1
|
Zhao M, Zhang N, Wang Y, Han K, Gao T, Li X. FOXA1, induced by RC48, regulates HER2 transcription to enhance the tumorigenic capacity of lung cancer through PI3K/AKT pathway. J Cancer 2024; 15:5863-5875. [PMID: 39440051 PMCID: PMC11493013 DOI: 10.7150/jca.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/25/2024] [Indexed: 10/25/2024] Open
Abstract
Lung cancer remains the tumor with the highest global incidence and mortality rates. Current primary treatment modalities encompass targeted therapy, immunotherapy, and chemotherapy; however, a subset of patients derives no benefit from these interventions. Recently, the HER2-targeting antibody drug Disitamab vedotin (RC48) was approved and introduced primarily for gastric and bladder cancers, with minimal investigation in the field of lung cancer. This study demonstrates that FOXA1 directly binds to the promoter region of HER2, influencing the HER2/PI3K/AKT signaling pathway, which consequently modulates factors that foster lung cancer proliferation and impede apoptosis. Unlike FOXA1, HER2 does not influence the expression of FOXA1. Intriguingly, in lung cancer cells, RC48 not only impacts the HER2/PI3K/AKT pathway but also affects the FOXA1/HER2/PI3K/AKT pathway, thereby exerting a robust antitumor effect. In clinical specimens, heightened expressions of FOXA1 and HER2 correlate positively with clinical progression and poorer prognosis. These findings suggest that FOXA1 may serve as a potential biomarker or therapeutic target in future non-small cell lung cancer (NSCLC) treatments, and ongoing research may position RC48 as a transformative agent in lung cancer therapy.
Collapse
Affiliation(s)
- Mengyang Zhao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou U niversity, Zhengzhou, Henan, 450003, China
| | - Ning Zhang
- Department of Radiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yijun Wang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou U niversity, Zhengzhou, Henan, 450003, China
| | - Kang Han
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Tianhui Gao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou U niversity, Zhengzhou, Henan, 450003, China
| | - Xue Li
- Ophthalmology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
2
|
Yuen JG, Hwang GR, Fesler A, Intriago E, Pal A, Ojha A, Ju J. Development of gemcitabine-modified miRNA mimics as cancer therapeutics for pancreatic ductal adenocarcinoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200769. [PMID: 38596306 PMCID: PMC10869788 DOI: 10.1016/j.omton.2024.200769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 01/19/2024] [Indexed: 04/11/2024]
Abstract
Despite the recent advancement in diagnosis and therapy, pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is still the most lethal cancer with a low five-year survival rate. There is an urgent need to develop new therapies to address this issue. In this study, we developed a treatment strategy by modifying tumor suppressor miRNAs, miR-15a and miR-194, with the chemotherapeutic gemcitabine (Gem) to create Gem-modified mimics, Gem-miR-15a and Gem-miR-194, respectively. In a panel of PDAC cell lines, we found that Gem-miR-15a and Gem-miR-194 induce cell-cycle arrest and apoptosis, and these mimics are potent inhibitors with IC50 values up to several hundred fold less than their native counterparts or Gem alone. Furthermore, we found that Gem-miR-15a and Gem-miR-194 retained miRNA function by downregulating the expression of several key targets including WEE1, CHK1, BMI1, and YAP1 for Gem-miR-15a, and FOXA1 for Gem-miR-194. We also found that our Gem-modified miRNA mimics exhibit an enhanced efficacy compared to Gem in patient-derived PDAC organoids. Furthermore, we observed that Gem-miR-15a significantly inhibits PDAC tumor growth in vivo without observing any noticeable signs of toxicity. Overall, our results demonstrate the therapeutic potential of Gem-modified miRNAs as a treatment strategy for PDAC.
Collapse
Affiliation(s)
- John G. Yuen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Medical Scientist Training Program, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ga-Ram Hwang
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Erick Intriago
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Amartya Pal
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Anushka Ojha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- The Northport Veteran’s Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
3
|
Chen G, Wei RS, Ma J, Li XH, Feng L, Yu JR. FOXA1 prolongs S phase and promotes cancer progression in non-small cell lung cancer through upregulation of CDC5L and activation of the ERK1/2 and JAK2 pathways. Kaohsiung J Med Sci 2023; 39:1077-1086. [PMID: 37658700 DOI: 10.1002/kjm2.12737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 09/03/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) causes high mortality worldwide; however, its molecular pathways have not been fully investigated. The relationship between FOXA1 and CDC5L as well as their roles in NSCLC have not been comprehensively studied. Clinical tissues were collected from 78 NSCLC patients for clinical studies. The BEAS-2B human normal lung epithelial cell line and the A549, Calu-3, H526 and H2170 human NSCLC cell lines were used for in vitro studies. sh-FOXA1 and oe-CDC5L constructs were used to generate knockdown and overexpression models, respectively. The CCK-8 assay was used to analyze cell viability. The cell cycle and apoptosis were evaluated by flow cytometry analysis. The relationship between FOXA1 and CDC5L was demonstrated using dual-luciferase and ChIP assays. Gene levels were examined via immunohistochemistry, qRT-PCR and western blot analysis. FOXA1 levels were increased in NSCLC clinical tissues and cell lines. Depletion of FOXA1 increased the apoptosis rate and increased the proportion of cells in G2/M phase. In addition, we demonstrated that FOXA1 was directly bound to the promoter of CDC5L and that depletion of FOXA1 inhibited CDC5L expression. Overexpression of CDC5L induced ERK1/2 phosphorylation, induced JAK2 phosphorylation, inhibited cell apoptosis, prolonged S phase, and significantly reversed the effects of FOXA1 knockdown on the progression of NSCLC. The present study demonstrated that FOXA1 prolongs S phase and promotes NSCLC progression through upregulation of CDC5L and activation of the ERK1/2 and JAK2 pathways.
Collapse
Affiliation(s)
- Gang Chen
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Rui-Shi Wei
- Department of Thoracic Surgery, Changzhou City Fourth People's Hospital/Changzhou Cancer Hospital, Changzhou, Jiangsu, People's Republic of China
| | - Jie Ma
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xin-Hua Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Li Feng
- Department of Thoracic Surgery, Changzhou City Fourth People's Hospital/Changzhou Cancer Hospital, Changzhou, Jiangsu, People's Republic of China
| | - Jian-Rong Yu
- Department of Thoracic Surgery, Changzhou City Fourth People's Hospital/Changzhou Cancer Hospital, Changzhou, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Caetano S, Garcia AR, Figueira I, Brito MA. MEF2C and miR-194-5p: New Players in Triple Negative Breast Cancer Tumorigenesis. Int J Mol Sci 2023; 24:14297. [PMID: 37762600 PMCID: PMC10531597 DOI: 10.3390/ijms241814297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Among breast cancer (BC) subtypes, the most aggressive is triple negative BC (TNBC), which is prone to metastasis. We previously found that microRNA (miR)-194-5p is downregulated at the early stages of TNBC brain metastasis development. Additionally, the transcription factor myocyte enhancer factor 2 (MEF2)C, a bioinformatically predicted miR-194-5p target, was increasingly expressed throughout TNBC brain metastasis formation and disease severity. However, the contributions of these two players to malignant cells' features remain undetermined. This study aimed at disclosing the role of miR-194-5p and MEF2C in TNBC tumorigenesis. The transfection of 4T1 cells with a silencer for MEF2C or with a pre-miRNA for miR-194-5p was employed to study TNBC cells' phenotypic alterations regarding epithelial and mesenchymal markers, as well as migratory capability alterations. MEF2C-silenced cells presented a decline in both vimentin and cytokeratin expression, whereas the overexpression of miR-194-5p promoted an increase in cytokeratin and a reduction in vimentin, reflecting the acquisition of an epithelial phenotype. Both treatments reduced TNBC cells' migration. These results suggest that MEF2C may determine TNBC cells' invasive properties by partially determining the occurrence of epithelial-mesenchymal transition, while the overexpression of miR-194-5p promotes a decline in TNBC cells' aggressive behavior and reinforces this miRNA's role as a tumor suppressor in TNBC.
Collapse
Affiliation(s)
- Sara Caetano
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Rita Garcia
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Inês Figueira
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Farm-ID—Faculty of Pharmacy Research and Development Association, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Alexandra Brito
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
5
|
Yuen JG, Hwang GR, Fesler A, Intriago E, Pal A, Ojha A, Ju J. Development of Gemcitabine-Modified miRNA Mimics as Cancer Therapeutics for Pancreatic Ductal Adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553255. [PMID: 37645827 PMCID: PMC10462072 DOI: 10.1101/2023.08.14.553255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pancreatic cancer, including its most common subtype, pancreatic adenocarcinoma (PDAC), has the lowest five-year survival rate among patients with pancreatic cancer in the United States. Despite advancements in anticancer treatment, the overall median survival for patients with PDAC has not dramatically improved. Therefore, there is an urgent need to develop new strategies of treatment to address this issue. Non-coding RNAs, including microRNAs (miRNAs), have been found to have major roles in carcinogenesis and the subsequent treatment of various cancer types like PDAC. In this study, we developed a treatment strategy by modifying tumor suppressor miRNAs, hsa-miRNA-15a (miR-15a) and hsa-miRNA-194-1 (miR-194), with the nucleoside analog chemotherapeutic gemcitabine (Gem) to create Gem-modified mimics of miR-15a (Gem-miR-15a) and miR-194 (Gem-miR-194). In a panel of PDAC cell lines, we found that Gem-miR-15a and Gem-miR-194 induce cell cycle arrest and apoptosis, and these mimics are potent inhibitors with IC 50 values up to several hundred fold less than their native counterparts or Gem alone. Furthermore, we found that Gem-miR-15a and Gem-miR-194 retained miRNA function by downregulating the expression of several key targets including WEE1, CHK1, BMI1, and YAP1 for Gem-miR-15a, and FOXA1 for Gem-miR-194. We also found that our Gem-modified miRNA mimics exhibit an enhanced efficacy compared to Gem alone in patient-derived PDAC organoids. Furthermore, we observed that Gem-miR-15a significantly inhibits PDAC tumor growth in vivo without observing any noticeable signs of toxicity. Overall, our results demonstrate the therapeutic potential of Gem-modified miRNAs as a treatment strategy for PDAC. One Sentence Summary Yuen and Hwang et. al. have developed a potent therapeutic strategy for patients with pancreatic cancer by modifying microRNAs with gemcitabine.
Collapse
|
6
|
Dodangeh F, Sadeghi Z, Maleki P, Raheb J. Long non-coding RNA SOX2-OT enhances cancer biological traits via sponging to tumor suppressor miR-122-3p and miR-194-5p in non-small cell lung carcinoma. Sci Rep 2023; 13:12371. [PMID: 37524903 PMCID: PMC10390639 DOI: 10.1038/s41598-023-39000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
The oncogenic role of long non-coding RNA SOX2 overlapping transcript (SOX2-OT) has been demonstrated as a miRNA decay system that sponges tumor suppressor miRNA, including miR-122-3p in glioblastoma and miR-194-5p in glioblastoma, gastric, and colorectal cancers. However, the molecular function of SOX2-OT remains unknown in most cancers, including lung cancer. In the current study, we aimed to evaluate the downstream regulatory function of SOX2-OT in A549 and Calu-3 lung cancer cell lines. We knocked down SOX2-OT expression using an RNA interference system, which significantly decreased expression in A549 and Calu-3 cells. The expression of down-regulating miRNAs (miR-122-3p and miR-194-5p) was evaluated, revealing increased expression of miR-122-3p and miR-194-5p. Additionally, the expression of miRNAs downstream mRNA, including FOXO1 (Forkhead Box O1) and FOXA1 (Forkhead Box O1), changed. Recently, critical roles of FOXO1 and FOXA1 proteins in pathways involved in proliferation, metastasis and apoptosis have been demonstrated. Downstream changes in cellular traits were assessed using MTT, flow cytometry, metastasis and apoptosis assays. These assessments confirmed that the biological behaviors of lung cancer cells were influenced after SOX2-OT knockdown. In summary, the present study highlights the oncogenic role of SOX2-OT through the regulation of miR-122-3p/FOXO1 and miR-194-5p/FOXA1 pathways.
