1
|
Lepiarczyk E, Maździarz M, Paukszto Ł, Bossowska A, Majewski M, Kaleczyc J, Łopieńska-Biernat E, Jaśkiewicz Ł, Skowrońska A, Skowroński MT, Majewska M. Transcriptomic Characterization of the Porcine Urinary Bladder Trigone Following Intravesical Administration of Resiniferatoxin: Insights from High-Throughput Sequencing. Toxins (Basel) 2025; 17:127. [PMID: 40137900 PMCID: PMC11946646 DOI: 10.3390/toxins17030127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Resiniferatoxin (RTX), a potent capsaicin analog, is being investigated as a therapeutic agent for neurogenic conditions, particularly those affecting bladder control. However, the transcriptomic effects of RTX on the urinary bladder remain largely unexplored. This study aimed to characterize the transcriptomic changes in the porcine urinary bladder trigone region removed seven days post-treatment with intravesical RTX administration (500 nmol per animal in 60 mL of 5% aqueous solution of ethyl alcohol). High-throughput sequencing identified 126 differentially expressed genes (DEGs; 66 downregulated, 60 upregulated), 5 differentially expressed long non-coding RNAs (DELs), and 22 other RNAs, collectively involved in 175 gene ontology (GO) processes. Additionally, differential alternative splicing events (DASes) and single nucleotide variants (SNVs) were detected. RTX significantly modulated signaling pathways related to nerve growth and myelination. Changes in genes associated with synaptic plasticity and neuromodulation were observed, particularly within serotoninergic and cholinergic signaling. RTX altered the expression of immune-related genes, particularly those involved in chemokine signaling and immune regulation. Notably, altered gene expression patterns suggest a potential anti-cancer role for RTX. These findings provide new insights into RTX's therapeutic effects beyond TRPV1 receptor interactions, filling a critical gap in our understanding of its molecular impact on bladder tissue.
Collapse
Affiliation(s)
- Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Mateusz Maździarz
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.M.); (Ł.P.)
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.M.); (Ł.P.)
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Mariusz Majewski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Łukasz Jaśkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Agnieszka Skowrońska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| |
Collapse
|
2
|
Mohamed HRH, Farouk AH, Elbasiouni SH, Nasif KA, Safwat G. Yttrium oxide nanoparticles ameliorates calcium hydroxide and calcium titanate nanoparticles induced genomic DNA and mitochondrial damage, ROS generation and inflammation. Sci Rep 2024; 14:13015. [PMID: 38844752 PMCID: PMC11156978 DOI: 10.1038/s41598-024-62877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Calcium hydroxide (Ca(OH)2NPs), calcium titanate (CaTiO3NPs) and yttrium oxide (Y2O3NPs) nanoparticles are prevalent in many industries, including food and medicine, but their small size raises concerns about potential cellular damage and genotoxic effects. However, there are very limited studies available on their genotoxic effects. Hence, this was done to investigate the effects of multiple administration of Ca(OH)2NPs, CaTiO3NPs or/and Y2O3NPs on genomic DNA stability, mitochondrial membrane potential integrity and inflammation induction in mouse brain tissues. Mice were orally administered Ca(OH)2NPs, CaTiO3NPs or/and Y2O3NPs at a dose level of 50 mg/kg b.w three times a week for 2 weeks. Genomic DNA integrity was studied using Comet assay and the level of reactive oxygen species (ROS) within brain cells was analyzed using 2,7 dichlorofluorescein diacetate dye. The expression level of Presenilin-1, tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) genes and the integrity of the mitochondrial membrane potential were also detected. Oral administration of Ca(OH)2NPs caused the highest damage to genomic DNA and mitochondrial membrane potential, less genomic DNA and mitochondrial damage was induced by CaTiO3NPs administration while administration of Y2O3NPs did not cause any remarkable change in the integrity of genomic DNA and mitochondrial membrane potential. Highest ROS generation and upregulation of presenilin-1, TNF-α and IL-6 genes were also observed within the brain cells of mice administrated Ca(OH)2NPs but Y2O3NPs administration almost caused no changes in ROS generation and genes expression compared to the negative control. Administration of CaTiO3NPs alone slightly increased ROS generation and the expression level of TNF-α and IL-6 genes. Moreover, no remarkable changes in the integrity of genomic DNA and mitochondrial DNA potential, ROS level and the expression level of presenilin-1, TNF-α and IL-6 genes were noticed after simultaneous coadministration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs. Coadministration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs mitigated Ca(OH)2NPs and CaTiO3NPs induced ROS generation, genomic DNA damage and inflammation along with restoring the integrity of mitochondrial membrane potential through Y2O3NPs scavenging free radicals ability. Therefore, further studies are recommended to study the possibility of using Y2O3NPs to alleviate Ca(OH)2NPs and CaTiO3NPs induced genotoxic effects.
Collapse
Affiliation(s)
- Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Ahmed H Farouk
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6 Ocober, Egypt
| | - Salma H Elbasiouni
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6 Ocober, Egypt
| | - Kirolls A Nasif
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6 Ocober, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6 Ocober, Egypt
| |
Collapse
|
3
|
Song C, Zhang J, Xu C, Gao M, Li N, Geng Q. The critical role of γ-secretase and its inhibitors in cancer and cancer therapeutics. Int J Biol Sci 2023; 19:5089-5103. [PMID: 37928268 PMCID: PMC10620818 DOI: 10.7150/ijbs.87334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 11/07/2023] Open
Abstract
As a multi-substrate transmembrane protease, γ-secretase exists widely in various cells. It controls multiple important cellular activities through substrate cleavage. γ-secretase inhibitors (GSIs) play a role in cancer inhibition by blocking Notch cleavage, and are considered as potential therapeutic strategies for cancer. Currently, GSIs have encouraging performance in preclinical models, yet this success does not translate well in clinical trials. In recent years, a number of breakthrough discoveries have shown us the promise of targeting γ-secretase for the treatment of cancer. Here, we integrate a large amount of data from γ-secretase and its inhibitors and cancer in nearly 30 years, comb and discuss the close connection between γ-secretase and cancer, as well as the potential and problems of current GSIs in cancer treatment. We analyze the possible reasons for the failure performance of current GSIs in clinical trials, and make recommendations for future research areas.
Collapse
Affiliation(s)
- Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinjin Zhang
- Department of Emergency, Taihe Hospital, Shiyan, China
| | - Chenzhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Gamez-Belmonte R, Mahapatro M, Erkert L, Gonzalez-Acera M, Naschberger E, Yu Y, Tena-Garitaonaindia M, Patankar JV, Wagner Y, Podstawa E, Schödel L, Bubeck M, Neurath MF, Stürzl M, Becker C. Epithelial presenilin-1 drives colorectal tumour growth by controlling EGFR-COX2 signalling. Gut 2022; 72:1155-1166. [PMID: 36261293 DOI: 10.1136/gutjnl-2022-327323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/02/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Psen1 was previously characterised as a crucial factor in the pathogenesis of neurodegeneration in patients with Alzheimer's disease. Little, if any, is known about its function in the gut. Here, we uncovered an unexpected functional role of Psen1 in gut epithelial cells during intestinal tumourigenesis. DESIGN Human colorectal cancer (CRC) and control samples were investigated for PSEN1 and proteins of theγ-secretase complex. Tumour formation was analysed in the AOM-DSS and Apc min/+ mouse models using newly generated epithelial-specific Psen1 deficient mice. Psen1 deficient human CRC cells were studied in a xenograft tumour model. Tumour-derived organoids were analysed for growth and RNA-Seq was performed to identify Psen1-regulated pathways. Tumouroids were generated to study EGFR activation and evaluation of the influence of prostanoids. RESULTS PSEN1 is expressed in the intestinal epithelium and its level is increased in human CRC. Psen1-deficient mice developed only small tumours and human cancer cell lines deficient in Psen1 had a reduced tumourigenicity. Tumouroids derived from Psen1-deficient Apc min/+ mice exhibited stunted growth and reduced cell proliferation. On a molecular level, PSEN1 potentiated tumour cell proliferation via enhanced EGFR signalling and COX-2 production. Exogenous administration of PGE2 reversed the slow growth of PSEN1 deficient tumour cells via PGE2 receptor 4 (EP4) receptor signalling. CONCLUSIONS Psen1 drives tumour development by increasing EGFR signalling via NOTCH1 processing, and by activating the COX-2-PGE2 pathway. PSEN1 inhibition could be a useful strategy in treatment of CRC.
