral oncoproteins, and activation of tumor suppressor genes. In this review, we expose recent advances concerning animal models of cancer that use CRISPR-Cas9, addressing also the current efforts to develop CRISPR-Cas9-based therapies, focusing on proof-of-concept studies. Finally, the review exposes some of the main challenges that this genome-editing tool faces. The key issue remains: does CRISPR-Cas9 have real potential for therapeutic application or will it just remain a wonderful research tool?
Collapse
Affiliation(s)
- Diogo Estêvão
- Molecular Oncology & Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal Porto, Portugal
| | - Natália Rios Costa
- Molecular Oncology & Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal Porto, Portugal
| | - Rui Gil da Costa
- Laboratory for Process Engineering, Environment, Biotechnology & Energy (LEPABE), Faculty of Engineering of the University of Porto (FEUP), 4200-465 Porto, Portugal.,Center for the Research & Technology of Agro-Environmental & Biological Sciences (CITAB), University of Trás-os-Montes & Alto Douro (UTAD), 5001-911 Vila Real, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal Porto, Portugal.,Research Department of the Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), 4200-177 Porto, Portugal Porto, Portugal.,Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal Porto, Portugal
| |
Collapse
|
26
|
Mukherjee N, Lu Y, Almeida A, Lambert K, Shiau CW, Su JC, Luo Y, Fujita M, Robinson WA, Robinson SE, Norris DA, Shellman YG. Use of a MCL-1 inhibitor alone to de-bulk melanoma and in combination to kill melanoma initiating cells. Oncotarget 2018; 8:46801-46817. [PMID: 27086916 PMCID: PMC5564524 DOI: 10.18632/oncotarget.8695] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/28/2016] [Indexed: 12/26/2022] Open
Abstract
MCL-1 (BCL-2 family anti-apoptotic protein) is responsible for melanoma's resistance to therapy. Cancer initiating cells also contribute to resistance and relapse from treatments. Here we examined the effects of the MCL-1 inhibitor SC-2001 in killing non melanoma-initiating-cells (bulk of melanoma), and melanoma-initiating-cells (MICs). By itself, SC-2001 significantly kills melanoma cells under monolayer conditions in vitro and in a conventional mouse xenograft model. However, even at high doses (10μM), SC-2001 does not effectively eliminate MICs. In contrast, the combination of SC-2001 with ABT-737 (a BCL-2/BCL-XL/BCL-W inhibitor) significantly decreases ALDH+ cells, disrupts primary spheres, and inhibits the self-renewability of MICs. These results were observed in multiple melanomas, including short term cultures of relapsed tumors from current treatments, independent of the mutation status of BRAF or NRAS. Using a low-cell-number mouse xenograft model, we examined the effects of these treatments on the tumor initiating ability of MIC-enriched cultures. The combination therapy reduces tumor formation significantly compared to either drug alone. Mechanistic studies using shRNA and the CRISPR-Cas9 technology demonstrated that the upregulation of pro-apoptotic proteins NOXA and BIM contribute to the combination-induced cell death. These results indicate that the MCL-1 inhibitor SC-2001 combined with ABT-737 is a promising treatment strategy for targeting melanoma.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, USA
| | - Yan Lu
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, USA
| | - Adam Almeida
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, USA
| | - Karoline Lambert
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, USA
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jung-Chen Su
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yuchun Luo
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, USA
| | - Mayumi Fujita
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, USA
| | - William A Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Steven E Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - David A Norris
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, USA.,Department of Veterans Affairs Medical Center, Dermatology Section, Denver, CO, USA
| | - Yiqun G Shellman
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, USA
| |
Collapse
|
27
|
Yang J, Meng X, Pan J, Jiang N, Zhou C, Wu Z, Gong Z. CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biol 2018; 15:35-43. [PMID: 29028415 PMCID: PMC5785983 DOI: 10.1080/15476286.2017.1391443] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 10/08/2017] [Indexed: 01/26/2023] Open
Abstract
Cancer is characterized by multiple genetic and epigenetic alterations, including a higher prevalence of mutations of oncogenes and/or tumor suppressors. Mounting evidences have shown that noncoding RNAs (ncRNAs) are involved in the epigenetic regulation of cancer genes and their associated pathways. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) system, a revolutionary genome-editing technology, has shed light on ncRNA-based cancer therapy. Here, we briefly introduce the classifications and mechanisms of CRISPR/Cas9 system. Importantly, we mainly focused on the applications of CRISPR/Cas9 system as a molecular tool for ncRNA (microRNA, long noncoding RNA and circular RNA, etc.) editing in human cancers, and the novel techniques that are based on CRISPR/Cas9 system. Additionally, the off-target effects and the corresponding solutions as well as the challenges toward CRISPR/Cas9 were also evaluated and discussed. Long- and short-ncRNAs have been employed as targets in precision oncology, and CRISPR/Cas9-mediated ncRNA editing may provide an excellent way to cure cancer.
