1
|
Li CX, Xu Q, Jiang ST, Liu D, Tang C, Yang WL. Anticancer effects of salvianolic acid A through multiple signaling pathways (Review). Mol Med Rep 2025; 32:176. [PMID: 40280109 PMCID: PMC12056544 DOI: 10.3892/mmr.2025.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Salvia miltiorrhiza Bunge (Salvia miltiorrhiza), commonly referred to as Danshen, is a well‑known herb in traditional Chinese medicine, the active ingredients of which are mostly categorized as water soluble and lipid soluble. Salvianolic acids are the major water‑soluble phenolic acid constituents of Danshen; salvianolic acid B is the most prevalent, with salvianolic acid A (SAA) being the next most predominant form. SAA offers a wide array of pharmacological benefits, including cardiovascular protection, and anti‑inflammatory, antioxidant, antiviral and anticancer activities. SAA is currently undergoing phase III clinical trials for diabetic peripheral neuropathy and has shown protective benefits against cardiovascular illnesses; furthermore, its safety and effectiveness are encouraging. By targeting several signaling pathways, preventing cell cycle progression, tumor cell migration, invasion and metastasis, normalizing the tumor vasculature and encouraging cell apoptosis, SAA can also prevent the growth of malignancies. In addition, it enhances sensitivity to chemotherapeutic drugs, and alleviates their toxicity and side effects. However, the broad therapeutic use of SAA has been somewhat limited by its low content in Salvia miltiorrhiza Bunge and the difficulty of its extraction techniques. Therefore, the present review focuses on the potential mechanisms of SAA in tumor prevention and treatment. With the anticipation that SAA will serve a notable role in clinical applications in the future, these discoveries may offer a scientific basis for the combination of SAA with conventional chemotherapeutic drugs in the treatment of cancer, and could establish a foundation for the development of SAA as an anticancer drug.
Collapse
Affiliation(s)
- Cheng-Xia Li
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qi Xu
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shi-Ting Jiang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dan Liu
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chao Tang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wen-Li Yang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
3
|
Barzegar S, Pirouzpanah S. Zinc finger proteins and ATP-binding cassette transporter-dependent multidrug resistance. Eur J Clin Invest 2024; 54:e14120. [PMID: 37930002 DOI: 10.1111/eci.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) remains a significant challenge in cancer treatment, leading to poor clinical outcomes. Dysregulation of ATP-binding cassette (ABC) transporters has been identified as a key contributor to MDR. Zinc finger proteins (ZNPs) are key regulators of transcription and have emerged as potential contributors to cancer drug resistance. Bridging the knowledge gap between ZNPs and MDR is essential to understand a source of heterogeneity in cancer treatment. This review sought to elucidate how different ZNPs modulate the transcriptional regulation of ABC genes, contributing to resistance to cancer therapies. METHODS The search was conducted using PubMed, Google Scholar, EMBASE and Web of Science. RESULTS In addition to ABC-blockers, the transcriptional features regulated by ZNP are expected to play a role in reversing ABC-mediated MDR and predicting the efficacy of anticancer treatments. Among the ZNP-induced epithelial to mesenchymal transition, SNAIL, SLUG and Zebs have been identified as important factors in promoting MDR through activation of ATM, NFκB and PI3K/Akt pathways, exposing the metabolism to potential ZNP-MDR interactions. Additionally, nuclear receptors, such as VDR, ER and PXR have been found to modulate certain ABC regulations. Other C2H2-type zinc fingers, including Kruppel-like factors, Gli and Sp also have the potential to contribute to MDR. CONCLUSION Besides reviewing evidence on the effects of ZNP dysregulation on ABC-related chemoresistance in malignancies, significant markers of ZNP functions are discussed to highlight the clinical implications of gene-to-gene and microenvironment-to-gene interactions on MDR prospects. Future research on ZNP-derived biomarkers is crucial for addressing heterogeneity in cancer therapy.