Collapse
Affiliation(s)
- Reyes Gamez-Belmonte
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yuqiang Yu
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Duke University Medical Center, Durham, North Carolina, USA
| | | | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yara Wagner
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Podstawa
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Schödel
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marvin Bubeck
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany .,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Song C, Pan S, Li D, Hao B, Lu Z, Lai K, Li N, Geng Q. Comprehensive analysis reveals the potential value of inflammatory response genes in the prognosis, immunity, and drug sensitivity of lung adenocarcinoma. BMC Med Genomics 2022; 15:198. [PMID: 36117156 PMCID: PMC9484176 DOI: 10.1186/s12920-022-01340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background Although the relationship between inflammatory response and tumor has been gradually recognized, the potential implications of of inflammatory response genes in lung adenocarcinoma (LUAD) remains poorly investigated. Methods RNA sequencing and clinical data were obtained from multiple independent datasets (GSE29013, GSE30219, GSE31210, GSE37745, GSE42127, GSE50081, GSE68465, GSE72094, TCGA and GTEx). Unsupervised clustering analysis was used to identify different tumor subtypes, and LASSO and Cox regression analysis were applied to construct a novel scoring tool. We employed multiple algorithms (ssGSEA, CIBERSORT, MCP counter, and ESTIMATE) to better characterize the LUAD tumor microenvironment (TME) and immune landscapes. GSVA and Metascape analysis were performed to investigate the biological processes and pathway activity. Furthermore, ‘pRRophetic’ R package was used to evaluate the half inhibitory concentration (IC50) of each sample to infer drug sensitivity. Results We identified three distinct tumor subtypes, which were related to different clinical outcomes, biological pathways, and immune characteristics. A scoring tool called inflammatory response gene score (IRGS) was established and well validated in multiple independent cohorts, which could well divide patients into two subgroups with significantly different prognosis. High IRGS patients, characterized by increased genomic variants and mutation burden, presented a worse prognosis, and might show a more favorable response to immunotherapy and chemotherapy. Additionally, based on the cross-talk between TNM stage, IRGS and patients clinical outcomes, we redefined the LUAD stage, which was called ‘IRGS-Stage’. The novel staging system could distinguish patients with different prognosis, with better predictive ability than the conventional TNM staging. Conclusions Inflammatory response genes present important potential value in the prognosis, immunity and drug sensitivity of LUAD. The proposed IRGS and IRGS-Stage may be promising biomarkers for estimating clinical outcomes in LUAD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01340-7.
Collapse
|
6
|
Zhang M, Jin M, Gao Z, Yu W, Zhang W. High COL10A1 expression potentially contributes to poor outcomes in gastric cancer with the help of LEF1 and Wnt2. J Clin Lab Anal 2022; 36:e24612. [PMID: 35929139 PMCID: PMC9459277 DOI: 10.1002/jcla.24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/15/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
Background COL10A1 is a secreted, short‐chain collagen found in several types of cancer. Studies have shown that COL10A1 aberrant expression is considered an oncogenic factor. However, its underlying mechanisms and regulation of gastric cancer remain undefined. Methods The data on the expression of COL10A1, clinicopathological characteristics, and outcome of patients with GC were obtained from The Cancer Genome Atlas. The ALGGEN‐PROMO database defined the related transcription factors. Quantitative real‐time reverse transcription‐polymerase chain reaction and western blotting analysis were used to identify the differential expression levels of COL10A1 and related transcription factors. Results We found that high COL10A1 expression is an independent risk factor for gastric cancer. Upregulation of LEF1 and Wnt2 was also observed in gastric cancer, suggesting a potential correlation between LEF1/COL10A1 regulation in the Wnt2 signaling pathway. Conclusion High COL10A1 expression may contribute to poor outcomes via upregulation of LEF1 and Wnt2 in gastric cancer.
Collapse
Affiliation(s)
- Miaozun Zhang
- Department of Gastrointestinal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ming Jin
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhiqiang Gao
- Department of Gastroenterology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Weiming Yu
- Department of Gastrointestinal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wei Zhang
- Department of Gastroenterology, The HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
7
|
Role of Presenilin-1 in Aggressive Human Melanoma. Int J Mol Sci 2022; 23:ijms23094904. [PMID: 35563300 PMCID: PMC9099829 DOI: 10.3390/ijms23094904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022] Open
Abstract
Presenilin-1 (PS-1), a component of the gamma (γ)-secretase catalytic complex, has been implicated in Alzheimer’s disease (AD) and in tumorigenesis. Interestingly, AD risk is inversely related to melanoma, suggesting that AD-related factors, such as PS-1, may affect melanomagenesis. PS-1 has been shown to reduce Wnt activity by promoting degradation of beta-catenin (β-catenin), an important Wnt signaling partner. Since Wnt is known to enhance progression of different cancers, including melanoma, we hypothesized that PS-1 could affect Wnt-associated melanoma aggressiveness. Western blot results showed that aggressive melanoma cells expressed significantly lower levels of both PS-1 and phosphorylated-β-catenin (P-β-catenin) than nonaggressive melanoma cells. Immunohistochemistry of human melanoma samples showed significantly reduced staining for PS-1 in advanced stage melanoma compared with early stage melanoma. Furthermore, γ-secretase inhibitor (GSI) treatment of aggressive melanoma cells was followed by significant increases in PS-1 and P-β-catenin levels, suggesting impaired Wnt signaling activity as PS-1 expression increased. Finally, a significant reduction in cell migration was associated with the higher levels of PS-1 and P-β-catenin in the GSI-treated aggressive melanoma cells. We demonstrate for the first time that PS-1 levels can be used to assess melanoma aggressiveness and suggest that by enhancing PS-1 expression, Wnt-dependent melanoma progression may be reduced
Collapse
|
8
|
Cui X, Yang Y, Yan A. MiR-654-3p Constrains Proliferation, Invasion, and Migration of Sinonasal Squamous Cell Carcinoma via CREB1/PSEN1 Regulatory Axis. Front Genet 2022; 12:799933. [PMID: 35096015 PMCID: PMC8791623 DOI: 10.3389/fgene.2021.799933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background: MiR-654-3p can repress malignant progression of cancer cells, whereas no relative reports were about its modulatory mechanism in sinonasal squamous cell carcinoma (SNSCC). This research committed to approaching modulatory effect of miR-654-3p on SNSCC cells. Methods: Bioinformatics methods were utilized for analyzing interaction of miR-654-3p/cAMP-responsive element binding protein 1 (CREB1)/presenilin-1 (PSEN1). Expression levels of miR-654-3p, CREB1, and PSEN1 mRNA were assessed by quantitative real-time polymerase chain reaction. Western blot was completed for level assessment of CREB1, PSEN1, and epithelial-mesenchymal transition-related proteins. The targeted relationship between miR-654-3p and CREB1, or CREB1 and PSEN1 was authenticated via dual-luciferase assay and ChIP assay. A trail of experiments in vitro was used for detection of the effects of miR-654-3p/CREB1/PSEN1 axis on malignant progression of SNSCC cells. Results: CREB1 as the downstream target mRNA of miR-654-3p could activate transcription of its downstream target gene PSEN1. Besides, miR-654-3p could target CREB1 to repress PSEN1 expression, thus restraining proliferation, migration, invasion, epithelial-mesenchymal transition, and hastening apoptosis of SNSCC cells. Conclusion: MiR-654-3p as an antitumor gene targeted CREB1 to hamper malignant progression of SNSCC through miR-654-3p/CREB1/PSEN1 axis.