Collapse
Affiliation(s)
- Jie Yang
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Jinchang Pan
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Nan Jiang
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Chengwei Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Zhenhua Wu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Ningbo Medical Center Lihuili Eastern Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
28
|
Lessard S, Francioli L, Alfoldi J, Tardif JC, Ellinor PT, MacArthur DG, Lettre G, Orkin SH, Canver MC. Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proc Natl Acad Sci U S A 2017; 114:E11257-E11266. [PMID: 29229813 PMCID: PMC5748207 DOI: 10.1073/pnas.1714640114] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The CRISPR-Cas9 nuclease system holds enormous potential for therapeutic genome editing of a wide spectrum of diseases. Large efforts have been made to further understanding of on- and off-target activity to assist the design of CRISPR-based therapies with optimized efficacy and safety. However, current efforts have largely focused on the reference genome or the genome of cell lines to evaluate guide RNA (gRNA) efficiency, safety, and toxicity. Here, we examine the effect of human genetic variation on both on- and off-target specificity. Specifically, we utilize 7,444 whole-genome sequences to examine the effect of variants on the targeting specificity of ∼3,000 gRNAs across 30 therapeutically implicated loci. We demonstrate that human genetic variation can alter the off-target landscape genome-wide including creating and destroying protospacer adjacent motifs (PAMs). Furthermore, single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels) can result in altered on-target sites and novel potent off-target sites, which can predispose patients to treatment failure and adverse effects, respectively; however, these events are rare. Taken together, these data highlight the importance of considering individual genomes for therapeutic genome-editing applications for the design and evaluation of CRISPR-based therapies to minimize risk of treatment failure and/or adverse outcomes.
Collapse
Affiliation(s)
- Samuel Lessard
- Research Center, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Laurent Francioli
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Jessica Alfoldi
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Jean-Claude Tardif
- Research Center, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Guillaume Lettre
- Research Center, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115;
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, MA 02115
| | - Matthew C Canver
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115;
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
29
|
Nieto Gutierrez A, McDonald PH. GPCRs: Emerging anti-cancer drug targets. Cell Signal 2017; 41:65-74. [PMID: 28931490 DOI: 10.1016/j.cellsig.2017.09.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest and most diverse protein family in the human genome with over 800 members identified to date. They play critical roles in numerous cellular and physiological processes, including cell proliferation, differentiation, neurotransmission, development and apoptosis. Consequently, aberrant receptor activity has been demonstrated in numerous disorders/diseases, and as a result GPCRs have become the most successful drug target class in pharmaceuticals treating a wide variety of indications such as pain, inflammation, neurobiological and metabolic disorders. Many independent studies have also demonstrated a key role for GPCRs in tumourigenesis, establishing their involvement in cancer initiation, progression, and metastasis. Given the growing appreciation of the role(s) that GPCRs play in cancer pathogenesis, it is surprising to note that very few GPCRs have been effectively exploited in pursuit of anti-cancer therapies. The present review provides a broad overview of the roles that various GPCRs play in cancer growth and development, highlighting the potential of pharmacologically modulating these receptors for the development of novel anti-cancer therapeutics.