Collapse
Affiliation(s)
- Fatemeh Dodangeh
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra Sadeghi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Parichehr Maleki
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Jamshid Raheb
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
7
|
Shademan B, Karamad V, Nourazarian A, Masjedi S, Isazadeh A, Sogutlu F, Avcı CB. MicroRNAs as Targets for Cancer Diagnosis: Interests and Limitations. Adv Pharm Bull 2023; 13:435-445. [PMID: 37646065 PMCID: PMC10460809 DOI: 10.34172/apb.2023.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/02/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
MicroRNAs are small RNAs with ability to attach to the large number of RNA that regulate gene expression on post-transcriptional level via inhibition or degradation of specific mRNAs. MiRNAs in cells are the primary regulators of functions such as cell growth, differentiation, and apoptosis and considerably influence cell function. The expression levels of microRNAs change in human diseases, including cancer. These changes highlight their essential role in cancer pathogenesis. Ubiquitous irregular expression profiles of miRNAs have been detected in various human cancers using genome-wide identification techniques, which are emerging as novel diagnostic and prognostic cancer biomarkers of high specificity and sensitivity. The measurable miRNAs with enhanced stability in blood, tissues, and other body fluids provide a comprehensive source of miRNA-dependent biomarkers for human cancers. The leading role of miRNAs as potential biomarkers in human cancers is discussed in this article. In addition, the interests and difficulties of miRNAs as biomarkers have been explored.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Sepideh Masjedi
- Department of Cellular and Molecular Biology Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| |
Collapse
|
8
|
Choi SR, Lee M. Estimating the Prognosis of Low-Grade Glioma with Gene Attention Using Multi-Omics and Multi-Modal Schemes. BIOLOGY 2022; 11:biology11101462. [PMID: 36290366 PMCID: PMC9598836 DOI: 10.3390/biology11101462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/20/2022]
Abstract
The prognosis estimation of low-grade glioma (LGG) patients with deep learning models using gene expression data has been extensively studied in recent years. However, the deep learning models used in these studies do not utilize the latest deep learning techniques, such as residual learning and ensemble learning. To address this limitation, in this study, a deep learning model using multi-omics and multi-modal schemes, namely the Multi-Prognosis Estimation Network (Multi-PEN), is proposed. When using Multi-PEN, gene attention layers are employed for each datatype, including mRNA and miRNA, thereby allowing us to identify prognostic genes. Additionally, recent developments in deep learning, such as residual learning and layer normalization, are utilized. As a result, Multi-PEN demonstrates competitive performance compared to conventional models for prognosis estimation. Furthermore, the most significant prognostic mRNA and miRNA were identified using the attention layers in Multi-PEN. For instance, MYBL1 was identified as the most significant prognostic mRNA. Such a result accords with the findings in existing studies that have demonstrated that MYBL1 regulates cell survival, proliferation, and differentiation. Additionally, hsa-mir-421 was identified as the most significant prognostic miRNA, and it has been extensively reported that hsa-mir-421 is highly associated with various cancers. These results indicate that the estimations of Multi-PEN are valid and reliable and showcase Multi-PEN's capacity to present hypotheses regarding prognostic mRNAs and miRNAs.
Collapse
|
9
|
Konoshenko M, Lansukhay Y, Krasilnikov S, Laktionov P. MicroRNAs as Predictors of Lung-Cancer Resistance and Sensitivity to Cisplatin. Int J Mol Sci 2022; 23:7594. [PMID: 35886942 PMCID: PMC9321818 DOI: 10.3390/ijms23147594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Platinum-based chemotherapy, cisplatin (DDP) specifically, is the main strategy for treating lung cancer (LC). However, currently, there is a lack of predictive drug-resistance markers, and there is increased interest in the development of a reliable and sensitive panels of markers for DDP chemotherapy-effectiveness prediction. MicroRNAs represent a perspective pool of markers for chemotherapy effectiveness. OBJECTIVES Data on miRNAs associated with LC DDP chemotherapy response are summarized and analyzed. MATERIALS AND METHODS A comprehensive review of the data in the literature and an analysis of bioinformatics resources were performed. The gene targets of miRNAs, as well as their reciprocal relationships with miRNAs, were studied using several databases. RESULTS AND DISCUSSION The complex analysis of bioinformatics resources and the literature indicated that the expressions of 12 miRNAs have a high predictive potential for LC DDP chemotherapy responses. The obtained information was discussed from the point of view of the main mechanisms of LC chemoresistance. CONCLUSIONS An overview of the published data and bioinformatics resources, with respect to the predictive microRNA markers of chemotherapy response, is presented in this review. The selected microRNAs and gene panel have a high potential for predicting LC DDP sensitiveness or DDP resistance as well as for the development of a DDP co-therapy.
Collapse
Affiliation(s)
- Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| | - Yuriy Lansukhay
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| | - Sergey Krasilnikov
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| |
Collapse
|
10
|
Sepúlveda M, Arauna D, García F, Albala C, Palomo I, Fuentes E. Frailty in Aging and the Search for the Optimal Biomarker: A Review. Biomedicines 2022; 10:1426. [PMID: 35740447 PMCID: PMC9219911 DOI: 10.3390/biomedicines10061426] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 01/09/2023] Open
Abstract
In the context of accelerated aging of the population worldwide, frailty has emerged as one of the main risk factors that can lead to loss of self-sufficiency in older people. This syndrome is defined as a reduced state of physiological reserve and functional capacity. The main diagnostic tools for frailty are based on scales that show deficits compared to their clinical application, such as the Fried frailty phenotype, among others. In this context, it is important to have one or more biomarkers with clinical applicability that can objectively and precisely determine the degree or risk of frailty in older people. The objective of this review was to analyze the biomarkers associated with frailty, classified according to the pathophysiological components of this syndrome (inflammation, coagulation, antioxidants, and liver function, among others). The evidence demonstrates that biomarkers associated with inflammation, oxidative stress, skeletal/cardiac muscle function, and platelet function represent the most promising markers of frailty due to their pathophysiological association with this syndrome. To a lesser extent but with the possibility of greater innovation, biomarkers associated with growth factors, vitamins, amino acids, and miRNAs represent alternatives as markers of this geriatric syndrome. Likewise, the incorporation of artificial intelligence represents an interesting approach to strengthening the diagnosis of frailty by biomarkers.
Collapse
Affiliation(s)
- Magdalena Sepúlveda
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| | - Diego Arauna
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| | - Francisco García
- Department of Geriatric Medicine, Complejo Hospitalario de Toledo, 45007 Toledo, Spain;
| | - Cecilia Albala
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos, Interuniversity Center for Healthy Aging, Universidad de Chile, Santiago 8320000, Chile;
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| |
Collapse
|
11
|
Down-Regulation of miR-194-5p for Predicting Metastasis in Breast Cancer Cells. Int J Mol Sci 2021; 23:ijms23010325. [PMID: 35008751 PMCID: PMC8745262 DOI: 10.3390/ijms23010325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs), as key negative regulators of gene expression, are closely related to tumor occurrence and progression. miR-194-5p (miR-194-1) has been shown to play a regulatory role in various cancers however, its biological function and mechanism of action in breast cancer have not yet been well explored. In this study, we use the UALCAN and LinkedOmics databases to analyze transcription expression in The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA). The epithelial-mesenchymal transition status of breast cancer cells was evaluated by wound-healing assay, trans-well assays, and gelatin zymography, while protein expression was assessed by Western blotting. miR-194-5p expression was found to be up-regulated in breast cancer clinical specimens but down-regulated in the triple-negative breast cancer (TNBC) cell line MDA-MB-231 and breast cancer clinical specimens in The Cancer Genome Atlas (TCGA). miR-194-5p significantly inhibited the expression of the epithelial marker ZO-1 and increased the expression of mesenchymal markers, including ZEB-1 and vimentin, in MDA-MB-231 cells. miR-194-5p significantly reduced the gelatin-degrading activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 in zymography assays. In MDA-MB-231 cells and TCGA patient samples, ZEB-1 expression was significantly inversely correlated with miR-194-5p expression. High levels of miR-194-5p were associated with good overall survival. miR-194-5p regulates epithelial–mesenchymal transition (EMT) in TNBC. Our findings suggest that miR-194-5p functions as a tumor biomarker in breast cancer, providing new insights for the study of breast cancer development and metastasis.
Collapse
|
12
|
Zhang J, Liu J, Xu S, Yu X, Zhang Y, Li X, Zhang L, Yang J, Xing X. Bioinformatics analyses of the pathogenesis and new biomarkers of chronic obstructive pulmonary disease. Medicine (Baltimore) 2021; 100:e27737. [PMID: 34797299 PMCID: PMC8601278 DOI: 10.1097/md.0000000000027737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/01/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is one of the major cause of global death. The purpose of our analysis was to detect a more reliable biomarker and small-molecule drug candidates and to identify the precise mechanisms involved in COPD. METHODS Three data sets were downloaded from the Gene Expression Omnibus database and analysed by Gene Expression Omnibus 2R. Functional enrichment analyses were performed by Metascape. We use the STRING data to build a protein-protein interaction network. The targets of differentially expressed microRNA (DE miRNA) were predicted by the miRWalk database. Small-molecule drugs were predicted on connectivity map. RESULTS A total of 181 differentially expressed genes and 35 DE miRNAs were confirmed. The protein-protein interaction network including all integrated differentially expressed genes was constructed, and 4 modules were filtrated. The module genes were relative to immune, inflammatory and oxidative stress functions according to a pathway analysis. The top 20 key genes were screened. Among the DE miRNAs found to be regulating key genes, miR-194-3p, MiR-502-5p, MiR-5088-5p, MiR-3127-5p, and miR-23a-5p might be the most significant due to their high number of connecting nodes in COPD. In addition, cephaeline, emetine, gabapentin, and amrinone were found to be potential drugs to treat COPD patients. CONCLUSION Our study suggests that miR-194-3p, miR-502-5p, and miR-23a-5p might participate in the nosogenesis of COPD. In addition, 4 potential small-molecule drugs were considered potentially useful for treating COPD patients.
Collapse
Affiliation(s)
- Jihua Zhang
- Department of Respiratory Medicine, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Jie Liu
- The graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Shuanglan Xu
- The graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaochao Yu
- The graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Yi Zhang
- Department of Respiratory Medicine, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Xiao Li
- Department of Respiratory Medicine, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Liqiong Zhang
- Department of Respiratory Medicine, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Jiao Yang
- First Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiqian Xing
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
13
|
Xia M, Sheng L, Qu W, Xue X, Chen H, Zheng G, Chen W. MiR-194-5p enhances the sensitivity of nonsmall-cell lung cancer to doxorubicin through targeted inhibition of hypoxia-inducible factor-1. World J Surg Oncol 2021; 19:174. [PMID: 34127010 PMCID: PMC8204537 DOI: 10.1186/s12957-021-02278-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Background Despite chemotherapy being a common treatment, an increase in chemoresistance over time is unavoidable. We therefore investigated the role of miR-194-5p in regulating chordoma cell behavior and examined the downstream effectors of miR-194-5p. Methods In this study, NSCLC cell lines A549 and H460 were cultured under hypoxic conditions for 1 week to induce drug resistance to doxorubicin (DOX). The connection between miR-194-5p and HIF-1 was revealed by reverse transcription and real-time polymerase chain reaction (RT-qPCR), western blot, and dual-luciferase assays. We used TUNEL staining and the CCK-8 test to assess the sensitivity of NSCLC cells to DOX. Results We found that hypoxia-induced NSCLC cells enhanced resistance to DOX. MiR-194-5p was substantially reduced, and HIF-1 was increased in hypoxia-induced drug-resistant NSCLC cells. Moreover, miR-194-5p successfully induced NSCLC cell apoptosis by directly inhibiting HIF-1, thereby enhancing DOX sensitivity. Conclusions MiR-194-5p enhanced the sensitivity of NSCLC cells to DOX by directly inhibiting HIF-1. This work provides insights into underlying treatments for drug-resistant NSCLC.