Collapse
Affiliation(s)
- Xiao Cui
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ying Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Aihui Yan
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Hermasch MA, Janning H, Perera RP, Schnabel V, Rostam N, Ramos-Gomes F, Muschalek W, Bennemann A, Alves F, Ralser DJ, Betz RC, Schön MP, Dosch R, Frank J. Evolutionary distinct roles of γ-secretase subunit nicastrin in zebrafish and humans. J Dermatol Sci 2022; 105:80-87. [PMID: 35016821 DOI: 10.1016/j.jdermsci.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Mutations in the genes that encode the human γ-secretase subunits Presenilin-1, Presenilin Enhancer Protein 2, and Nicastrin (NCSTN) are associated with familial hidradenitis suppurativa (HS); and, regarding Presenilin Enhancer Protein 2, also with comorbidity for the hereditary pigmentation disorder Dowling-Degos disease. OBJECTIVE Here, the consequences of targeted inactivation of ncstn, the zebrafish homologue of human NCSTN, were studied. METHODS After morpholino (MO)-mediated ncstn-knockdown, the possibilities of phenotype rescue through co-injection of ncstn-MO with wildtype zebrafish ncstn or human NCSTN mRNA were investigated. Further, the effects of the co-injection of a human missense, nonsense, splice-site, and frameshift mutation were studied. RESULTS MO-mediated ncstn-knockdown resulted in a significant reduction in melanophore morphology, size and number; and alterations in their patterns of migration and distribution. This phenotype was rescued by co-injection of zebrafish ncstn RNA, human NCSTN RNA, or a construct encoding the human NCSTN missense mutation p.P211R. CONCLUSION Human NCSTN mutations encoding null alleles confer loss-of-function regarding pigmentation homeostasis in zebrafisch. In contrast, the human missense mutation p.P211R was less harmful, asserting sufficient residual ncstn activity to maintain pigmentation in zebrafish. Since fish lack the anatomical structures affected by HS, our data suggest that the zebrafish ncstn gene and the human NCSTN gene have probably acquired different functions during evolution. In fish, one major role of ncstn is the maintenance of pigmentation homeostasis. In contrast, one of the roles of NCSTN in humans is the prevention of inflammatory processes in the adnexal structures of the skin, as seen in familial HS.
Collapse
Affiliation(s)
- Matthias Andreas Hermasch
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Helena Janning
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Viktor Schnabel
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadia Rostam
- Department of Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Max Planck Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
| | - Wiebke Muschalek
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Anette Bennemann
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Frauke Alves
- Max Planck Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany; Clinic of Hematology and Oncology, University Medical Center Göttingen, Germany; Institute of Interventional and Diagnostic Radiology, University Medical Center Göttingen, Germany
| | | | - Regina Christine Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Michael Peter Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany; Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany
| | - Roland Dosch
- Department of Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Jorge Frank
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
10
|
Hernandez-Sapiens MA, Reza-Zaldívar EE, Márquez-Aguirre AL, Gómez-Pinedo U, Matias-Guiu J, Cevallos RR, Mateos-Díaz JC, Sánchez-González VJ, Canales-Aguirre AA. Presenilin mutations and their impact on neuronal differentiation in Alzheimer's disease. Neural Regen Res 2022; 17:31-37. [PMID: 34100423 PMCID: PMC8451546 DOI: 10.4103/1673-5374.313016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The presenilin genes (PSEN1 and PSEN2) are mainly responsible for causing early-onset familial Alzheimer's disease, harboring ~300 causative mutations, and representing ~90% of all mutations associated with a very aggressive disease form. Presenilin 1 is the catalytic core of the γ-secretase complex that conducts the intramembranous proteolytic excision of multiple transmembrane proteins like the amyloid precursor protein, Notch-1, N- and E-cadherin, LRP, Syndecan, Delta, Jagged, CD44, ErbB4, and Nectin1a. Presenilin 1 plays an essential role in neural progenitor maintenance, neurogenesis, neurite outgrowth, synaptic function, neuronal function, myelination, and plasticity. Therefore, an imbalance caused by mutations in presenilin 1/γ-secretase might cause aberrant signaling, synaptic dysfunction, memory impairment, and increased Aβ42/Aβ40 ratio, contributing to neurodegeneration during the initial stages of Alzheimer's disease pathogenesis. This review focuses on the neuronal differentiation dysregulation mediated by PSEN1 mutations in Alzheimer's disease. Furthermore, we emphasize the importance of Alzheimer's disease-induced pluripotent stem cells models in analyzing PSEN1 mutations implication over the early stages of the Alzheimer's disease pathogenesis throughout neuronal differentiation impairment.
Collapse
Affiliation(s)
- Mercedes A Hernandez-Sapiens
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Edwin E Reza-Zaldívar
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Ana L Márquez-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Ulises Gómez-Pinedo
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Madrid, España
| | - Jorge Matias-Guiu
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Madrid, España
| | - Ricardo R Cevallos
- Biochemistry and Molecular Genetics Department, University of Alabama, Birmingham, Alabama
| | - Juan C Mateos-Díaz
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | | | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
11
|
Utility of RGNEF in the Prediction of Clinical Prognosis in Patients with Rectal Cancer Receiving Preoperative Concurrent Chemoradiotherapy. Life (Basel) 2021; 12:life12010018. [PMID: 35054411 PMCID: PMC8778573 DOI: 10.3390/life12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Rectal cancer is a heterogeneous malignancy with different clinical responses to preoperative concurrent chemoradiotherapy (CCRT). To discover the significant genes associated with CCRT response, we performed data mining of a transcriptomic dataset (GSE35452), including 46 rectal cancer patients who received preoperative CCRT and underwent standardized curative resection. We identified ARHGEF28 as the most significantly upregulated gene correlated with resistance to CCRT among the genes related to Rho guanyl-nucleotide exchange factor activity (GO:0005085). We enrolled 172 patients with rectal cancer receiving CCRT with radical surgery. The expression of ARHGEF28 encoded protein, Rho guanine nucleotide exchange factor (RGNEF), was assessed using immunohistochemistry. The results showed that upregulated RGNEF immunoexpression was considerably correlated with poor response to CCRT (p = 0.018), pre-CCRT positive nodal status (p = 0.004), and vascular invasion (p < 0.001). Furthermore, high RGNEF expression was significantly associated with worse local recurrence-free survival (p < 0.0001), metastasis-free survival (MeFS) (p = 0.0029), and disease-specific survival (DSS) (p < 0.0001). The multivariate analysis demonstrated that RGNEF immunoexpression status was an independent predictor of DSS (p < 0.001) and MeFS (p < 0.001). Using Gene Ontology enrichment analysis, we discovered that ARHGEF28 overexpression might be linked to Wnt/β-catenin signaling in rectal cancer progression. In conclusion, high RGNEF expression was related to unfavorable pathological characteristics and independently predicted worse clinical prognosis in patients with rectal cancer undergoing CCRT, suggesting its role in risk stratification and clinical decision making.