Collapse
Affiliation(s)
- Ainhoa Nieto Gutierrez
- The Scripps Research Institute, Department of Molecular Medicine, 130 Scripps Way, Jupiter, FL 33458, United States.
| | - Patricia H McDonald
- The Scripps Research Institute, Department of Molecular Medicine, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
30
|
White MK, Kaminski R, Young WB, Roehm PC, Khalili K. CRISPR Editing Technology in Biological and Biomedical Investigation. J Cell Biochem 2017; 118:3586-3594. [PMID: 28460414 DOI: 10.1002/jcb.26099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/01/2023]
Abstract
The CRISPR or clustered regularly interspaced short palindromic repeats system is currently the most advanced approach to genome editing and is notable for providing an unprecedented degree of specificity, effectiveness, and versatility in genetic manipulation. CRISPR evolved as a prokaryotic immune system to provide an acquired immunity and resistance to foreign genetic elements such as bacteriophages. It has recently been developed into a tool for the specific targeting of nucleotide sequences within complex eukaryotic genomes for the purpose of genetic manipulation. The power of CRISPR lies in its simplicity and ease of use, its flexibility to be targeted to any given nucleotide sequence by the choice of an easily synthesized guide RNA, and its ready ability to continue to undergo technical improvements. Applications for CRISPR are numerous including creation of novel transgenic cell animals for research, high-throughput screening of gene function, potential clinical gene therapy, and nongene-editing approaches such as modulating gene activity and fluorescent tagging. In this prospect article, we will describe the salient features of the CRISPR system with an emphasis on important drawbacks and considerations with respect to eliminating off-target events and obtaining efficient CRISPR delivery. We will discuss recent technical developments to the system and we will illustrate some of the most recent applications with an emphasis on approaches to eliminate human viruses including HIV-1, JCV and HSV-1 and prospects for the future. J. Cell. Biochem. 118: 3586-3594, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology and Comprehensive NeuroAIDS Center, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, Pennsylvania, 19140
| | - Rafal Kaminski
- Center for Neurovirology and Comprehensive NeuroAIDS Center, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, Pennsylvania, 19140
| | - Won-Bin Young
- Center for Neurovirology and Comprehensive NeuroAIDS Center, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, Pennsylvania, 19140
| | - Pamela C Roehm
- Center for Neurovirology and Comprehensive NeuroAIDS Center, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, Pennsylvania, 19140
| | - Kamel Khalili
- Center for Neurovirology and Comprehensive NeuroAIDS Center, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
31
|
Bottai G, Truffi M, Corsi F, Santarpia L. Progress in nonviral gene therapy for breast cancer and what comes next? Expert Opin Biol Ther 2017; 17:595-611. [DOI: 10.1080/14712598.2017.1305351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Giulia Bottai
- Oncology Experimental Therapeutics, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milan), Italy
| | - Marta Truffi
- Laboratory of Nanomedicine, Department of Biomedical and Clinical Sciences University of Milan, “Luigi Sacco” Hospital, Milano, Italy
| | - Fabio Corsi
- Laboratory of Nanomedicine, Surgery Division, Department of Biomedical and Clinical Sciences University of Milan, “Luigi Sacco” Hospital, Milan, Italy
| | - Libero Santarpia
- Oncology Experimental Therapeutics, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milan), Italy
| |
Collapse
|
32
|
Kim EJ, Kang KH, Ju JH. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med 2017; 32:42-61. [PMID: 28049282 PMCID: PMC5214730 DOI: 10.3904/kjim.2016.198] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/10/2016] [Indexed: 12/13/2022] Open
Abstract
Recent advances in genome editing with programmable nucleases have opened up new avenues for multiple applications, from basic research to clinical therapy. The ease of use of the technology-and particularly clustered regularly interspaced short palindromic repeats (CRISPR)-will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. Here, we highlight the progress made in correcting gene mutations in monogenic hereditary disorders and discuss various CRISPR-associated applications, such as cancer research, synthetic biology, and gene therapy using induced pluripotent stem cells. The challenges, ethical issues, and future prospects of CRISPR-based systems for human research are also discussed.