Collapse
Affiliation(s)
- Mengning Xia
- Department of Ultrasound, Children's Hospital of Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Lili Sheng
- Department of Blood Transfusion, Nanjing Benq Medical Center, Nanjing, 210021, People's Republic of China
| | - Wei Qu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Xue Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Hucheng Chen
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Guoyan Zheng
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Weigang Chen
- Laboratory Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210000, People's Republic of China.
| |
Collapse
|
14
|
Cai S, Weng Y, Miao F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res 2021; 384:353-366. [PMID: 33591442 DOI: 10.1007/s00441-021-03412-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Esophageal cancer (EC) is a leading cause of cancer-related deaths worldwide. Recent studies highlight roles for microRNAs (miRNAs) in EC. Microarray analysis identified miR-194 as downregulated in EC. However, little is known about the role of miR-194 in regulating self-renewal or other biological properties of EC stem cells. RT-qPCR and Western blot confirmed the downregulation of miR-194 in EC stem cells and revealed the upregulation of protein regulator of cytokinesis 1 (PRC1) in EC. Dual-luciferase reporter assay confirmed miR-194 targeting of PRC1 resulting in its downregulation. MiR-194 overexpression or PRC1 silencing reduced PRC1 expression, preventing the activation of the Wnt/β-catenin signaling pathway. Inhibition of the Wnt/β-catenin signaling pathway prevented the proliferation, invasion, and self-renewal of EC stem cells while promoting apoptosis. Furthermore, overexpressing miR-194 or silencing PRC1 in nude mice decreased the tumor formation ability of EC stem cells in vivo. Taken together, miR-194 prevents the progression of EC by downregulating PRC1 and inactivating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shuang Cai
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China
| | - Yang Weng
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China
| | - Feng Miao
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China.
| |
Collapse
|
15
|
Fernandes RC, Toubia J, Townley S, Hanson AR, Dredge BK, Pillman KA, Bert AG, Winter JM, Iggo R, Das R, Obinata D, Sandhu S, Risbridger GP, Taylor RA, Lawrence MG, Butler LM, Zoubeidi A, Gregory PA, Tilley WD, Hickey TE, Goodall GJ, Selth LA. Post-transcriptional Gene Regulation by MicroRNA-194 Promotes Neuroendocrine Transdifferentiation in Prostate Cancer. Cell Rep 2021; 34:108585. [PMID: 33406413 DOI: 10.1016/j.celrep.2020.108585] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/23/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Potent therapeutic inhibition of the androgen receptor (AR) in prostate adenocarcinoma can lead to the emergence of neuroendocrine prostate cancer (NEPC), a phenomenon associated with enhanced cell plasticity. Here, we show that microRNA-194 (miR-194) is a regulator of epithelial-neuroendocrine transdifferentiation. In clinical prostate cancer samples, miR-194 expression and activity were elevated in NEPC and inversely correlated with AR signaling. miR-194 facilitated the emergence of neuroendocrine features in prostate cancer cells, a process mediated by its ability to directly target a suite of genes involved in cell plasticity. One such target was FOXA1, which encodes a transcription factor with a vital role in maintaining the prostate epithelial lineage. Importantly, a miR-194 inhibitor blocked epithelial-neuroendocrine transdifferentiation and inhibited the growth of cell lines and patient-derived organoids possessing neuroendocrine features. Overall, our study reveals a post-transcriptional mechanism regulating the plasticity of prostate cancer cells and provides a rationale for targeting miR-194 in NEPC.
Collapse
Affiliation(s)
- Rayzel C Fernandes
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - John Toubia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Frome Road, Adelaide, SA 5005, Australia
| | - Scott Townley
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Adrienne R Hanson
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA 5005, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA 5005, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA 5005, Australia
| | - Jean M Winter
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Richard Iggo
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Institut Bergonié Unicancer, INSERM U1218, Bordeaux, France
| | - Rajdeep Das
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Transplant Immunology Laboratory, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan; Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Monash University, Clayton, VIC 3168, Australia
| | -
- Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Monash University, Clayton, VIC 3168, Australia; Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Shahneen Sandhu
- Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Monash University, Clayton, VIC 3168, Australia; Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Renea A Taylor
- Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia; Department of Physiology, Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Monash University, Clayton, VIC 3168, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Monash University, Clayton, VIC 3168, Australia; Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lisa M Butler
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Philip A Gregory
- Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA 5005, Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA 5005, Australia; School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia.
| |
Collapse
|
16
|
Gao S, Chu Q, Liu X, Zhao X, Qin L, Li G, Liu Q. Long Noncoding RNA HEIH Promotes Proliferation, Migration and Invasion of Retinoblastoma Cells Through miR-194-5p/WEE1 Axis. Onco Targets Ther 2020; 13:12033-12041. [PMID: 33262604 PMCID: PMC7695688 DOI: 10.2147/ott.s268942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Background Abnormally expressed long noncoding RNA (lncRNA) high expression in hepatocellular carcinoma (HEIH) has been implicated in many types of human cancer, and plays crucial roles in tumor development and progression. However, little is known about its function in retinoblastoma. Methods qRT-PCR was used to determine the expression levels of HEIH, miR-194-5p and WEE1 in retinoblastoma tissues and cell lines. The trypan blue exclusion method, colony formation assay, wound-healing assay and transwell invasion assay were performed to evaluate the effects of HEIH, miR-194-5p and WEE1 on cell proliferation, migration and invasion. Bioinformatics analysis, dual-luciferase reporter assay and Western blot were employed to investigate the regulatory relationship among HEIH, miR-194-5p and WEE1. Results We found that HEIH was up-regulated in retinoblastoma tissues and cell lines. Furthermore, high level of HEIH was associated with TNM stage, optic nerve invasion and choroidal invasion of patients with retinoblastoma. Functional studies showed that HEIH knockdown significantly suppressed retinoblastoma cell proliferation, migration and invasion. Mechanistically, HEIH promoted retinoblastoma progression by serving as a sponge of miR-194-5p to regulate WEE1 expression. Conclusion Our work suggests that HEIH acts as an oncogenic lncRNA to promote retinoblastoma proliferation and metastasis, providing a new insight into the retinoblastoma treatment.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Ophthalmology, Nanjing Pukou Central Hospital, Nanjing 211800, People's Republic of China
| | - Qingxia Chu
- Department of Ophthalmology, Nanjing Pukou Central Hospital, Nanjing 211800, People's Republic of China
| | - Xia Liu
- Department of Ophthalmology, Nanjing Pukou Central Hospital, Nanjing 211800, People's Republic of China
| | - Xia Zhao
- Department of Ophthalmology, Tangshan Eye Hospital, Tangshan 063000, People's Republic of China
| | - Libao Qin
- Department of Ophthalmology, Nanjing Pukou Central Hospital, Nanjing 211800, People's Republic of China
| | - Guoliang Li
- Department of Ophthalmology, Nanjing Pukou Central Hospital, Nanjing 211800, People's Republic of China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
17
|
The P53/microRNA network: A potential tumor suppressor with a role in anticancer therapy. Pharmacol Res 2020; 160:105179. [PMID: 32890739 DOI: 10.1016/j.phrs.2020.105179] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are endogenous and small non-coding RNAs that have been identified as mediators of tumor suppression as well as stress responses mediated by p53 suppressors. MiRNAs may act as tumor suppressors under certain conditions. MiRNAs regulated by p53 may control the expression of processes such as cell cycle progression, cell survival, and angiogenesis. P53 activity and expression are also controlled by miRNA; consequently alterations in the p53-miRNA network may be essential for tumor initiation and progression. Future studies on the p53-miRNA network presumably would find it helpful in diagnostic and therapeutic approaches or as tools for various cancers.
Collapse
|
18
|
Wang Y, Li L, Hao M, Fu D, Chen J, Zhou C, Fu J, Yao B, Chang B, Zhao P. Label-free quantitative proteomic analysis identifies the oncogenic role of FOXA1 in BaP-transformed 16HBE cells. Toxicol Appl Pharmacol 2020; 403:115160. [DOI: 10.1016/j.taap.2020.115160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 01/03/2023]
|
19
|
Lu H, Xie X, Wang K, Chen Q, Cai S, Liu D, Luo J, Kong J. Circular RNA hsa_circ_0096157 contributes to cisplatin resistance by proliferation, cell cycle progression, and suppressing apoptosis of non-small-cell lung carcinoma cells. Mol Cell Biochem 2020; 475:63-77. [PMID: 32767026 DOI: 10.1007/s11010-020-03860-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) play a major role in cancer development and chemotherapy resistance. This study aimed to characterize circRNA profiles associated with Cisplatin (diamminedichloroplatinum, DDP) resistance of non-small-cell lung carcinoma (NSCLC) cells. The half-maximal inhibitory concentration (IC50) of A549 and A549/DDP cells was determined using CCK-8 assay. Further, circRNA profiles and differentially expressed genes in A549 and A549/DDP cells were characterized by deep sequencing and cell proliferation was measured using MTS assay. Cell cycle progression was analyzed using flow cytometry. Apoptosis experiment was performed by TUNEL assay and flow cytometry. Cell migration and invasion were assessed using the Transwell system. Finally, signalling protein levels related to cell cycle progression and migration were measured by western blot. CCK-8 assay showed that A549/DDP cells obtained strong DDP resistance. Further deep sequencing results showed that 689 circRNAs and 87 circRNAs were significantly upregulated and downregulated in A549/DDP cells compared to A549 cells, respectively. Moreover, the circRNA hsa_circ_0096157 with the highest expression level in A549/DPP cells was further analyzed for its potential mechanism of DDP resistance in A549/DDP. With or without DDP treatment, hsa_circ_0096157 knockdown inhibited proliferation, migration, invasion and cell cycle progression but promoted apoptosis of A549/DDP cells. In addition, the western blot results also showed that hsa_circ_0096157 knockdown in A549/DDP cells increased P21 and E-cadherin but decreased CDK4, Cyclin D1, Bcl-2, N-cadherin, and Vimentin protein expression levels, indicating that cell cycle progression might be inhibited by increased P21 protein level to inhibit the expression of CDK4-cyclin D1 complex and decreased Bcl-2 protein level; and migration and invasion were suppressed by the increased E-cadherin and decreased N-cadherin and Vimentin expression levels. In contrast, hsa_circ_0096157 overexpression in A549 cells caused the opposite cellular and molecular alterations. DDP resistance in NSCLC cells was associated with significant circRNA profile alterations. Moreover, increased hsa_circ_0096157 expression contributed to DDP resistance in NSCLC cells by promoting cell proliferation, migration, invasion and cell cycle progression and inhibiting apoptosis.