Collapse
Affiliation(s)
- Sanaz Barzegar
- Shahid Madani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Wang Y, Wang P, Wang Q, Chen S, Wang X, Zhong X, Hu W, Thorne RF, Han S, Wu M, Zhang L. The long noncoding RNA HNF1A-AS1 with dual functions in the regulation of cytochrome P450 3A4. Biochem Pharmacol 2024; 220:116016. [PMID: 38176619 DOI: 10.1016/j.bcp.2023.116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most important and abundant drug-metabolizing enzyme in the human liver. Inter-individual differences in the expression and activity of CYP3A4 affect clinical and precision medicine. Increasing evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the regulation of CYP3A4 expression. Here, we showed that lncRNA hepatocyte nuclear factor 1 alpha-antisense 1 (HNF1A-AS1) exerted dual functions in regulating CYP3A4 expression in Huh7 and HepG2 cells. Mechanistically, HNF1A-AS1 served as an RNA scaffold to interact with both protein arginine methyltransferase 1 and pregnane X receptor (PXR), thereby facilitating their protein interactions and resulting in the transactivation of PXR and transcriptional alteration of CYP3A4 via histone modifications. Furthermore, HNF1A-AS1 bound to the HNF1A protein, a liver-specific transcription factor, thereby blocking its interaction with the E3 ubiquitin ligase tripartite motif containing 25, ultimately preventing HNF1A ubiquitination and protein degradation, further regulating the expression of CYP3A4. In summary, these results reveal the novel functions of HNF1A-AS1 as the transcriptional and post-translational regulator of CYP3A4; thus, HNF1A-AS1 may serve as a new indicator for establishing or predicting individual differences in CYP3A4 expression.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China; Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Qi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Shitong Chen
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Xiaofei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Xiaobo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 06269 Storrs, CT, USA
| | - Wanglai Hu
- Translational Research Institute, Zhengzhou University People's Hospital, Academy of Medical Science, Zhengzhou University, 450003 Zhengzhou, China
| | - Rick F Thorne
- Translational Research Institute, Zhengzhou University People's Hospital, Academy of Medical Science, Zhengzhou University, 450003 Zhengzhou, China
| | - Shengna Han
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China.
| | - Mian Wu
- Translational Research Institute, Zhengzhou University People's Hospital, Academy of Medical Science, Zhengzhou University, 450003 Zhengzhou, China.
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China.
| |
Collapse
|
5
|
Zhu Y, Xia T, Chen DQ, Xiong X, Shi L, Zuo Y, Xiao H, Liu L. Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance. Drug Resist Updat 2024; 72:101016. [PMID: 37980859 DOI: 10.1016/j.drup.2023.101016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Drug resistance remains a major challenge in cancer treatment, necessitating the development of novel strategies to overcome it. Protein arginine methyltransferases (PRMTs) are enzymes responsible for epigenetic arginine methylation, which regulates various biological and pathological processes, as a result, they are attractive therapeutic targets for overcoming anti-cancer drug resistance. The ongoing development of small molecules targeting PRMTs has resulted in the generation of chemical probes for modulating most PRMTs and facilitated clinical treatment for the most advanced oncology targets, including PRMT1 and PRMT5. In this review, we summarize various mechanisms underlying protein arginine methylation and the roles of specific PRMTs in driving cancer drug resistance. Furthermore, we highlight the potential clinical implications of PRMT inhibitors in decreasing cancer drug resistance. PRMTs promote the formation and maintenance of drug-tolerant cells via several mechanisms, including altered drug efflux transporters, autophagy, DNA damage repair, cancer stem cell-related function, epithelial-mesenchymal transition, and disordered tumor microenvironment. Multiple preclinical and ongoing clinical trials have demonstrated that PRMT inhibitors, particularly PRMT5 inhibitors, can sensitize cancer cells to various anti-cancer drugs, including chemotherapeutic, targeted therapeutic, and immunotherapeutic agents. Combining PRMT inhibitors with existing anti-cancer strategies will be a promising approach for overcoming anti-cancer drug resistance. Furthermore, enhanced knowledge of the complex functions of arginine methylation and PRMTs in drug resistance will guide the future development of PRMT inhibitors and may help identify new clinical indications.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Tong Xia
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Da-Qian Chen
- Department of Medicine Oncology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lihong Shi
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yueqi Zuo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an 710021, China.