Collapse
Affiliation(s)
- Eun Ji Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ki Ho Kang
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Ji Hyeon Ju, M.D. Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6893 Fax: +82-2-3476-2274 E-mail:
| |
Collapse
|
33
|
Lv YH, Li XQ, Yue CW, Wang M. Application of genome editing technologies in gastrointestinal cancers. Shijie Huaren Xiaohua Zazhi 2016; 24:4772-4780. [DOI: 10.11569/wcjd.v24.i36.4772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genome editing is a site-directed modification technology for gene targeting and a powerful tool to edit the target DNA by site-specific DNA knockout or knockin. Genome editing has achieved a considerable success from lower microbes to human in the past years and may play a very important role in tumor staging, precision medicine as well as prognosis evaluation in gastrointestinal cancers. This review discusses the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including transcription activator-like effector nucleases, zinc finger nucleases and the CRISPR/Cas9 system. We also summarize the progress made in applying genome editing to the research of gastrointestinal cancers.
Collapse
|
34
|
Abstract
Immunotherapy using dendritic cell (DC)-based vaccination is an approved approach for harnessing the potential of a patient's own immune system to eliminate tumor cells in metastatic hormone-refractory cancer. Overall, although many DC vaccines have been tested in the clinic and proven to be immunogenic, and in some cases associated with clinical outcome, there remains no consensus on how to manufacture DC vaccines. In this review we will discuss what has been learned thus far about human DC biology from clinical studies, and how current approaches to apply DC vaccines in the clinic could be improved to enhance anti-tumor immunity.
Collapse
|
35
|
White MK, Hu W, Khalili K. Gene Editing Approaches against Viral Infections and Strategy to Prevent Occurrence of Viral Escape. PLoS Pathog 2016; 12:e1005953. [PMID: 27930735 PMCID: PMC5145235 DOI: 10.1371/journal.ppat.1005953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Martyn K. White
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Wenhui Hu
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
36
|
Kaminski R, Bella R, Yin C, Otte J, Ferrante P, Gendelman HE, Li H, Booze R, Gordon J, Hu W, Khalili K. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther 2016; 23:690-5. [PMID: 27194423 PMCID: PMC4974122 DOI: 10.1038/gt.2016.41] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 12/20/2022]
Abstract
A CRISPR/Cas9 gene editing strategy has been remarkable in excising segments of integrated HIV-1 DNA sequences from the genome of latently infected human cell lines and by introducing InDel mutations, suppressing HIV-1 replication in patient-derived CD4+ T-cells, ex vivo. Here, we employed a short version of the Cas9 endonuclease, saCas9, together with a multiplex of guide RNAs (gRNAs) for targeting the viral DNA sequences within the 5'-LTR and the Gag gene for removing critically important segments of the viral DNA in transgenic mice and rats encompassing the HIV-1 genome. Tail-vein injection of transgenic mice with a recombinant Adeno-associated virus 9 (rAAV9) vector expressing saCas9 and the gRNAs, rAAV:saCas9/gRNA, resulted in the cleavage of integrated HIV-1 DNA and excision of a 978 bp DNA fragment spanning between the LTR and Gag gene in the spleen, liver, heart, lung and kidney as well as in the circulating lymphocytes. Retro-orbital inoculation of rAAV9:saCas9/gRNA in transgenic rats eliminated a targeted segment of viral DNA and substantially decreased the level of viral gene expression in circulating blood lymphocytes. The results from the proof-of-concept studies, for the first time, demonstrate the in vivo eradication of HIV-1 DNA by CRISPR/Cas9 on delivery by an rAAV9 vector in a range of cells and tissues that harbor integrated copies of viral DNA.