Collapse
Affiliation(s)
- Huasong Lu
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Xun Xie
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Ke Wang
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Quanfang Chen
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Shuangqi Cai
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Dongmei Liu
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Jin Luo
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China.
| | - Jinliang Kong
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
20
|
Mishan MA, Tabari MAK, Parnian J, Fallahi J, Mahrooz A, Bagheri A. Functional mechanisms of miR-192 family in cancer. Genes Chromosomes Cancer 2020; 59:722-735. [PMID: 32706406 DOI: 10.1002/gcc.22889] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
By growing research on the mechanisms and functions of microRNAs (miRNAs, miRs), the role of these noncoding RNAs gained more attention in healthcare. Due to the remarkable regulatory role of miRNAs, any dysregulation in their expression causes cellular functional impairment. In recent years, it has become increasingly apparent that these small molecules contribute to development, cell differentiation, proliferation, apoptosis, and tumor growth. In many studies, the miR-192 family has been suggested as a potential prognostic and diagnostic biomarker and even as a possible therapeutic target for several cancers. However, the mechanistic effects of the miR-192 family on cancer cells are still controversial. Here, we have reviewed each family member of the miR-192 including miR-192, miR-194, and miR-215, and discussed their mechanistic roles in various cancers.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Parnian
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
21
|
Zhang X, Chen Q, Shen J, Wang L, Cai Y, Zhu K. miR‐194 relieve neuropathic pain and prevent neuroinflammation via targeting FOXA1. J Cell Biochem 2020; 121:3278-3285. [PMID: 31930555 DOI: 10.1002/jcb.29598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xian Zhang
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Qiuqing Chen
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jian Shen
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Li Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST)& Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan University Wuhan China
| | - Yi Cai
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei China
| | - Kai‐Run Zhu
- Department of Anesthesiology, Huai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| |
Collapse
|
22
|
Zhou Q, Guo J, Huang W, Yu X, Xu C, Long X. Linc-ROR promotes the progression of breast cancer and decreases the sensitivity to rapamycin through miR-194-3p targeting MECP2. Mol Oncol 2020; 14:2231-2250. [PMID: 32335998 PMCID: PMC7463371 DOI: 10.1002/1878-0261.12700] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
linc‐ROR is reported to be a potential biomarker of breast cancer, but the detailed mechanism of linc‐ROR‐mediated breast cancer regulation has not been fully studied. We aimed to explore how linc‐ROR affects proliferation, metastasis, and drug sensitivity in breast cancer. Cell lines in which linc‐ROR was overexpressed or knocked down were constructed, and the cell proliferation, colony formation, cell migration, and invasion abilities of these lines were explored. A CCK‐8 assay was performed to determine the sensitivity of the breast cancer cells to rapamycin. Next‐generation sequencing was conducted to explore the detailed regulatory mechanism of linc‐ROR; differentially expressed RNAs in the linc‐ROR‐overexpressing cell line compared with the negative control were screened out, and their target genes were chosen to perform Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, protein–protein interaction network analysis, and competing endogenous RNA (ceRNA) network analysis. The ceRNA mechanism of linc‐ROR for miR‐194‐3p, which targets MECP2, was determined through dual‐luciferase reporter assay, RT–qPCR, western blot, and rescue experiments. Finally, we found that linc‐ROR was upregulated in breast tumor tissues. linc‐ROR promoted the cell proliferation, colony formation, cell migration, and invasion of breast cancer and decreased the sensitivity of breast cancer cells to rapamycin. The overexpression of linc‐ROR triggered changes in the whole transcriptome of breast cancer cells, and a total of 85 lncRNAs, 414 microRNAs, 490 mRNAs, and 92 circRNAs were differentially expressed in the linc‐ROR‐overexpressing cell line compared with the negative control. Through a series of bioinformatic analyses, the ‘linc‐ROR/miR‐194‐3p/MECP2’ ceRNA regulatory axis was confirmed to be involved in the linc‐ROR‐mediated progression and drug sensitivity of breast cancer. In conclusion, linc‐ROR serves as an onco‐lncRNA in breast cancer and promotes the survival of breast cancer cells during rapamycin treatment by functioning as a ceRNA sponge for miR‐194‐3p, which targets MECP2.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, China
| | - Juan Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, China
| | - Wenjie Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, China
| | - Xiaosi Yu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, China
| | - Chen Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, China
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, China
| |
Collapse
|
23
|
Liang G, Wang H, Shi H, Zhu M, An J, Qi Y, Du J, Li Y, Gao S. Porphyromonas gingivalis Promotes the Proliferation and Migration of Esophageal Squamous Cell Carcinoma through the miR-194/GRHL3/PTEN/Akt Axis. ACS Infect Dis 2020; 6:871-881. [PMID: 32298082 DOI: 10.1021/acsinfecdis.0c00007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have revealed that Porphyromonas gingivalis is closely related to the occurrence and progression of esophageal squamous cell carcinoma (ESCC). However, the underlying mechanism of P. gingivalis in ESCC has not been well elucidated. To explore the mechanism of P. gingivalis infection in ESCC, cellular proliferation, invasion, and migration models of KYSE-30 and KYSE-150 cells infected by P. gingivalis at a multiplicity of infection (MOI) of 10 were established. The results showed that P. gingivalis infection could drastically increase the proliferation, invasion, and migration ability of ESCC. Furthermore, the results of high-throughput sequencing showed that miR-194 was considerably upregulated in infected cells compared with control cells, which was further verified by qRT-PCR. The inhibition or overexpression of miR-194 had a significant effect on KYSE-30 and KYSE-150 cell migration and invasion. Additionally, the levels of GRHL3 and PTEN were decreased in P. gingivalis-infected esophageal cancer cells compared with uninfected esophageal cancer cells. Furthermore, dual-luciferase experiments confirmed that GRHL3 is a direct target of miR-194. In addition, the GRHL3-related pathway was investigated, and the levels of GRHL3 and PTEN were downregulated while the level of p-Akt was upregulated after P. gingivalis infection. Taken together, these findings indicated that P. gingivalis might promote ESCC proliferation and migration via the miR-194/GRHL3/PTEN/Akt signaling axis.
Collapse
|
24
|
Downregulation of serum miR-194 predicts poor prognosis in osteosarcoma patients. Ann Diagn Pathol 2020; 46:151488. [PMID: 32172218 DOI: 10.1016/j.anndiagpath.2020.151488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Circulating microRNAs (miRNAs) have promising potential as diagnostic and prognostic biomarkers for osteosarcoma. This study aimed to explore the expression pattern of serum miR-194 and its potential clinical value in patients with osteosarcoma. METHODS Messenger RNA was isolated from serum sample from 124 osteosarcoma patients, 60 periostitis patients and 60 healthy volunteers. The serum miR-194 level was then examined by quantitative real-time polymerase chain reaction (qRT-PCR). The bioinformatic analysis of the downstream targets of miR-194 was also performed. RESULTS The results showed serum miR-194 levels were significantly decreased in osteosarcoma patients compared to those in periostitis patients or healthy controls. Receiver-operating characteristic (ROC) analysis demonstrated that serum miR-194 had a good diagnostic value for identifying osteosarcoma subjects from periostitis patients and normal controls. In addition, serum miR-194 levels were dramatically increased following surgery in osteosarcoma cases. Moreover, low serum miR-194 expression was strongly correlated with positive metastasis and advanced clinical stage, as well as worse survival. Furthermore, serum miR-194 was confirmed to be an independent prognostic biomarker for osteosarcoma. Bioinformatic analysis showed that the downstream targeted genes of miR-194 were closely associated with cancer initiation and development. CONCLUSION In conclusion, our results have demonstrated that serum miR-194 might serve as a novel and promising biomarker for the detection and prognosis of osteosarcoma.
Collapse
|
25
|
Missaoui N, Chouaibi S, Limam S, Mhamdi N, Zahmoul T, Hamchi H, Mokni M, Hmissa S. Signification of forkhead box A1 (FOXA1) expression in thyroid cancers. J Egypt Natl Canc Inst 2019; 31:11. [PMID: 32372175 DOI: 10.1186/s43046-019-0011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Forkhead box A1 (FOXA1) plays an important role in several tumors. This study investigated the potential role of FOXA1 expression in thyroid tumors. We conducted a retrospective study of 110 thyroid lesions and tumors diagnosed during 1995-2018. The expression of FOXA1 was analyzed by immunohistochemistry on archival material. RESULTS No FOXA1 immunostaining was observed in all cases of Graves' disease, Hashimoto's disease, multi-nodular goiter, and adenoma. FOXA1 expression was absent as well in all papillary and follicular carcinomas, Hurthle cell carcinoma, and undifferentiated sarcoma. Only three anaplastic carcinomas exhibited focally FOXA1 staining. However, FOXA1 was expressed in all medullary carcinomas. No significant correlation was found with all clinicopathological features (p > 0.05 for all). The pattern of FOXA1 staining was similar to that of calcitonin and chromogranin A (p = 0.04 and p = 0.003, respectively). CONCLUSIONS FOXA1 is expressed mostly in all medullary thyroid carcinomas. Hence, FOXA1 could serve as an additional marker for refining the diagnosis of medullary thyroid carcinoma.
Collapse
Affiliation(s)
- Nabiha Missaoui
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia. .,Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia. .,Faculty of Sciences and Techniques of Sidi Bouzid, Kairouan University, Kairouan, Tunisia. .,Pathology Department, Sahloul University Hospital, Sousse, Tunisia.
| | - Sameh Chouaibi
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia
| | - Sarra Limam
- Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Nozha Mhamdi
- Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Thouraya Zahmoul
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia.,Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Hajer Hamchi
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia.,Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Moncef Mokni
- Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Sihem Hmissa
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia.,Pathology Department, Sahloul University Hospital, Sousse, Tunisia
| |
Collapse
|
26
|
Yao B, Qu S, Hu R, Gao W, Jin S, Liu M, Zhao Q. A panel of miRNAs derived from plasma extracellular vesicles as novel diagnostic biomarkers of lung adenocarcinoma. FEBS Open Bio 2019; 9:2149-2158. [PMID: 31677346 PMCID: PMC6886307 DOI: 10.1002/2211-5463.12753] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related morbidity and mortality worldwide, with lung adenocarcinoma (LUAD) being the most common histological subtype (approximately 40%). In the absence of reliable screening biomarkers for early diagnosis, most patients with LUAD are inevitably diagnosed at an advanced stage. MicroRNAs (miRNAs) encapsulated within plasma‐derived extracellular vesicles (EVs) may be suitable for use as noninvasive diagnostic biomarkers for aggressive malignancies, including LUAD. In this study, we first investigated the miRNA profiles of plasma‐derived EVs from LUAD patients and healthy donors, and then systematically evaluated the expression patterns of selected plasma‐derived EV miRNAs in a large cohort of patients with LUAD and healthy controls. Notably, we observed that miR‐451a, miR‐194‐5p, and miR‐486‐5p were significantly increased in EVs from LUAD patients, compared to healthy controls. The area under the curve values for the three miRNAs were 0.9040 (95% confidence interval [CI], 0.8633–0.9447) for miR‐451a, 0.7492 (95% CI, 0.6992–0.7992) for miR‐194‐5p, and 0.9574 (95% CI, 0.9378–0.9769) for miR‐486‐5p, while the AUC of the combination of these three miRNAs was 0.9650. Thus, these results suggest that these EV miRNAs may be promising candidates for the development of highly effective, noninvasive biomarkers for early LUAD diagnosis. Lung cancer is the leading cause of cancer‐related morbidity and mortality worldwide, with lung adenocarcinoma (LUAD) being the most common histological subtype (approximately 40%). In this study, we observed that miR‐451a, miR‐194‐5p, and miR‐486‐5p in extracellular vesicles derived from plasma may be suitable as highly effective and noninvasive biomarkers for early LUAD diagnosis.![]()
Collapse
Affiliation(s)
- Bing Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Shuang Qu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Ruifeng Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Shidai Jin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| |
Collapse
|
27
|
Gao Y, Wu P, Ma Y, Xue Y, Liu Y, Zheng J, Liu X, He Q, Ma J, Liu L, Wang P. Circular RNA USP1 regulates the permeability of blood-tumour barrier via miR-194-5p/FLI1 axis. J Cell Mol Med 2019; 24:342-355. [PMID: 31654502 PMCID: PMC6933377 DOI: 10.1111/jcmm.14735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Recent studies indicate circular RNAs are related to dysregulation of vascular endothelial cell function, yet the underlying mechanisms have remained elusive. Here, we characterized the functional role of circular RNA USP1 (circ‐USP1) in the regulation of the blood‐tumour barrier (BTB) permeability and the potential mechanisms. In the current study, the circ‐USP1 expressing level was up‐regulated in glioma cerebral microvascular endothelial cells (GECs) of the BTB model in vitro. Knockdown of circ‐USP1 disrupted the barrier integrity, increased its permeability as well as reduced tight junction‐related protein claudin‐5, occludin and ZO‐1 expressions in GECs. Bioinformatic prediction and luciferase assay indicated that circ‐USP1 bound to miR‐194‐5p and suppressed its activity. MiR‐194‐5p contributed to circ‐USP1 knockdown‐induced increase of BTB permeability via targeting and down‐regulating transcription factor FLI1. Furthermore, FLI1 regulated the expressions of claudin‐5, occludin and ZO‐1 in GECs through binding to their promoter regions. Single or combined treatment of circ‐USP1 and miR‐194‐5p effectively promoted anti‐tumour drug doxorubicin across BTB to induce apoptosis of glioma cells. Overall, this present study identified the crucial regulation of circ‐USP1 on BTB permeability via miR‐194‐5p/FLI1 axis‐mediated regulation of tight junction proteins, which might facilitate the development of therapeutics against human gliomas.