Collapse
|
12
|
He XY, Xu Y, Xia QJ, Zhao XM, Li S, He XQ, Wang RR, Wang TH. Combined Scutellarin and C 18H 17NO 6 Imperils the Survival of Glioma: Partly Associated With the Repression of PSEN1/PI3K-AKT Signaling Axis. Front Oncol 2021; 11:663262. [PMID: 34568005 PMCID: PMC8460401 DOI: 10.3389/fonc.2021.663262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Glioma, the most common intracranial tumor, harbors great harm. Since the treatment for it has reached the bottleneck stage, the development of new drugs becomes a trend. Therefore, we focus on the effect of scutellarin (SCU) and its combination with C18H17NO6 (abbreviated as combination) on glioma and its possible mechanism in this study. Firstly, SCU and C18H17NO6 both suppressed the proliferation of U251 and LN229 cells in a dose-dependent manner, and C18H17NO6 augmented the inhibition effect of SCU on U251 and LN229 cells in vitro. Moreover, there was an interactive effect between them. Secondly, SCU and C18H17NO6 decreased U251 cells in G2 phase and LN229 cells in G2 and S phases but increased U251 cells in S phase, respectively. Meanwhile, the combination could further reduce U251 cells in G2 phase and LN229 cells in G2 and S phases. Thirdly, SCU and C18H17NO6 both induced the apoptosis of U251 and LN229. The combination further increased the apoptosis rate of both cells compared with the two drugs alone. Furthermore, SCU and C18H17NO6 both inhibited the lateral and vertical migration of both cells, which was further repressed by the combination. More importantly, the effect of SCU and the combination was better than positive control-temozolomide, and the toxicity was low. Additionally, SCU and C18H17NO6 could suppress the growth of glioma in vivo, and the effect of the combination was better. Finally, SCU and the combination upregulated the presenilin 1 (PSEN1) level but inactivated the phosphatidylinositol 3−kinase (PI3K)-protein kinase B (AKT) signaling in vitro and in vivo. Accordingly, we concluded that scutellarin and its combination with C18H17NO6 suppressed the proliferation/growth and migration and induced the apoptosis of glioma, in which the mechanism might be associated with the repression of PSEN1/PI3K-AKT signaling axis.
Collapse
Affiliation(s)
- Xiu-Ying He
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Ming Zhao
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Li
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Xiao-Qiong He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ru-Rong Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Dai W, Liu S, Zhang J, Pei M, Xiao Y, Li J, Hong L, Lin J, Wang J, Wu X, Liu G, Chen Y, Wang Y, Lin Z, Yang Q, Zhi F, Li G, Tang W, Li A, Xiang L, Wang J. Vorinostat triggers miR-769-5p/3p-mediated suppression of proliferation and induces apoptosis via the STAT3-IGF1R-HDAC3 complex in human gastric cancer. Cancer Lett 2021; 521:196-209. [PMID: 34481934 DOI: 10.1016/j.canlet.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022]
Abstract
Previous reports have shown that histone deacetylase inhibitors (HDACi) can alter miRNA expression in a range of cancers. Both the 5p-arm and 3p-arm of mature miRNAs can be expressed from the same precursor and involved in cancer progress. Nevertheless, the detailed mechanism by which vorinostat (SAHA), a HDACi, triggers miR-769-5p/miR-769-3p-mediated suppression of proliferation and induces apoptosis in gastric cancer (GC) cells remains elusive. Here, we showed that the miRNA-seq analysis of GC cells treated with SAHA identified seven differentially expressed miRNAs with both strands of the miRNA duplex. miR-769-5p/miR-769-3p expression was downregulated in GC tissues compared with normal tissues. Functionally, high expression of miR-769-5p/miR-769-3p blocked the malignant abilities of GC cells. Mechanistically, miR-769-5p/miR-769-3p targeted IGF1R and IGF1R overexpression rescued the effects of miR-769-5p/miR-769-3p on GC cells growth and metastasis. Moreover, STAT3 bound to the promoter of miR-769. Furthermore, miR-769-5p/miR-769-3p expression was negatively regulated by the STAT3-IGF1R-HDAC3 complex. Besides, miR-769-5p/miR-769-3p synergized with SAHA to promote GC cells apoptosis. Our studies suggest that miR-769-5p/miR-769-3p acts as a tumor suppressor by the STAT3-IGF1R-HDAC3 complex. Moreover, SAHA triggers miR-769-5p/miR-769-3p-mediated inhibition of proliferation and induces apoptosis in GC cells.
Collapse
Affiliation(s)
- Weiyu Dai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, 518172, China
| | - Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Miaomiao Pei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yizhi Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiaying Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianjiao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, 518172, China
| | - Jing Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guangnan Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yaying Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yusi Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhizhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiong Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, The Second Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, 518172, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Li Xiang
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, 518172, China.
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, 518172, China.
| |
Collapse
|
14
|
miR-193a Directly Targets PSEN1 and Inhibits Gastric Cancer Cell Growth, the Activation of PI3K/Akt Signaling Pathway, and the Epithelial-to-Mesenchymal Transition. JOURNAL OF ONCOLOGY 2021; 2021:2804478. [PMID: 34335753 PMCID: PMC8298175 DOI: 10.1155/2021/2804478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
Background Gastric cancer, a kind of gastrointestinal malignancy, is the second type of leading death cancer. miR-193a is a key tumor suppressor in several diseases. PSEN1 is mainly related to Alzheimer's disease and may be involved in the cleavage of the Notch receptor. Material and Methods. RT-PCR and western blot were applied to evaluate miR-193a and the expression level of PSEN1. Luciferase reporter assay was applied to verify whether PSEN1 was a target of miR-193a. The Kaplan–Meier method was employed to calculate the 5-year overall survival of gastric cancer patients. Results miR-193a was downregulated in gastric cancer tissues and cell lines, and downregulation of miR-193a predicted poor 5-year overall survival of gastric cancer. miR-193a inhibited the proliferation and the activation of the PI3K/AKT signaling pathway in gastric cancer cells. miR-193a inhibited gastric cancer tumor growth in vivo. miR-193a impaired cell invasion and epithelial-to-mesenchymal transition (EMT) in HGC-27 cells. In addition, PSEN1 was a direct target of miR-193a and PSEN1 reversed partial functions of miR-193a in cell proliferation and invasion. Conclusion miR-193a prominently decreased the proliferation, invasion, and activation of the PI3K/Akt signaling pathway and the abilities of epithelial-to-mesenchymal transition in gastric cancer cells. The newly identified miR-193a/PSEN1 axis provides novel insight into the pathogenesis of gastric cancer.
Collapse
|
15
|
Tripathi A, Kashyap A, Tripathi G, Yadav J, Bibban R, Aggarwal N, Thakur K, Chhokar A, Jadli M, Sah AK, Verma Y, Zayed H, Husain A, Bharti AC, Kashyap MK. Tumor reversion: a dream or a reality. Biomark Res 2021; 9:31. [PMID: 33958005 PMCID: PMC8101112 DOI: 10.1186/s40364-021-00280-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Reversion of tumor to a normal differentiated cell once considered a dream is now at the brink of becoming a reality. Different layers of molecules/events such as microRNAs, transcription factors, alternative RNA splicing, post-transcriptional, post-translational modifications, availability of proteomics, genomics editing tools, and chemical biology approaches gave hope to manipulation of cancer cells reversion to a normal cell phenotype as evidences are subtle but definitive. Regardless of the advancement, there is a long way to go, as customized techniques are required to be fine-tuned with precision to attain more insights into tumor reversion. Tumor regression models using available genome-editing methods, followed by in vitro and in vivo proteomics profiling techniques show early evidence. This review summarizes tumor reversion developments, present issues, and unaddressed challenges that remained in the uncharted territory to modulate cellular machinery for tumor reversion towards therapeutic purposes successfully. Ongoing research reaffirms the potential promises of understanding the mechanism of tumor reversion and required refinement that is warranted in vitro and in vivo models of tumor reversion, and the potential translation of these into cancer therapy. Furthermore, therapeutic compounds were reported to induce phenotypic changes in cancer cells into normal cells, which will contribute in understanding the mechanism of tumor reversion. Altogether, the efforts collectively suggest that tumor reversion will likely reveal a new wave of therapeutic discoveries that will significantly impact clinical practice in cancer therapy.