Collapse
Affiliation(s)
- Rafal Kaminski
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140
| | - Ramona Bella
- Microbiology and Clinical Microbiology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | | | - Pasquale Ferrante
- Microbiology and Clinical Microbiology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | - Hailong Li
- Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC 29208
| | - Rosemarie Booze
- Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC 29208
| | - Jennifer Gordon
- Co-corresponding authors: (senior corresponding author), Phone: 215.707.4500; Fax: 215.707.4888, ,
| | - Wenhui Hu
- Co-corresponding authors: (senior corresponding author), Phone: 215.707.4500; Fax: 215.707.4888, ,
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140
| |
Collapse
|
37
|
White MK, Kaminski R, Wollebo H, Hu W, Malcolm T, Khalili K. Gene Editing for Treatment of Neurological Infections. Neurotherapeutics 2016; 13:547-54. [PMID: 27150390 PMCID: PMC4965407 DOI: 10.1007/s13311-016-0439-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The study of neurological infections by viruses defines the field of neurovirology, which has emerged in the last 30 years and was founded upon the discovery of a number of viruses capable of infecting the human nervous system. Studies have focused on the molecular and biological basis of viral neurological diseases with the aim of revealing new therapeutic options. The first studies of neurovirological infections can be traced back to the discovery that some viruses have an affinity for the nervous system with research into rabies by Louis Pasteur and others in the 1880s. Today, the immense public health impact of neurovirological infections is illustrated by diseases such as neuroAIDS, progressive multifocal leukoencephalopathy, and viral encephalitis. Recent research has seen the development of powerful new techniques for gene editing that promise revolutionary opportunities for the development of novel therapeutic options. In particular, clustered regulatory interspaced short palindromic repeat-associated 9 system provides an effective, highly specific and versatile tool for targeting DNA viruses that are beginning to allow the development of such new approaches. In this short review, we discuss these recent developments, how they pertain to neurological infections, and future prospects.
Collapse
Affiliation(s)
- Martyn K White
- Department of Neuroscience, Center for Neurovirology, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Rafal Kaminski
- Department of Neuroscience, Center for Neurovirology, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Hassen Wollebo
- Department of Neuroscience, Center for Neurovirology, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Wenhui Hu
- Department of Neuroscience, Center for Neurovirology, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Thomas Malcolm
- Excision Biotherapeutics, Inc., 3624 Market Street, #514, Philadelphia, PA, 19104, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
38
|
Zhang JH, Adikaram P, Pandey M, Genis A, Simonds WF. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered 2016; 7:166-74. [PMID: 27340770 PMCID: PMC4927198 DOI: 10.1080/21655979.2016.1189039] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
CRISPR (Clustered Regularly-Interspaced Short Palindromic Repeats)-Cas9 (CRISPR associated protein 9) has rapidly become the most promising genome editing tool with great potential to revolutionize medicine. Through guidance of a 20 nucleotide RNA (gRNA), CRISPR-Cas9 finds and cuts target protospacer DNA precisely 3 base pairs upstream of a PAM (Protospacer Adjacent Motif). The broken DNA ends are repaired by either NHEJ (Non-Homologous End Joining) resulting in small indels, or by HDR (Homology Directed Repair) for precise gene or nucleotide replacement. Theoretically, CRISPR-Cas9 could be used to modify any genomic sequences, thereby providing a simple, easy, and cost effective means of genome wide gene editing. However, the off-target activity of CRISPR-Cas9 that cuts DNA sites with imperfect matches with gRNA have been of significant concern because clinical applications require 100% accuracy. Additionally, CRISPR-Cas9 has unpredictable efficiency among different DNA target sites and the PAM requirements greatly restrict its genome editing frequency. A large number of efforts have been made to address these impeding issues, but much more is needed to fully realize the medical potential of CRISPR-Cas9. In this article, we summarize the existing problems and current advances of the CRISPR-Cas9 technology and provide perspectives for the ultimate perfection of Cas9-mediated genome editing.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Poorni Adikaram
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Allison Genis
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|