Collapse
Affiliation(s)
- Yang Gao
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China.,Laboratory of Digital Health, Medaxis Technology Co., Ltd., Chengdu, China
| | - Peiqi Wu
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yawen Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Qianru He
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Ahmed F. Integrated Network Analysis Reveals FOXM1 and MYBL2 as Key Regulators of Cell Proliferation in Non-small Cell Lung Cancer. Front Oncol 2019; 9:1011. [PMID: 31681566 PMCID: PMC6804573 DOI: 10.3389/fonc.2019.01011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Loss of control on cell division is an important factor for the development of non-small cell lung cancer (NSCLC), however, its molecular mechanism and gene regulatory network are not clearly understood. This study utilized the systems bioinformatics approach to reveal the “driver-network” involve in tumorigenic processes in NSCLC. Methods: A meta-analysis of gene expression data of NSCLC was integrated with protein-protein interaction (PPI) data to construct an NSCLC network. MCODE and iRegulone were used to identify the local clusters and its upstream transcription regulators involve in NSCLC. Pair-wise gene expression correlation was performed using GEPIA. The survival analysis was performed by the Kaplan-Meier plot. Results: This study identified a local “driver-network” with highest MCODE score having 26 up-regulated genes involved in the process of cell proliferation in NSCLC. Interestingly, the “driver-network” is under the regulation of TFs FOXM1 and MYBL2 as well as miRNAs. Furthermore, the overexpression of member genes in “driver-network” and the TFs are associated with poor overall survival (OS) in NSCLC patients. Conclusion: This study identified a local “driver-network” and its upstream regulators responsible for the cell proliferation in NSCLC, which could be promising biomarkers and therapeutic targets for NSCLC treatment.
Collapse
Affiliation(s)
- Firoz Ahmed
- Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia.,University of Jeddah Center for Scientific and Medical Research, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
MicroRNAs as Potential Biomarkers for Chemoresistance in Adenocarcinomas of the Esophagogastric Junction. JOURNAL OF ONCOLOGY 2019; 2019:4903152. [PMID: 31467538 PMCID: PMC6701342 DOI: 10.1155/2019/4903152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Concerning adenocarcinomas of the esophagogastric junction, neoadjuvant chemotherapy is regularly implemented, but patients' response varies greatly, with some cases showing no therapeutic effect, being deemed as chemoresistant. Small, noncoding RNAs (miRNAs) have evolved as key players in biological processes, including malignant diseases, often promoting tumor growth and expansion. In addition, specific miRNAs have been implicated in the development of chemoresistance through evasion of apoptosis, cell cycle alterations, and drug target modification. We performed a retrospective study of 33 patients receiving neoadjuvant chemotherapy by measuring their miRNA expression profiles. Histologic tumor regression was evaluated using resection specimens, while miRNA profiles were prepared using preoperative biopsies without prior therapy. A preselected panel of 96 miRNAs, known to be of importance in various malignancies, was used to test for significant differences between responsive (chemosensitive) and nonresponsive (chemoresistant) cases. The cohort consisted of 12 nonresponsive and 21 responsive cases with the following 4 miRNAs differentially expressed between both the groups: hsa-let-7f-5p, hsa-miRNA-221-3p, hsa-miRNA-31-5p, and hsa-miRNA-191-5p. The former 3 showed upregulation in chemoresistant cases, while the latter showed upregulation in chemosensitive cases. In addition, significant correlation between high expression of hsa-miRNA-194-5p and prolonged survival could be demonstrated (p value <0.0001). In conclusion, we identified a panel of 3 miRNAs predicting chemoresistance and a single miRNA contributing to chemosensitivity. These miRNAs might function as prognostic biomarkers and enable clinicians to better predict the effect of one or more reliably select patients benefitting from (neoadjuvant) chemotherapy.
Collapse
|
30
|
Xu T, Yan S, Jiang L, Yu S, Lei T, Yang D, Lu B, Wei C, Zhang E, Wang Z. Gene Amplification-Driven Long Noncoding RNA SNHG17 Regulates Cell Proliferation and Migration in Human Non-Small-Cell Lung Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:405-413. [PMID: 31310946 PMCID: PMC6630039 DOI: 10.1016/j.omtn.2019.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 01/19/2023]
Abstract
Lung cancer is the most common cancer all around the world, with high morbidity and mortality. Long noncoding RNA (lncRNA) has been reported to have a critical role in non-small-cell lung cancer (NSCLC) proliferation and migration. In the present study, we analyzed The Cancer Genome Atlas (TCGA) data, and we found that lncRNA Small Nucleolar RNA Host Gene 17 (SNHG17) was upregulated in NSCLC driven by the amplification of copy number, indicating the special role of SNHG17 in NSCLC. The full exact length of SNHG17 was determined by rapid amplification of cDNA ends (RACE). We modulated SNHG17 expression by RNAi and a series of functional assays were performed. Flow cytometry was used to explore the involvement of SNHG17 in NSCLC cell apoptosis. Results showed that the knockdown of SNHG17 inhibited the proliferation and migration and promoted the apoptosis of NSCLC cells. We acquired the global gene expression profile regulated by SNHG17 in A549 through RNA sequencing (RNA-seq) assays. We found 637 genes were upregulated while 581 genes were downregulated. We selected three genes (FOXA1, XAF1, and BIK) that were closely related to proliferation and apoptosis, and we confirmed their altered expression in A549 and PC-9 cells treated with small interfering RNA si-SNHG17. Our findings indicated gene amplification-driven lncRNA SNHG17 promotes cell proliferation and migration in NSCLC, suggesting its potential value as a biomarker in NSCLC.
Collapse
Affiliation(s)
- Tianwei Xu
- Department of Oncology, Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Shuai Yan
- Department of Oncology, Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Lihua Jiang
- Department of Oncology, Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Shanxun Yu
- Department of Oncology, Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Tianyao Lei
- Department of Oncology, Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Daolu Yang
- Department of Oncology, Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Binbin Lu
- Department of Oncology, Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Chenchen Wei
- Department of Oncology, Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China
| | - Erbao Zhang
- Department of Epidemiology and Biostatistics, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211100, P.R. China.
| | - Zhaoxia Wang
- Department of Oncology, Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, P.R. China.
| |
Collapse
|
31
|
Yan H, Xin S, Ma J, Wang H, Zhang H, Liu J. A three microRNA-based prognostic signature for small cell lung cancer overall survival. J Cell Biochem 2019; 120:8723-8730. [PMID: 30536412 DOI: 10.1002/jcb.28159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Small-cell lung cancer (SCLC) is one of the most aggressive cancers with mechanisms far from understood. OBJECTIVE We proposed to identify valuable prognostic signature for SCLC prognosis prediction. METHODS microRNA (miRNA) expression profiles of 42 SCLC patients were acquired from the Gene Expression Omnibus. miRNAs that significantly associated with SCLC overall survival (OS-relevant) were identified through univariate Cox regression analysis followed by random survival forest analysis for identification of more reliable miRNA signature. RESULTS Eleven OS-relevant miRNAs were obtained, and hsa-miR-194, hsa-miR-608, and hsa-miR-9 were further refined through RFS. A formula composed of the three miRNAs' expression values weighted by their multivariate Cox regression coefficients was constructed, and based on which, SCLC patients with longer OS could be well distinguished from those with shorter OS. CONCLUSIONS This study should provide a valuable clue for SCLC prognosis evaluation.
Collapse
Affiliation(s)
- Hao Yan
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medicine Center, Tianjin, China
| | - Shaobin Xin
- Intensive Care Unit, Tianjin Union Medicine Center, Tianjin, China
| | - Jing Ma
- Department of Integrated Chinese and Western Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Hui Wang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medicine Center, Tianjin, China
| | - Heng Zhang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medicine Center, Tianjin, China
| | - Jindong Liu
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medicine Center, Tianjin, China
| |
Collapse
|
32
|
Meng X, Li Z, Zhou S, Xiao S, Yu P. miR-194 suppresses high glucose-induced non-small cell lung cancer cell progression by targeting NFAT5. Thorac Cancer 2019; 10:1051-1059. [PMID: 30900402 PMCID: PMC6500961 DOI: 10.1111/1759-7714.13038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background Diabetes mellitus (DM) is linked to an increased risk of lung cancer; however, the exact molecular basis is unclear. Methods We used a microarray method and found a group of microRNAs differently expressed in lung cancer cells at high or low glucose treatment. Results Among these, miR‐194 changed significantly, which indicated further analysis. miR‐194 was significantly downregulated in non‐small cell lung cancer (NSCLC) cells cultured in high glucose (HG) medium and clinical NSCLC tissues with DM. The introduction of miR‐194 significantly suppressed the proliferation, migration, and invasion of lung cancer cells induced by HG, suggesting that miR‐194 may be a suppressor during HG‐induced NSCLC progression. Further analysis indicated that NFAT5 was a direct target gene of miR‐194, evidenced by the direct binding of miR‐194 with the 3’untranslated region of NFAT5. MiR‐194 could decrease the expression of NFAT5 at both messenger RNA and protein levels, while overexpression of NFAT5 reversed the decreased proliferation, migration, and invasion ability mediated by miR‐194 in lung cancer cells. Conclusion Our findings provide new insight into the mechanism of NSCLC progression. Therapeutically, miR‐194 may serve as a potential target for the treatment of lung cancer patients with DM.