Collapse
Affiliation(s)
- Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), -122413, India
| | - Anjali Kashyap
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), -122413, India
| | - Joni Yadav
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Rakhi Bibban
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Nikita Aggarwal
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Kulbhushan Thakur
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Arun Chhokar
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Mohit Jadli
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Ashok Kumar Sah
- Department of Medical Laboratory Technology, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), India
- Department of Pathology and Laboratory Medicine, Medanta-The Medicity, Haryana, Gurugram, India
| | - Yeshvandra Verma
- Department of Toxicology, C C S University, Meerut, UP, 250004, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research (IISER), Bhopal, India
- Innovation and Incubation Centre for Entrepreneurship (IICE), Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Alok Chandra Bharti
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India.
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), -122413, India.
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India.
| |
Collapse
|
16
|
Contino S, Suelves N, Vrancx C, Vadukul DM, Payen VL, Stanga S, Bertrand L, Kienlen-Campard P. Presenilin-Deficient Neurons and Astrocytes Display Normal Mitochondrial Phenotypes. Front Neurosci 2021; 14:586108. [PMID: 33551720 PMCID: PMC7862347 DOI: 10.3389/fnins.2020.586108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/14/2020] [Indexed: 01/13/2023] Open
Abstract
Presenilin 1 (PS1) and Presenilin 2 (PS2) are predominantly known as the catalytic subunits of the γ-secretase complex that generates the amyloid-β (Aβ) peptide, the major constituent of the senile plaques found in the brain of Alzheimer's disease (AD) patients. Apart from their role in γ-secretase activity, a growing number of cellular functions have been recently attributed to PSs. Notably, PSs were found to be enriched in mitochondria-associated membranes (MAMs) where mitochondria and endoplasmic reticulum (ER) interact. PS2 was more specifically reported to regulate calcium shuttling between these two organelles by controlling the formation of functional MAMs. We have previously demonstrated in mouse embryonic fibroblasts (MEF) an altered mitochondrial morphology along with reduced mitochondrial respiration and increased glycolysis in PS2-deficient cells (PS2KO). This phenotype was restored by the stable re-expression of human PS2. Still, all these results were obtained in immortalized cells, and one bottom-line question is to know whether these observations hold true in central nervous system (CNS) cells. To that end, we carried out primary cultures of PS1 knockdown (KD), PS2KO, and PS1KD/PS2KO (PSdKO) neurons and astrocytes. They were obtained from the same litter by crossing PS2 heterozygous; PS1 floxed (PS2+/-; PS1flox/flox) animals. Genetic downregulation of PS1 was achieved by lentiviral expression of the Cre recombinase in primary cultures. Strikingly, we did not observe any mitochondrial phenotype in PS1KD, PS2KO, or PSdKO primary cultures in basal conditions. Mitochondrial respiration and membrane potential were similar in all models, as were the glycolytic flux and NAD+/NADH ratio. Likewise, mitochondrial morphology and content was unaltered by PS expression. We further investigated the differences between results we obtained here in primary nerve cells and those previously reported in MEF cell lines by analyzing PS2KO primary fibroblasts. We found no mitochondrial dysfunction in this model, in line with observations in PS2KO primary neurons and astrocytes. Together, our results indicate that the mitochondrial phenotype observed in immortalized PS2-deficient cell lines cannot be extrapolated to primary neurons, astrocytes, and even to primary fibroblasts. The PS-dependent mitochondrial phenotype reported so far might therefore be the consequence of a cell immortalization process and should be critically reconsidered regarding its relevance to AD.
Collapse
Affiliation(s)
- Sabrina Contino
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Nuria Suelves
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Céline Vrancx
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Devkee M. Vadukul
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Valery L. Payen
- Laboratory of Advanced Drug Delivery and Biomaterial (ADDB), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain, Brussels, Belgium
| | - Serena Stanga
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
17
|
Ho HY, Lin FCF, Chen PN, Chen MK, Hsin CH, Yang SF, Lin CW. Tricetin Suppresses Migration and Presenilin-1 Expression of Nasopharyngeal Carcinoma through Akt/GSK-3β Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1203-1220. [PMID: 32668971 DOI: 10.1142/s0192415x20500597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lymph node migration results in poor prognoses for nasopharyngeal carcinoma (NPC) patients. Tricetin, a flavonoid derivative, regulates tumorigenesis activity through its antiproliferative and antimetastatic properties. However, the molecular mechanism of tricetin affecting the migration and invasion of NPC cells remains poorly understood. In this paper, we examined the antimetastatic properties of tricetin in human NPC cells. Our results demonstrated that tricetin at noncytotoxic concentrations (0-80 3M) noticeably reduced the migration and invasion of NPC cells (HONE-1, NPC-39, and NPC-BM). Moreover, tricetin suppressed the indicative protease, presenilin-1 (PS-1), as indicated by protease array. PS-1 was transcriptionally inhibited via the Akt signaling pathway but not mitogen-activated protein kinase pathways, such as the JNK, p38, and ERK1/2 pathways. In addition to upregulating GSK-3[Formula: see text] phosphorylation through Akt suppression, tricetin may downregulate the activity of PS-1. Overall, our study provides new insight into the role of tricetin-induced molecular regulation in the suppression of NPC metastasis and suggests that tricetin has prospective therapeutic applications for patients with NPC.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Frank Cheau-Feng Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chung-Han Hsin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
18
|
Kotawong K, Chaijaroenkul W, Roytrakul S, Phaonakrop N, Na-Bangchang K. Proteomics Analysis for Identification of Potential Cell Signaling Pathways and Protein Targets of Actions of Atractylodin and β-Eudesmol Against Cholangiocarcinoma. Asian Pac J Cancer Prev 2020; 21:621-628. [PMID: 32212786 PMCID: PMC7437331 DOI: 10.31557/apjcp.2020.21.3.621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The study aimed to identify potential cell signaling pathways and protein targets of actions of atractylodin and β-eudesmol in cholangiocarcinoma, the two active compounds isolated from Atracylodes lancea using proteomics approach. METHOD The cholangiocarcinoma cell line, CL-6, was treated with each compound for 3 and 6 hours, and the proteins from both intra- and extracellular components were extracted. LC-MS/MS was applied following the separation of the extract proteins by SDS-PAGE and digestion with trypsin. Signaling pathways and protein expression were analyzed by MASCOT and STITCH software. RESULTS A total of 4,323 and 4,318 proteins were identified from intra- and extracellular components, respectively. Six and 4 intracellular proteins were linked with the signaling pathways (apoptosis, cell cycle control, and PI3K-AKT) of atractylodin and β-eudesmol, respectively. Four and 3 extracellular proteins were linked with the signaling pathways (NF-κB and PI3K-AKT) of atractylodin and β-eudesmol, respectively. CONCLUSION In conclusion, a total of 17 proteins associated with four cell signaling pathways that could be potential molecular targets of anticholangiocarcinoma action of atractylodin and β-eudesmol were identified through the application of proteomics approach.
Collapse
Affiliation(s)
- Kanawut Kotawong
- Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung,
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung,
| | - Sittiruk Roytrakul
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani Thailand.
| | - Narumon Phaonakrop
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani Thailand.