Collapse
Affiliation(s)
- Xuying Meng
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China.,Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhenjin Li
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China.,Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Saijun Zhou
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China
| | - Shumin Xiao
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China
| | - Pei Yu
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
33
|
Wang Y, Yang L, Chen T, Liu X, Guo Y, Zhu Q, Tong X, Yang W, Xu Q, Huang D, Tu K. A novel lncRNA MCM3AP-AS1 promotes the growth of hepatocellular carcinoma by targeting miR-194-5p/FOXA1 axis. Mol Cancer 2019; 18:28. [PMID: 30782188 PMCID: PMC6381672 DOI: 10.1186/s12943-019-0957-7] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common malignant liver tumor with poor clinical outcomes. Increasing amount of long non-coding RNAs (lncRNAs) have been revealed to be implicated in the carcinogenesis and progression of HCC. However, the expressions, clinical significances, and roles of most lncRNAs in HCC are still unknown. Methods The expression of lncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) in HCC tissues and cell lines was detected by qRT-PCR and fluorescence in situ hybridization. Immunoblotting, CCK-8, EdU, colony formation and flow cytometry were performed to investigate the role of MCM3AP-AS1 in HCC cell proliferation, cell cycle and apoptosis in vitro. A subcutaneous tumor mouse model was constructed to analyze in vivo growth of HCC cells after MCM3AP-AS1 knockdown. The interactions among MCM3AP-AS1, miR-194-5p and FOXA1 were measured by RNA pull-down, RNA immunoprecipitation and luciferase reporter assay. Results We revealed a novel oncogenic lncRNA MCM3AP-AS1, which is overexpressed in HCC and positively correlated with large tumor size, high tumor grade, advanced tumor stage and poor prognosis of HCC patients. MCM3AP-AS1 knockdown suppressed HCC cell proliferation, colony formation and cell cycle progression, and induced apoptosis in vitro, and depletion of MCM3AP-AS1 inhibited tumor growth of HCC in vivo. Mechanistically, MCM3AP-AS1 directly bound to miR-194-5p and acted as competing endogenous RNA (ceRNA), and subsequently facilitated miR-194-5p’s target gene forkhead box A1 (FOXA1) expression in HCC cells. Interestingly, FOXA1 restoration rescued MCM3AP-AS1 knockdown induced proliferation inhibition, G1 arrest and apoptosis of HCC cells. Conclusions Our results recognized MCM3AP-AS1 as a novel oncogenic lncRNA, which indicated poor clinical outcomes in patients with HCC. MCM3AP-AS1 exerted an oncogenic role in HCC via targeting miR-194-5p and subsequently promoted FOXA1 expression. Our findings suggested that MCM3AP-AS1 could be a potential prognostic biomarker and therapeutic target for HCC. Electronic supplementary material The online version of this article (10.1186/s12943-019-0957-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Xin Liu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, China
| | - Yang Guo
- BengBu Medical College, Bengbu, 233030, Anhui Province, China
| | - Qiaojuan Zhu
- Department of Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, China.
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
34
|
Wu YZ, Chan KYY, Leung KT, Lam HS, Tam YH, Lee KH, Li K, Ng PC. Dysregulation of miR-431 and target gene FOXA1 in intestinal tissues of infants with necrotizing enterocolitis. FASEB J 2019; 33:5143-5152. [PMID: 30624964 DOI: 10.1096/fj.201801470r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The level of microRNA (miR)-431 was found to be markedly up-regulated in intestinal tissue of necrotizing enterocolitis (NEC). The objective of this study was to identify the target gene of miR-431 and to investigate the role of the miR-431-FOXA1 axis in the pathophysiology of NEC. The target gene of miR-431 was identified by in silico target prediction bioinformatics, luciferase assay, and Western blotting. Effects of miR-431 on downstream expression signals, cell proliferation, and apoptosis were investigated by overexpression in Caco-2 cells upon stimulation by LPS or lipoteichoic acid (LTA). FOXA1 was identified as the target gene of miR-431. Overexpression of miR-431 in Caco-2 cells significantly inhibited FOXA1, ESRRG, and HNF4A and activated IL-6, LGR5, NFKB2, PLA2G2A, PRKCZ, and TNF. IL-8 and - 10 were enhanced when costimulated with LPS or LTA. These potential downstream genes were also significantly dysregulated in primary NEC tissues compared with surgical-control tissues. Overexpression of miR-431 significantly decreased proliferation and increased apoptosis of Caco-2 cells. A proposed network of miR-431-FOXA1 interaction with LPS and LTA receptors demonstrates dysregulation of transcription factors, inflammatory mediators, epithelium tight junction regulators, and cell proliferation and apoptosis signals. The miR-431-FOXA1 axis could in part be responsible for the intensification of the inflammatory response in NEC tissues and contribute to the proinflammatory pathophysiology.-Wu, Y. Z., Chan, K. Y. Y., Leung, K. T., Lam, H. S., Tam, Y. H., Lee, K. H., Li, K., Ng, P. C. Dysregulation of miR-431 and target gene FOXA1 in intestinal tissues of infants with necrotizing enterocolitis.
Collapse
Affiliation(s)
- Yu Zheng Wu
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; and
| | - Kathy Yuen Yee Chan
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; and
| | - Kam Tong Leung
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; and
| | - Hugh Simon Lam
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; and
| | - Yuk Him Tam
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kim Hung Lee
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Karen Li
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; and
| | - Pak Cheung Ng
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; and
| |
Collapse
|
35
|
Abuduaini R, Miao X, Xu J, Che L, Zhou W, Guo Z, Sun J. MicroRNA-194-3p inhibits the metastatic biological behaviors of spinal osteosarcoma cells by the repression of matrix metallopeptidase 9. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5257-5264. [PMID: 31949606 PMCID: PMC6963041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 09/25/2018] [Indexed: 06/10/2023]
Abstract
Osteosarcoma is the most common primary malignant bone tumor, but only 3%-5% of cases occur in the spine. Spinal osteosarcoma presents a significant challenge, and most patients die in spite of aggressive surgery. MicroRNAs (miRNAs) are small noncoding RNAs that have a pivotal role in the post-transcriptional regulation of gene expression. The aim of this study was to investigate the role of miR-194-3p and to identify its potential mechanism in spinal osteosarcoma. Here, spinal osteosarcoma tissues showed down-regulated expression of miR-194-3p compared to adjacent non-tumorous tissues. The level of miR-194-3p was negatively correlated with metastasis in patients with spinal osteosarcoma. MiR-194-3p over-expression in spinal osteosarcoma cells significantly inhibited cell migration and invasion in vitro. Furthermore, mechanistic analyses showed that MMP-9 (matrix metallopeptidase 9) is a direct target of miR-194-3p, and the ectopic expression of miR-194-3p inhibits MMP-9 expression by directly binding to the 3'-untranslated region (3'-UTR) of the MMP-9 gene. In summary, our results demonstrate that miR-194-3p suppresses migration and invasion of spinal osteosarcoma cells by targeting MMP-9, indicating miR-194-3p may serve as a promising novel target for spinal osteosarcoma therapy.
Collapse
Affiliation(s)
- Rewuti Abuduaini
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, People's Republic of China
| | - Xiaogang Miao
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, People's Republic of China
| | - Jiangbo Xu
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, People's Republic of China
| | - Lixin Che
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, People's Republic of China
| | - Wenzheng Zhou
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, People's Republic of China
| | - Zigang Guo
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, People's Republic of China
| | - Jungang Sun
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, People's Republic of China
| |
Collapse
|
36
|
Zheng Y, Li B, Wang J, Xiong Y, Wang K, Qi Y, Sun H, Wu L, Yang L. Identification of SUV39H2 as a potential oncogene in lung adenocarcinoma. Clin Epigenetics 2018; 10:129. [PMID: 30348215 PMCID: PMC6198372 DOI: 10.1186/s13148-018-0562-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND SUV39H2 (suppressor of variegation 3-9 homolog 2), which introduces H3K9me3 to induce transcriptional repression, has been reported to play critical roles in heterochromatin maintenance, DNA repair, and recently, carcinogenesis. Dysregulation of SUV39H2 expression has been observed in several types of cancers. However, neither the genomic landscape nor the clinical significance of SUV39H2 in lung adenocarcinoma has been probed comprehensively. METHODS In this research, we conducted bioinformatics analysis to primarily sort out potential genes with dysregulated expressions. After we identified SUV39H2, RNA-seq was performed for a high-throughput evaluation of altered gene expression and dysregulated pathways, followed by a series of validations via RT-qPCR and bioinformatics analyses. Finally, to assess the potential oncogenic role of SUV39H2, we employed the invasion assay and clone formation assay in vitro and tumorigenesis assays in mouse models in vivo. RESULTS Through bioinformatics analyses, we found that SUV39H2 underwent a severe upregulation in the tumor tissue, which was also confirmed in the surgically removed tissues. Overexpression of SUV39H2 was mainly associated with its amplification and with shorter patient overall survival. Then, the RNA-seq demonstrated that TPM4, STOM, and OPTN might be affected by the loss of function of SUV39H2. Finally, in vitro and in vivo experiments with SUV39H2 knockdown all suggested a potential role of SUV39H2 in both carcinogenesis and metastasis. CONCLUSIONS SUV39H2 expression was elevated in lung adenocarcinoma. TPM4, OPTN, and STOM were potentially regulated by SUV39H2. SUV39H2 might be a potential oncogene in lung adenocarcinoma, mediating tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Baihui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yanjuan Xiong
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Kaiyuan Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ying Qi
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Houfang Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lei Wu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China. .,National Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| |
Collapse
|
37
|
Yang F, Xiao Z, Zhang S. Knockdown of miR-194-5p inhibits cell proliferation, migration and invasion in breast cancer by regulating the Wnt/β-catenin signaling pathway. Int J Mol Med 2018; 42:3355-3363. [PMID: 30272253 PMCID: PMC6202083 DOI: 10.3892/ijmm.2018.3897] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 09/17/2018] [Indexed: 01/13/2023] Open
Abstract
Breast cancer is a major public health concern, due to its increasing incidence and limited effective treatment. The present study aimed to investigate the expression of microRNA (miR)‑194‑5p and its roles in breast cancer. The expression levels of miR‑194‑5p and SRY‑box 17 (SOX17) mRNA were detected in breast cancer tissues and cell lines by reverse transcription‑quantitative polymerase chain reaction. The protein expression levels were determined by western blotting. In addition, MTT, colony formation, scratch and Transwell assays were use to evaluate the characteristics of MCF‑7 cells with miR‑194‑5p knockdown. The target verification of miR‑194‑5p was determined by luciferase reporter assay. Furthermore, tumor‑bearing nude mice with miR‑194‑5p knockdown were used to assess the effects of miR‑194‑5p on tumor activity. In breast cancer tissues, miR‑194‑5p was upregulated, whereas SOX17 was downregulated. In addition, the expression levels of SOX17 and phosphorylated (p)‑β‑catenin in the cytosol and nucleus were increased in the miR‑194‑5p inhibitor group. In addition, cell proliferation, migration and invasion were inhibited in response to miR‑194‑5p knockdown. The luciferase reporter assay confirmed that SOX17 was a target gene of miR‑194‑5p. In the mouse studies, knockdown of miR‑194‑5p suppressed tumor growth and promoted SOX17 expression in nude mice with breast cancer. These findings suggested that knockdown of miR‑194‑5p may increase the expression of SOX17 and regulate the Wnt/β‑catenin signaling pathway in breast cancer cells; therefore, miR‑194‑5p may be considered a potential target for breast cancer prevention.
Collapse
Affiliation(s)
- Feibiao Yang
- Department of Thyroid and Breast Surgery, Yinzhou People's Hospital of Ningbo City, Ningbo, Zhejiang 315040, P.R. China
| | - Zhangsheng Xiao
- Department of Thyroid and Breast Surgery, Yinzhou People's Hospital of Ningbo City, Ningbo, Zhejiang 315040, P.R. China
| | - Songze Zhang
- Department of Thyroid and Breast Surgery, Yinzhou People's Hospital of Ningbo City, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
38
|
Zhou T, Zhong Y, Hu Y, Sun C, Wang Y, Wang G. PM 2.5 downregulates miR-194-3p and accelerates apoptosis in cigarette-inflamed bronchial epithelium by targeting death-associated protein kinase 1. Int J Chron Obstruct Pulmon Dis 2018; 13:2339-2349. [PMID: 30122914 PMCID: PMC6078088 DOI: 10.2147/copd.s168629] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Persistent exposure to cigarette smoke or biomass fuels induces oxidative stress and apoptosis in bronchial epithelium, which is one of the most important pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Fine particulate matter (PM2.5) is an aggravating risk factor of COPD exacerbation. Animal evidence showed PM2.5accelerated lung inflammation and oxidative stress in COPD mice, but the mechanism is still not clear. Recently, we found that miR-194-3p is a novel biomarker of both COPD and PM2.5 exposure, and miR-194 family has been reported to be involved in cell proliferation and apoptosis. Thus, we propose a hypothesis: PM2.5 can accelerate apoptotic response of airway epithelial cells in COPD and miR-194 is a potential involved regulator. Materials and methods Human bronchial epithelial cells (HBEpiCs) were treated with normal media, cigarette smoke solution (CSS) and PM2.5-CSS for 24 h. miR-194-3p mimics, inhibitors and scrambled controls were non-transfected or pre-transfected into HBEpiCs for 48 h. MircroRNAs and mRNA expression were quantified by qRT-PCR. Protein expression was analyzed by western blotting. Caspase activities, mitochondrial membrane potential and TUNEL-positive cells were detected to analyze apoptosis. Bioinformatics and luciferase analysis were used to identify the predicted binding site of miR-194-3p and potential targets. Results In our study, we found that PM2.5 significantly aggravated apoptosis in cigarette-inflamed HBEpiCs. miR-194-3p was dramatically downregulated in PM2.5-CSS-treated HBEpiCs. Bioinformatics and luciferase experiments reported that death-associated protein kinase 1 (DAPK1), regulating caspase 3 activities in apoptosis, was directly targeted by miR-194-3p. Inhibition of miR-194-3p increased DAPK1 expression and apoptosis in normal HBEpiCs. Importantly, overexpression of miR-194-3p suppressed apoptosis in PM2.5-CSS HBEpiCs. Conclusion These results suggested that miR-194-3p was a protective regulator involved in apoptosis pathway and a potential therapeutic target for treatment of bronchial epithelial injury aggravation induced by PM2.5.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China,
| | - Yijue Zhong
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China,
| | - Yan Hu
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China,
| | - Chao Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China,
| | - Yunxia Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China,
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China,
| |
Collapse
|
39
|
Li L, Sun Y, Feng M, Wang L, Liu J. Clinical significance of blood-based miRNAs as biomarkers of non-small cell lung cancer. Oncol Lett 2018; 15:8915-8925. [PMID: 29805626 DOI: 10.3892/ol.2018.8469] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for 85% of all cases of lung cancer. However, the predicted 5-year survival rate of patients with NSCLC is only 15.9%. microRNAs (miRNAs) are single-stranded, noncoding RNA molecules that are easily detectable in blood in a non-invasive manner, with features of stability, reproducibility and consistency in blood. Therefore, miRNAs derived from blood are able to have a significant impact on NSCLC diagnosis, metastasis and targeted therapies. Compared with the clinical protein markers carcinoembryonic antigen, cytokeratin fragment 21-1 and cancer antigen-125, blood-based miRNAs also display a higher diagnostic efficacy in NSCLC. Exosomal miRNAs are identified to be easily measured and have the potential to be used as diagnostic biomarkers in NSCLC, therefore providing an alternative method of biopsy profiling. The miRNA profile in exosomes is similar to the profile in primary tumor, meaning that this feature may be a powerful tool for NSCLC clinical diagnosis and targeted therapies. The focus of the present review was the clinical significance of blood-based exosomal miRNAs in diagnosis, prognosis, metastasis and targeted therapies of NSCLC.
Collapse
Affiliation(s)
- Lin Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yu Sun
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Min Feng
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
40
|
D'Angelo E, Zanon C, Sensi F, Digito M, Rugge M, Fassan M, Scarpa M, Pucciarelli S, Nitti D, Agostini M. miR-194 as predictive biomarker of responsiveness to neoadjuvant chemoradiotherapy in patients with locally advanced rectal adenocarcinoma. J Clin Pathol 2018; 71:344-350. [PMID: 28870889 DOI: 10.1136/jclinpath-2017-204690] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/05/2023]
Abstract
AIMS Curative surgery remains the primary form of treatment for locally advanced rectal cancer (LARC). Recent data support the use of preoperative chemoradiotherapy (pCRT) to improve the prognosis of LARC with a significant reduction of local relapse and an increase of overall survival. Unfortunately, only 20% of the patients with LARC present complete pathological response after pCRT, whereas in 20%-40%, the response is poor or absent. METHODS We investigated the expression level of miR-194 in n=38 patients with LARC using our public microRNA (miRNA) expression dataset. miR-194 expression was further validated by real-time quantitative PCR (qRT-PCR) and in situ hybridisation (ISH). Protein-protein interaction network and pathway enrichment analysis were performed on miR-194 targets. RESULTS AND DISCUSSION Using biopsy samples collected at diagnosis, mir-194 was significantly upregulated in patients responding to treatment (p value=0.016). The data was confirmed with qRT-PCR (p value=0.0587) and ISH (p value=0.026). Protein-protein interaction network and pathway enrichment analysis reveal a possible mechanism of susceptibility to pCRT involving Wnt pathway via its downstream mediator TRAF6. Finally, we interrogated the Comparative Toxicogenomics Database database in order to identify those chemical compounds able to mimic the biological effects of miR-194 as new possible therapeutic option in LARC treatment. The present study combining miRNA expression profiling with integrative computational biology identified miR-194 as predictive biomarker of response to pCRT. Using known and predicted drug mechanism of action, we then identified possible chemical compounds for further in vitro validation.
Collapse
Affiliation(s)
- Edoardo D'Angelo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
- Nanoinspired Biomedicine Lab, Pediatric Research Institute - Fondazione Città della Speranza, Padua, Italy
| | - Carlo Zanon
- Neuroblastoma Laboratory, Pediatric Research Institute - Fondazione Città della Speranza, Padua, Italy
| | - Francesca Sensi
- Nanoinspired Biomedicine Lab, Pediatric Research Institute - Fondazione Città della Speranza, Padua, Italy
| | - Maura Digito
- Nanoinspired Biomedicine Lab, Pediatric Research Institute - Fondazione Città della Speranza, Padua, Italy
| | - Massimo Rugge
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Marco Scarpa
- Surgical Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, Italy
| | - Salvatore Pucciarelli
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Donato Nitti
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
- Nanoinspired Biomedicine Lab, Pediatric Research Institute - Fondazione Città della Speranza, Padua, Italy
| |
Collapse
|
41
|
Abstract
MicroRNA-132 (miR-132) has been demonstrated to be a tumor suppressor in several types of tumors. However, the expression and the role of miR-132 in human thyroid cancer are still poorly understood. The aim of the present study was to examine the potential roles and molecular mechanism of miR-132 in thyroid cancer. We found that miR-132 expression levels were significantly downregulated in thyroid cancer tissues and cell lines. Function assays showed that overexpression of miR-132 in TPC1 cells inhibited cell proliferation, migration, and invasion. Forkhead box protein A1 (FOXA1) was identified as a direct target of miR-132 in thyroid cancer cells. Knockdown of FOXA1 in TPC1 cells significantly inhibited cell proliferation, migration, and invasion, which mimicked the suppressive effect induced by miR-132 overexpression. Restoration of FOXA1 expression partially reversed the suppressive effect induced by miR-132 overexpression. Taken together, these results suggested that miR-132 acts as a tumor suppressor in thyroid cancer through targeting FOXA1.
Collapse
Affiliation(s)
- Xin Chen
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Mingzhe Li
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Hongwei Zhou
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Li Zhang
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
42
|
Zhao X, Hou Y, Tuo Z, Wei F. Application values of miR-194 and miR-29 in the diagnosis and prognosis of gastric cancer. Exp Ther Med 2018; 15:4179-4184. [PMID: 29725366 PMCID: PMC5920402 DOI: 10.3892/etm.2018.5931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
The object of this study was to analyze the expression of miR-194 and miR-29 in gastric cancer and their roles in the regulation of malignant phenotype of gastric cancer cells, and to explore the application value of miR-194 and miR-29 in diagnosis and prognosis of gastric cancer. Tumor tissue and adjacent healthy tissue of 165 gastric cancer patients diagnosed by pathologic examinations were collected. Expression of miR-194 and miR-29 in the tissues was detected by RT-PCR. The relationship between miR-194 and miR-29 expression and clinical data was analyzed. SGC7901 cells were treated with miR-194 and miR-29 mimics, respectively. Effects of miR-194 and miR-29 on proliferation and invasion of SGC7901 cells were investigated. Expression levels of miR-194 and miR-29 in tumor tissue were lower than those in adjacent tissues (P<0.001). There was no significant difference in expression level of miR-194 and miR-29 in cancer tissues derived from gastric cancer patients in different age and gender groups (P>0.05). Expression of miR-194 and miR-29 in tumor tissue was closely related to TNM stage, differentiation degree of cancer cells and lymph node metastasis (P<0.05). Proliferation and migration of SGC7901 cells were significantly inhibited by miR-194 mimic and miR-29 mimic transfection (P<0.05). miR-194 and miR-29 are downregulated in gastric cancer, and the expression levels of miR-194 and miR-29 were closely related to tumor differentiation and metastasis. Overexpression of miR-194 and miR-29 significantly inhibited the proliferation and migration of gastric cancer. The detection of the expression of miR-194 and miR-29 can provide basis for the diagnosis and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Xin Zhao
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yunxia Hou
- Department of Clinical Laboratory, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Zhongzhen Tuo
- Department of Clinical Laboratory, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Fangmeng Wei
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
43
|
Wang YM, Ng TK, Choy KW, Wong HK, Chu WK, Pang CP, Jhanji V. Histological and microRNA Signatures of Corneal Epithelium in Keratoconus. J Refract Surg 2018. [DOI: 10.3928/1081597x-20171215-02] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Zhang X, Wang L, Liu Y, Huang W, Cheng D. MiR-760 enhances TRAIL sensitivity in non-small cell lung cancer via targeting the protein FOXA1. Biomed Pharmacother 2018; 99:523-529. [PMID: 29665655 DOI: 10.1016/j.biopha.2018.01.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/29/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading cause of death worldwide. TNF-related apoptosis-inducing ligand (TRAIL) is a promising anti-tumor agent with the ability to kill tumor cells while spare normal ones. MicroRNAs (miRNAs) are small, non-coding RNAs that play vital roles in carcinogenesis. Although miR-760 has been reported to be dysregulated in a variety of cancers, the role of miR-760 in NSCLC is not fully understood, and the relationship between miR-760 dysregulation and TRAIL sensitivity is still elusive. In the current study, we found that miR-760 is significantly downregulated in NSCLC tissues and cell lines. We also found that ectopic expression of miR-760, by targeting the FOXA1, enhanced TRAIL sensitivity in NSCLC cells. Correspondingly, silencing of FOXA1 also sensitized NSCLC cell to TRAIL-induced apoptosis and proliferation inhibition. In summary, these findings suggest that miR-760 should be considered as a tumor suppressor since it negatively regulates the oncogene protein FOXA1 and regulated TRAIL sensitivity in NSCLC cells.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lei Wang
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yu Liu
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weicong Huang
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Dezhi Cheng
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
45
|
Li KP, Fang YP, Liao JQ, Duan JD, Feng LG, Luo XZ, Liang ZJ. Upregulation of miR‑598 promotes cell proliferation and cell cycle progression in human colorectal carcinoma by suppressing INPP5E expression. Mol Med Rep 2017; 17:2991-2997. [PMID: 29257251 PMCID: PMC5783518 DOI: 10.3892/mmr.2017.8207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/18/2017] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer worldwide. Recently, microRNAs (miRs) have been considered as novel therapeutic targets for the treatment of cancer. miR‑598 is a poorly investigated miR. The underlying mechanism of miR‑598 in CRC cells remains to be elucidated. In the present study, miR‑598 was demonstrated to be significantly upregulated in CRC tissue by analyzing data from The Cancer Genome Atlas and the Gene Expression Omnibus. The results of a polymerase chain reaction demonstrated that miR‑598 expression was significantly upregulated in CRC tissues and cells. Gain of function and loss of function assays demonstrated that miR‑598 significantly promoted cell proliferation and cell cycle progression. miR‑598 was demonstrated to modulate cell functions by regulating 72 kDa inositol polyphosphate‑5‑phosphatase (INPP5E). In addition, knockdown of INPP5E counteracted the growth arrest caused by an miR‑598‑inhibitor. In conclusion, the present study demonstrated that miR‑598 contributed to cell proliferation and cell cycle progression in CRC by targeting INPP5E.