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung,
| |
Collapse
|
19
|
Yang W, Wu PF, Ma JX, Liao MJ, Xu LS, Xu MH, Yi L. Presenilin1 exerts antiproliferative effects by repressing the Wnt/β-catenin pathway in glioblastoma. Cell Commun Signal 2020; 18:22. [PMID: 32046730 PMCID: PMC7014622 DOI: 10.1186/s12964-019-0501-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023] Open
Abstract
Background Glioblastoma and Alzheimer’s disease (AD) are the most common and devastating diseases in the central nervous system. The dysfunction of Presenilin1 is the main reason for AD pathogenesis. However, the molecular function of Presenilin1 and its relative mechanism in glioblastoma remain unclear. Methods Expression of presenilin1 in glioma was determined by IHC. CCK-8, colony formation, Flow cytometry, Edu staining were utilized to evaluate functions of presenilin1 on glioblastoma proliferation. The mechanism of above process was assessed by Western blotting and cell immunofluorescence. Mouse transplanting glioblastoma model and micro-MRI detection were used to verified presenilin1 function in vivo. Results In this study, we found that all grades of glioma maintained relatively low Presenilin1 expression and that the expression of Presenilin1 in high-grade glioma was significantly lower than that in low-grade glioma. Moreover, the Presenilin1 level had a positive correlation with glioma and glioblastoma patient prognosis. Next, we determined that Presenilin1 inhibited the growth and proliferation of glioblastoma cells by downregulating CDK6, C-myc and Cyclin D1 to arrest the cell cycle at the G1/S phase. Mechanistically, Presenilin1 promoted the direct phosphorylation of β-catenin at the 45 site and indirect phosphorylation at the 33/37/41 site, then decreased the stabilized part of β-catenin and hindered its translocation from the cytoplasm to the nucleus. Furthermore, we found that Presenilin1 downregulation clearly accelerated the growth of subcutaneous glioblastoma, and Presenilin1 overexpression significantly repressed the subcutaneous and intracranial transplantation of glioblastoma by hindering β-catenin-dependent cell proliferation. Conclusion Our data implicate the antiproliferative effect of Presenilin1 in glioblastoma by suppressing Wnt/β-catenin signaling, which may provide a novel therapeutic agent for glioblastoma. Video Abstract.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Peng-Fei Wu
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Jian-Xing Ma
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Mao-Jun Liao
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Lun-Shan Xu
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Min-Hui Xu
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China.
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
20
|
Tomatidine Represses Invasion and Migration of Human Osteosarcoma U2OS and HOS Cells by Suppression of Presenilin 1 and c-Raf-MEK-ERK Pathway. Molecules 2020; 25:molecules25020326. [PMID: 31941156 PMCID: PMC7024336 DOI: 10.3390/molecules25020326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma, which is the most prevalent malignant bone tumor, is responsible for the great majority of bone cancer-associated deaths because of its highly metastatic potential. Although tomatidine is suggested to serve as a chemosensitizer in multidrug-resistant tumors, the anti-metastatic effect of tomatidine in osteosarcoma is still unknown. Here, we tested the hypothesis that tomatidine suppresses migration and invasion, features that are associated with metastatic process in human osteosarcoma cells and also investigate its underlying pathway. Tomatidine, up to 100 μM, without cytotoxicity, inhibited the invasion and migration capabilities of human osteosarcoma U2OS and HOS cells and repressed presenilin 1 (PS-1) expression of U2OS cells. After the knockdown of PS-1, U2OS and HOS cells’ biological behaviors of cellular invasion and migratory potential were significantly reduced. While tomatidine significantly decreased the phosphorylation of c-Raf, mitogen/extracellular signal-regulated kinase (MEK), and extracellular signal-regulated protein kinase (ERK)1/2 in U2OS cells, no obvious influences on p-Jun N-terminal kinase, p38, and Akt, including their phosphorylation, were observed. In ERK 1 silencing U2 OS cells, tomatidine further enhanced the decrease of their migratory potential and invasive activities. We conclude that both PS-1 derived from U2OS and HOS cells and the c-Raf–MEK–ERK pathway contribute to cellular invasion and migration and tomatidine could inhibit the phenomenons. These findings indicate that tomatidine might be a potential candidate for anti-metastasis treatment of human osteosarcoma.
Collapse
|
21
|
Comprehensive MicroRNAome Analysis of the Relationship Between Alzheimer Disease and Cancer in PSEN Double-Knockout Mice. Int Neurourol J 2018; 22:237-245. [PMID: 30599494 PMCID: PMC6312969 DOI: 10.5213/inj.1836274.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 02/01/2023] Open
Abstract
Purpose Presenilins are functionally important components of γ-secretase, which cleaves a number of transmembrane proteins. Manipulations of PSEN1 and PSEN2 have been separately studied in Alzheimer disease (AD) and cancer because both involve substrates of γ-secretase. However, numerous clinical studies have reported an inverse correlation between AD and cancer. Interestingly, AD is a neurodegenerative disorder, whereas cancer is characterized by the proliferation of malignant cells. However, this inverse correlation in the PSEN double-knockout (PSEN dKO) mouse model of AD has been not elucidated, although doing so would shed light onto the relationship between AD and cancer. Methods To investigate the inverse relationship of AD and cancer under conditions of PSEN loss, we used the hippocampus of 7-month-old and 18-month-old PSEN dKO mice for a microRNA (miRNA) microarray analysis, and explored the tumorsuppressive or oncogenic role of differentially-expressed miRNAs. Results The total number of miRNAs that showed changes in expression level was greater at 18 months of age than at 7 months. Most of the putative target genes of the differentially-expressed miRNAs involved Cancer pathways. Conclusions Based on literature reviews, many of the miRNAs involved in Cancer pathways were found to be known tumorsuppressive miRNAs, and their target genes were known or putative oncogenes. In conclusion, the expression levels of known tumor-suppressive miRNAs increased at 7 and 18 months, in the PSEN dKO mouse model of AD, supporting the negative correlation between AD and cancer.
Collapse
|
22
|
Chang YS, Chang CC, Huang HY, Lin CY, Yeh KT, Chang JG. Detection of Molecular Alterations in Taiwanese Patients with Medullary Thyroid Cancer Using Whole-Exome Sequencing. Endocr Pathol 2018; 29:324-331. [PMID: 30120715 DOI: 10.1007/s12022-018-9543-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetic and epigenetic alterations are associated with the progression and prognosis of medullary thyroid carcinoma (MTC). We performed whole-exome sequencing of tumor tissue from seven patients with sporadic MTC using an Illumina HiSeq 2000 sequencing system. We conducted Sanger sequencing to confirm the somatic mutations in both tumor and matched normal tissues. We applied Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis with the Database for Annotation, Visualization, and Integrated Discovery and STRING for pathway analysis. We detected new somatic mutations in the BICD2, DLG1, FSD2, IL17RD, KLHL25, PAPPA2, PRDM2, PSEN1, SCRN1, and TTC1 genes. We found a somatic mutation in the PDE4DIP gene that had previously been discovered mutated in other tumors but that had not been characterized in MTC. We investigated pathway deregulation in MTC. Data regarding 1152 MTCs were assembled from the Catalogue of Somatic Mutations in Cancer (COSMIC) and seven of our patients. Ontological analysis revealed that most of the variants aggregated in pathways that included the signaling pathways of thyroid cancer, central carbon metabolism, microRNAs in cancer, PI3K-Akt, ErbB, MAPK, mTOR, VEGF, and RAS. In conclusion, we conducted wide-ranging exome-wide analysis of the mutational spectrum of MTC in Taiwan's population and detected novel genes with potential associations with MTC tumorigenesis and irregularities in pathways that resulted in MTC pathogenesis.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chun-Chi Chang
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsi-Yuan Huang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Yu Lin
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.
- School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
23
|
Bi E, Liu D, Li Y, Mao X, Wang A, Wang J. Oridonin induces growth inhibition and apoptosis in human gastric carcinoma cells by enhancement of p53 expression and function. ACTA ACUST UNITED AC 2018; 51:e7599. [PMID: 30462771 PMCID: PMC6247279 DOI: 10.1590/1414-431x20187599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022]
Abstract
The tumor suppressive role of oridonin, an active compound extracted from Rabdosia rubescens, has been proven in several gastric cancer (GC) cell lines. The present study aimed to evaluate the effect of oridonin on another GC cell line, SNU-216, and explore the potential mechanisms. The viable cell numbers, cell migration, survival fraction, and cell viability were, respectively, evaluated by trypan blue exclusion assay, wound healing assay, clonogenic assay, and CCK-8 assay. Cell apoptosis was determined by flow cytometry assay and western blot. The expression of p53 was inhibited by transient transfection, and the efficiency was verified by western blot. qRT-PCR was performed to measure the mRNA expression of p53. Western blot was used to evaluate the protein expression of apoptosis, DNA damage and p53 function related factors. We found that oridonin significantly inhibited cell proliferation, migration, and survivability, and enhanced cell apoptosis in SNU-216 cells. However, it had no influence on HEK293 cell viability. Oridonin also remarkably enhanced the anti-tumor effect of cisplatin on SNU-216 cells, as it significantly increased apoptotic cells and decreased cell viability. Moreover, the mRNA and protein expression of p53 was significantly up-regulated in oridonin-treated cells, while Mdm2 expression was down-regulated. Furthermore, oridonin enhanced p53 function and induced DNA damage. Knockdown of p53 or employing the caspase inhibitor, Boc-D-FMK, reversed the effect of oridonin on cell viability and apoptosis-related protein expression. The present study demonstrated that oridonin exhibited an anti-tumor effect on GC SNU-216 cells through regulating p53 expression and function.