Collapse
Affiliation(s)
- Kun-Ping Li
- Department of General Surgery, Huizhou First Hospital, Huizhou, Guangdong 516000, P.R. China
| | - Yong-Ping Fang
- Department of General Surgery, Huizhou First Hospital, Huizhou, Guangdong 516000, P.R. China
| | - Jin-Qi Liao
- Department of General Surgery, Huizhou First Hospital, Huizhou, Guangdong 516000, P.R. China
| | - Jin-Dong Duan
- Department of General Surgery, Huizhou First Hospital, Huizhou, Guangdong 516000, P.R. China
| | - Li-Guang Feng
- Department of General Surgery, Huizhou First Hospital, Huizhou, Guangdong 516000, P.R. China
| | - Xiao-Zai Luo
- Department of General Surgery, Huizhou First Hospital, Huizhou, Guangdong 516000, P.R. China
| | - Zhi-Jian Liang
- Department of General Surgery, Huizhou First Hospital, Huizhou, Guangdong 516000, P.R. China
| |
Collapse
|
46
|
Yumioka T, Osaki M, Sasaki R, Yamaguchi N, Onuma K, Iwamoto H, Morizane S, Honda M, Takenaka A, Okada F. Lysosome-associated membrane protein 2 (LAMP-2) expression induced by miR-194-5p downregulation contributes to sunitinib resistance in human renal cell carcinoma cells. Oncol Lett 2017; 15:893-900. [PMID: 29399154 PMCID: PMC5772808 DOI: 10.3892/ol.2017.7423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022] Open
Abstract
Sunitinib is a tyrosine kinase inhibitor that is used as the primary treatment in metastatic renal cell carcinoma (RCC). The main difficulty associated with its use is the development of drug resistance. In the present study, ACHN cells, a human renal cell carcinoma cell line, were used to establish sunitinib-resistant (SR) cells. Microarray analysis and reverse transcription-quantitative polymerase chain reaction revealed that miR-194-5p expression was significantly decreased in SR-ACHN cells when compared with that observed in ACHN cells (P<0.05). Transfection of miR-194-5p, though not with negative control miR, in SR-ACHN cells could significantly inhibit cell proliferation following sunitinib treatment (2.5–40 µM; P<0.05). Western blotting demonstrated that the expression of lysosome-associated membrane protein-2 (LAMP-2), which attenuates the anti-proliferative effect of sunitinib, was significantly higher in SR-ACHN than in ACHN cells (P<0.01). In addition, LAMP-2 expression was suppressed by miR-194-5p transfection in SR-ACHN cells. These data suggested that miR-194-5p downregulation may be associated with sunitinib resistance via the induction of LAMP-2 expression in human RCC.
Collapse
Affiliation(s)
- Tetsuya Yumioka
- Division of Pathological Biochemistry, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan.,Division of Urology, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, Tottori 683-8503, Japan
| | - Ryo Sasaki
- Division of Pathological Biochemistry, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan
| | - Noriya Yamaguchi
- Division of Pathological Biochemistry, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan.,Division of Urology, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan
| | - Kunishige Onuma
- Division of Pathological Biochemistry, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan
| | - Hideto Iwamoto
- Division of Urology, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan
| | - Shuichi Morizane
- Division of Urology, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan
| | - Masashi Honda
- Division of Urology, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan
| | - Atsushi Takenaka
- Division of Urology, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan
| | - Futoshi Okada
- Division of Pathological Biochemistry, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, Tottori 683-8503, Japan
| |
Collapse
|
47
|
An J, Lv W, Zhang Y. LncRNA NEAT1 contributes to paclitaxel resistance of ovarian cancer cells by regulating ZEB1 expression via miR-194. Onco Targets Ther 2017; 10:5377-5390. [PMID: 29180871 PMCID: PMC5691924 DOI: 10.2147/ott.s147586] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Chemoresistance is one of the major obstacles for cancer therapy in the clinic. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported as an oncogene in most malignancies such as lung cancer, esophageal cancer, and gastric cancer. This study is designed to investigate the function of NEAT1 in paclitaxel (PTX) resistance of ovarian cancer and its potential molecular mechanism. Patients and methods The expressions of NEAT1 and miR-194 in ovarian cancer tissues and cells were estimated by quantitative real-time polymerase chain reaction (qRT-PCR). MTT, flow cytometry, and Western blot assays were used to assess the effect of NEAT1 on PTX resistance in PTX-resistant ovarian cancer cells. Luciferase reporter assay was applied to examine the association between NEAT1, zinc finger E-box-binding homeobox 1 (ZEB1) and miR-194. Xenograft tumor model was established to confirm the biological role of NEAT1 in PTX resistance of ovarian cancer in vivo. Results NEAT1 was upregulated, and miR-194 was downregulated in PTX-resistant ovarian cancer tissues and cells. Functionally, NEAT1 knockdown enhanced cell sensitivity to PTX via promoting PTX-induced apoptosis in vitro. NEAT1 was identified as a molecular sponge of miR-194 to upregulate ZEB1 expression. Mechanistically, NEAT1-knockdown-induced PTX sensitivity was mediated by miR-194/ZEB1 axis. Moreover, NEAT1 knockdown improved PTX sensitivity of ovarian cancer in vivo. Conclusion NEAT1 contributed to PTX resistance of ovarian cancer cells at least partly through upregulating ZEB1 expression by sponging miR-194, elucidating a novel regulatory pathway of chemoresistance in PTX-resistant ovarian cancer cells and providing a possible long noncoding RNA (lncRNA)-targeted therapy for ovarian cancer.
Collapse
Affiliation(s)
- Jihong An
- Department of Clinical Pharmacy, Huaihe Hospital of Henan University, Kaifeng, People's Republic of China
| | - Weiling Lv
- Department of Clinical Pharmacy, Huaihe Hospital of Henan University, Kaifeng, People's Republic of China
| | - Yongzhou Zhang
- Department of Clinical Pharmacy, Huaihe Hospital of Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
48
|
Li J, Zhang S, Zhu L, Ma S. Role of transcription factor FOXA1 in non‑small cell lung cancer. Mol Med Rep 2017; 17:509-521. [PMID: 29115441 DOI: 10.3892/mmr.2017.7885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/31/2017] [Indexed: 11/05/2022] Open
Abstract
In our previous study, stable subpopulations of the A549 lung cancer cell line with high/low invasive potential (H/L‑INV) were obtained. In the present study, microarray analysis of the H/L‑INV A549 subpopulations was performed to evaluate genes associated with high invasiveness. Forkhead box protein A1 (FOXA1) was selected for further investigation. The expression levels of FOXA1 in the primary lesion and metastatic lymph nodes were assessed using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis. In addition, the mRNA and protein expression levels of FOXA1 were examined in H‑INV A549 cells transfected with a specific FOXA1 small interfering RNA (siRNA), and the role of FOXA1 in the proliferation, invasion and metastasis of non‑small cell lung cancer (NSCLC) cells was evaluated. FOXA1 was overexpressed in metastatic lymph nodes, compared with its expression in NSCLC primary tumours. The results of western blot and RT‑qPCR analyses confirmed that FOXA1 siRNA transfection led to a decrease in the expression of FOXA1 in H‑INV A549 cells. FOXA1 siRNA transfection caused G0/G1 phase cell cycle arrest, and also reduced the invasion, migration and proliferation abilities of the H‑INV A549 cells. In conclusion, the results of the present study suggested that FOXA1 is a potential oncogene in NSCLC; therefore, specific interference of the expression of FOXA1 may represent a novel approach for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jia Li
- Department of Oncology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shirong Zhang
- Center for Translational Medicine, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Lucheng Zhu
- Department of Oncology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shenglin Ma
- Department of Oncology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
49
|
PLOD2 regulated by transcription factor FOXA1 promotes metastasis in NSCLC. Cell Death Dis 2017; 8:e3143. [PMID: 29072684 PMCID: PMC5680920 DOI: 10.1038/cddis.2017.553] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/06/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
In multiple types of tumors, fibrotic collagen is regarded as the 'highway' for cancer cell migration, which is mainly modified by lysyl hydroxylase 2 (PLOD2). The previous findings have demonstrated that the expression of PLOD2 was regulated by multiple factors, including HIF-1α, TGF-β and microRNA-26a/b. Although PLOD2 was confirmed to be related to poor prognosis in lung adenocarcinoma, the regulatory mechanism and function of PLOD2 in human lung adenocarcinoma is poorly understood. On the other hand, upregulation or hyperactivation of epidermal growth factor receptor is considered as a prognostic marker in many cancers, especially in non-small-cell lung cancer (NSCLC). In this study, we found that PLOD2 was elevated in NSCLC specimens and positively links to NSCLC poor prognosis. Gain- and loss-of-function studies and orthotopic implantation metastasis model pinpointed that PLOD2 promotes NSCLC metastasis directly by enhancing migration and indirectly by inducing collagen reorganization. In addition, we revealed that PLOD2 was regulated by PI3K/AKT-FOXA1 axis. The transcription factor FOXA1 directly bound to the PLOD2 promoter, and turned on PLOD2 transcription. In summary, our findings revealed a regulatory mechanism of NSCLC metastasis through EGFR-PI3K/AKT-FOXA1-PLOD2 pathway, and provided PLOD2 as a therapeutic target for NSCLC treatment.
Collapse
|
50
|
Zhang Z, Lei B, Wu H, Zhang X, Zheng N. Tumor suppressive role of miR-194-5p in glioblastoma multiforme. Mol Med Rep 2017; 16:9317-9322. [PMID: 29152664 PMCID: PMC5779985 DOI: 10.3892/mmr.2017.7826] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 05/26/2017] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is defined by the World Health Organization as the most aggressive form of grade IV glioma, characterized by unrestrained cellular proliferation. microRNAs (miRs) serve important roles in the pathogenesis of GBM. However, the function of miR-194-5p in GBM remains unknown. In the present study, the miR-194-5p levels in GBM tissues and cells were evaluated using the reverse transcription-quantitative polymerase chain reaction. Cellular proliferation was tested by MTT analysis. Cellular apoptosis was analyzed by fluorescence-activated cell sorting. The protein level of insulin-like growth factor 1 receptor, the target gene of miR-194-5p, was evaluated by western blotting. The interaction between miR-194-5p and the target gene was confirmed by the dual-luciferase reporter assay. It was demonstrated that miR-194-5p inhibited cell growth and promoted apoptosis. In conclusion, the results of the present study indicated the tumor suppressive role of miR-194-5p.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Neurosurgery, The People's Hospital of Leshan City, Leshan, Sichuan 614000, P.R. China
| | - Bo Lei
- Department of Neurosurgery, The People's Hospital of Leshan City, Leshan, Sichuan 614000, P.R. China
| | - Honggang Wu
- Department of Neurosurgery, The People's Hospital of Leshan City, Leshan, Sichuan 614000, P.R. China
| | - Xiaoli Zhang
- Department of Neurosurgery, The People's Hospital of Leshan City, Leshan, Sichuan 614000, P.R. China
| | - Niandong Zheng
- Department of Neurosurgery, The People's Hospital of Leshan City, Leshan, Sichuan 614000, P.R. China
| |
Collapse
|