Collapse
Affiliation(s)
- Enxu Bi
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| | - Dengqiang Liu
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| | - Youxi Li
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| | - Xuying Mao
- Department of Hepatopancreatobiliary Surgery, Huangdao Branch, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Aihua Wang
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| | - Jingtao Wang
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| |
Collapse
|
24
|
Xu Y, Cheng L, Dai H, Zhang R, Wang M, Shi T, Sun M, Cheng X, Wei Q. Variants in Notch signalling pathway genes, PSEN1 and MAML2, predict overall survival in Chinese patients with epithelial ovarian cancer. J Cell Mol Med 2018; 22:4975-4984. [PMID: 30055028 PMCID: PMC6156353 DOI: 10.1111/jcmm.13764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
To identify genetic variants in Notch signalling pathway genes that may predict survival of Han Chinese patients with epithelial ovarian cancer (EOC), we analysed a total of 1273 single nucleotide polymorphisms (SNPs) within 75 Notch genes in 480 patients from a published EOC genomewide association study (GWAS). We found that PSEN1 rs165934 and MAML2 rs76032516 were associated with overall survival (OS) of patients by multivariate Cox proportional hazards regression analysis. Specifically, the PSEN1 rs165934 AA genotype was associated with a poorer survival (adjusted hazards ratio [adjHR] = 1.41, 95% CI = 1.07-1.84, and P = .014), compared with the CC + CA genotype, while MAML2 rs76032516 AA + AC genotypes were associated with a poorer survival (adjHR = 1.58, 95% CI = 1.16-2.14, P = .004), compared with the CC genotype. The combined analysis of these two SNPs revealed that the death risk increased as the number of unfavourable genotypes increased in a dose-dependent manner (Ptrend < .001). Additionally, the expression quantitative trait loci analysis revealed that the SNP rs165932 in the rs165934 LD block (r2 = .946) was associated with expression levels of PSEN1, which might be responsible for the observed association with SNP rs165934. The associations of PSEN1 rs165934 and MAML2 rs76032516 of the Notch signalling pathway genes with OS in Chinese EOC patients are novel findings, which need to be validated in other large and independent studies.
Collapse
Affiliation(s)
- Yuan Xu
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lei Cheng
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Hongji Dai
- Department of Epidemiology and BiostatisticsKey Laboratory of Cancer Prevention and TherapyTianjinChina
- Key Laboratory of Breast Cancer Prevention and TherapyMinistry of EducationNational Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Ruoxin Zhang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Mengyun Wang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Tingyan Shi
- Ovarian Cancer ProgramDivision of Gynecologic OncologyDepartment of Gynecology and ObstetricsFudan University Zhongshan HospitalShanghaiChina
| | - Menghong Sun
- Department of PathologyTissue BankFudan University Shanghai Cancer CenterShanghaiChina
| | - Xi Cheng
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Gynecologic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Qingyi Wei
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
| |
Collapse
|
25
|
Chen XB, Li W, Chu AX. MicroRNA-133a inhibits gastric cancer cells growth, migration, and epithelial-mesenchymal transition process by targeting presenilin 1. J Cell Biochem 2018; 120:470-480. [PMID: 30161272 DOI: 10.1002/jcb.27403] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
Abstract
Gastric cancer (GC) is one of the most common malignancies and a leading cause of cancer-related death worldwide. Accumulating evidence reported that microRNA (miR)-133a was involved in GC. This study aimed to investigate the function and mechanism of miR-133a in the development and progression of GC. The expression of miR-133a and presenilin 1 (PSEN1) in two GC cell lines, SGC-7901 and BGC-823, were inhibited and overexpressed by transient transfections. Thereafter, cell viability, migration, and apoptosis were measured by trypan blue exclusion assay, transwell migration assay, and flow cytometry assay, respectively. Dual-luciferase reporter assay was conducted to verify whether PSEN1 was a direct target of miR-133a. Furthermore, quantitative real-time polymerase chain reaction and Western blot analysis were mainly performed to assess the expression changes of epithelial-mesenchymal transition (EMT)-associated proteins, apoptosis-related proteins, and Notch pathway proteins. MiR-133a inhibitor significantly increased cell viability and migration, while miR-133a mimic decreased cell viability, migration, and induced apoptosis. miR-133a suppression accelerated transforming growth factor-β1 (TGF-β1)-induce EMT, as evidenced by upregulation of E-cadherin, and downregulation of N-cadherin, vimentin, and Slug. Of contrast, miR-133a overexpression blocked TGF-β1-induce EMT by altering these factors. PSEN1 was a direct target of miR-133a, and suppression of PSEN1 abolished the promoting functions of miR-133 suppression on cell growth and metastasis. Moreover, PSEN1 inhibition decreased Notch 1, Notch 2, and Notch 3 protein expressions. This study demonstrates an antigrowth and antimetastasis role of miR-133a in GC cells. Additionally, miR-133a acts as a tumor suppressor may be via targeting PSEN1.
Collapse
Affiliation(s)
- Xin-Bo Chen
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, China
| | - Wei Li
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, China
| | - Ai-Xia Chu
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
26
|
Chang JH, Cheng CW, Yang YC, Chen WS, Hung WY, Chow JM, Chen PS, Hsiao M, Lee WJ, Chien MH. Downregulating CD26/DPPIV by apigenin modulates the interplay between Akt and Snail/Slug signaling to restrain metastasis of lung cancer with multiple EGFR statuses. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:199. [PMID: 30134935 PMCID: PMC6104010 DOI: 10.1186/s13046-018-0869-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/08/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Metastasis rather than the primary cancer determines the survival of cancer patients. Activation of Akt plays a critical role in the epithelial-to-mesenchymal transition (EMT), the initial step in lung cancer metastasis. Apigenin (API), a flavonoid with a potent Akt-inhibitory effect, shows oncostatic activities in various cancers. However, the effects of API on metastasis of non-small cell lung cancer (NSCLC) remain unclear. METHODS NSCLC cell lines with different epidermal growth factor receptor (EGFR) statuses and in vivo orthotopic bioluminescent xenograft model were employed to determine antitumor activity of API. Western blot and genetic knockdown by shRNA or genetic overexpression by DNA plasmids were performed to explore the underlying mechanisms. The Cancer Genome Atlas (TCGA) database was used to investigate the prognosis of API-targeted genes. RESULTS API was demonstrated to inhibit the migration/invasion of NSCLC cells harboring different EGFR statuses via suppressing the Snail/Slug-mediated EMT. Mechanistic investigations showed that CD26/dipeptidyl peptidase IV (DPPIV) was downregulated by API following suppressive interplay of Akt and Snail/Slug signaling to modulate the EMT and the invasive ability of NSCLC cells. CD26 expression was positively correlated with the invasive abilities of NSCLC cells and a worse prognosis of lung cancer patients. Furthermore, we observed that patients with CD26high/Akthigh tumors had the shortest recurrence-free survival times. In vivo, API drastically reduced the growth and metastasis of A549 xenografts through targeting CD26. CONCLUSIONS CD26 may be a useful biomarker for predicting NSCLC progression. API effectively suppressed lung cancer progression by targeting the CD26-Akt-Snail/Slug signaling pathway.
Collapse
Affiliation(s)
- Jer-Hwa Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Shen Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Jyh-Ming Chow
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, 111 Hsing Long Road, Section 3, Taipei, 11696, Taiwan. .,Department of Urology, School of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, 111 Hsing Long Road, Section 3, Taipei, 11696, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
27
|
Presenilins as Drug Targets for Alzheimer's Disease-Recent Insights from Cell Biology and Electrophysiology as Novel Opportunities in Drug Development. Int J Mol Sci 2018; 19:ijms19061621. [PMID: 29857474 PMCID: PMC6032171 DOI: 10.3390/ijms19061621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 01/24/2023] Open
Abstract
A major cause underlying familial Alzheimer's disease (AD) are mutations in presenilin proteins, presenilin 1 (PS1) and presenilin 2 (PS2). Presenilins are components of the γ-secretase complex which, when mutated, can affect amyloid precursor protein (APP) processing to toxic forms of amyloid beta (Aβ). Consequently, presenilins have been the target of numerous and varied research efforts to develop therapeutic strategies for AD. The presenilin 1 gene harbors the largest number of AD-causing mutations resulting in the late onset familial form of AD. As a result, the majority of efforts for drug development focused on PS1 and Aβ. Soon after the discovery of the major involvement of PS1 and PS2 in γ-secretase activity, it became clear that neuronal signaling, particularly calcium ion (Ca2+) signaling, is regulated by presenilins and impacted by mutations in presenilin genes. Intracellular Ca2+ signaling not only controls the activity of neurons, but also gene expression patterns, structural functionality of the cytoskeleton, synaptic connectivity and viability. Here, we will briefly review the role of presenilins in γ-secretase activity, then focus on the regulation of Ca2+ signaling, oxidative stress, and cellular viability by presenilins within the context of AD and discuss the relevance of presenilins in AD drug development efforts.
Collapse
|
28
|
Patrad E, Niapour A, Farassati F, Amani M. Combination treatment of all-trans retinoic acid (ATRA) and γ-secretase inhibitor (DAPT) cause growth inhibition and apoptosis induction in the human gastric cancer cell line. Cytotechnology 2018; 70:865-877. [PMID: 29417442 PMCID: PMC5851978 DOI: 10.1007/s10616-018-0199-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/24/2018] [Indexed: 01/26/2023] Open
Abstract
Current medication for gastric cancer patients has a low success rate with resistance and side effects. According to recent studies, γ-secretase inhibitors is used as therapeutic drugs in cancer. Moreover, all-trans retinoic acid (ATRA) is a natural compound proposed for the treatment/chemo-prevention of cancers. The aim of this study was to explore the effects of ATRA in combination with N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT) as γ-secretase inhibitor on viability and apoptosis of the AGS and MKN-45 derived from human gastric cancer. AGS and MKN-45 gastric cancer cell lines were treated with different concentrations of ATRA or DAPT alone or ATRA plus DAPT. The viability, death detection and apoptosis of cells was examined by MTT assay and Ethidium bromide/acridine orange staining. The distribution of cells in different phases of cell cycle was also evaluated through flow cytometry analyses. In addition, caspase 3/7 activity and the expression of caspase-3 and bcl-2 were examined. DAPT and ATRA alone decreased gastric cancer cells viability in a concentration dependent manner. The combination of DAPT and ATRA exhibited significant synergistic inhibitory effects. The greater percentage of cells were accumulated in G0/G1 phase of cell cycle in combination treatment. The combination of DAPT and ATRA effectively increased the proportion of apoptotic cells and the level of caspase 3/7 activities compared to single treatment. Moreover, augmented caspase-3 up-regulation and bcl-2 down-regulation were found following combined application of DAPT and ATRA. The combination of DAPT and ATRA led to more reduction in viability and apoptosis in respect to DAPT or ATRA alone in the investigated cell lines.
Collapse
Affiliation(s)
- Elham Patrad
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Faris Farassati
- Molecular Medicine Laboratory, Department of Medicine, The University of Kansas Medical School (KUMC), Kansas City, KS, USA
| | - Mojtaba Amani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
29
|
Morphologic and Immunohistochemical Appraisal of Primary Gastric Carcinomas. Appl Immunohistochem Mol Morphol 2018; 26:e107-e115. [PMID: 29438113 DOI: 10.1097/pai.0000000000000618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gastric carcinoma management requires adjustments answering their genetic and morphologic heterogeneity. We aim to assess the expression and significance of a myriad of biomarkers (p53, MLH1, MSH2, PMS2, MSH6, Epstein-Barr encoding region-RNA, c-erbB2, E-cadherin, CEA, chromogranin, Ki-67, CDX2, presenilin-1, cathepsin E, MUC5AC, cyclin-dependent kinase 1) in 117 gastric carcinomas, which we have morphologically subclassified with a simple algorithm. Immunohistochemical stains were applied to 3 tissue microarrays of primary gastric carcinomas (n=117) obtained from resection specimens of untreated patients. These cases represented the morphologic subgroups that emerged from a reclassification attempt carried out according to the predominant (>50%) morphologic component they contained (adenocarcinoma, diffuse infiltrative carcinoma, mucinous carcinoma) and "mixed" carcinoma if none predominated. Cases with unusual morphology were assigned to a "special subtypes" group ("rare" tumors). Correlation of overall survival and staining patterns was carried out. Adenocarcinomas comprised 43.6% (n=51), diffuse infiltrative carcinomas 28.2% (n=33), mucinous carcinomas 6% (n=7), mixed carcinomas 6%, and "rare/other" carcinomas 16.2% (n=19) of the 117 muscle-invasive carcinoma cases. High tumor stage was associated with worse overall survival at multivariate analysis (P=0.000, log-rank). Higher cathepsin E and cyclin-dependent kinase 1 expression was associated with worse overall survival on univariate analysis (log-rank; P=0.050 and 0.001, respectively). Mismatch repair defects were seen in adenocarcinomas and "rare" tumors with MLH1 silencing. These above-mentioned points can lead to the differentiation of metabolic and phenotypic features per gastric carcinoma subtype and may help design targeted approaches.
Collapse
|
30
|
Wang JB, Wang ZW, Li Y, Huang CQ, Zheng CH, Li P, Xie JW, Lin JX, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Lin Y, Huang CM. CDK5RAP3 acts as a tumor suppressor in gastric cancer through inhibition of β-catenin signaling. Cancer Lett 2016; 385:188-197. [PMID: 27793695 DOI: 10.1016/j.canlet.2016.10.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
CDK5RAP3 was isolated as a binding protein of the Cdk5 activator p35. Although CDK5RAP3 has been implicated in cancer progression, its expression and function have not been investigated in gastric cancer. Our study demonstrated that the mRNA and protein levels of CDK5RAP3 were markedly decreased in gastric tumor tissues when compared with respective adjacent non-tumor tissues. CDK5RAP3 in gastric cancer cells significantly reduced cell proliferation, migration, invasion and tumor xenograft growth through inhibition of β-catenin. Secondly, CDK5RAP3 was found to suppress the phosphorylation of GSK-3β (Ser9), leading to the phosphorylation (Ser37/Thr41) and subsequent degradation of β-catenin. Lastly, the prognostic value of CDK5RAP3 for overall survival was found to be dependent on β-catenin cytoplasm/nucleus localization in human gastric cancer samples. Collectively, our results demonstrated that CDK5RAP3 negatively regulates the β-catenin signaling pathway by repressing GSK-3β phosphorylation and could be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Zu-Wei Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yun Li
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Chao-Qun Huang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, People's Republic of China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yao Lin
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, People's Republic of China.
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China.
| |
Collapse
|