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
6
|
Knox RN, Eidahl JO, Wallace L, Choudury S, Rashnonejad A, Daman K, Guggenbiller M, Saad N, Hoover ME, Zhang L, Branson OE, Emerson CP, Freitas MA, Harper SQ. Post-Translational Modifications of the DUX4 Protein Impact Toxic Function in FSHD Cell Models. Ann Neurol 2023; 94:398-413. [PMID: 37186119 PMCID: PMC10777487 DOI: 10.1002/ana.26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Facioscapulohumeral muscular dystrophy (FSHD) is caused by abnormal de-repression of the myotoxic transcription factor DUX4. Although the transcriptional targets of DUX4 are known, the regulation of DUX4 protein and the molecular consequences of this regulation are unclear. Here, we used in vitro models of FSHD to identify and characterize DUX4 post-translational modifications (PTMs) and their impact on the toxic function of DUX4. METHODS We immunoprecipitated DUX4 protein and performed mass spectrometry to identify PTMs. We then characterized DUX4 PTMs and potential enzyme modifiers using mutagenesis, proteomics, and biochemical assays in HEK293 and human myoblast cell lines. RESULTS We identified 17 DUX4 amino acids with PTMs, and generated 55 DUX4 mutants designed to prevent or mimic PTMs. Five mutants protected cells against DUX4-mediated toxicity and reduced the ability of DUX4 to transactivate FSHD biomarkers. These mutagenesis results suggested that DUX4 toxicity could be counteracted by serine/threonine phosphorylation and/or inhibition of arginine methylation. We therefore sought to identify modifying enzymes that could play a role in regulating DUX4 PTMs. We found several enzymes capable of modifying DUX4 protein in vitro, and confirmed that protein kinase A (PKA) and protein arginine methyltransferase (PRMT1) interact with DUX4. INTERPRETATION These results support that DUX4 is regulated by PTMs and set a foundation for developing FSHD drug screens based mechanistically on DUX4 PTMs and modifying enzymes. ANN NEUROL 2023;94:398-413.
Collapse
Affiliation(s)
- Renatta N. Knox
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63108
| | - Jocelyn O. Eidahl
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Lindsay Wallace
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Sarah Choudury
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Afrooz Rashnonejad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical School, Worcester, MA 01655
| | - Matthew Guggenbiller
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Nizar Saad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Michael E. Hoover
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Liwen Zhang
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Owen E. Branson
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Charles P. Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical School, Worcester, MA 01655
| | - Michael A. Freitas
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Scott Q. Harper
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Zhao H, Han B, Li X, Sun C, Zhai Y, Li M, Jiang M, Zhang W, Liang Y, Kai G. Salvia miltiorrhiza in Breast Cancer Treatment: A Review of Its Phytochemistry, Derivatives, Nanoparticles, and Potential Mechanisms. Front Pharmacol 2022; 13:872085. [PMID: 35600860 PMCID: PMC9117704 DOI: 10.3389/fphar.2022.872085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is one of the most deadly malignancies in women worldwide. Salvia miltiorrhiza, a perennial plant that belongs to the genus Salvia, has long been used in the management of cardiovascular and cerebrovascular diseases. The main anti-breast cancer constituents in S. miltiorrhiza are liposoluble tanshinones including dihydrotanshinone I, tanshinone I, tanshinone IIA, and cryptotanshinone, and water-soluble phenolic acids represented by salvianolic acid A, salvianolic acid B, salvianolic acid C, and rosmarinic acid. These active components have potent efficacy on breast cancer in vitro and in vivo. The mechanisms mainly include induction of apoptosis, autophagy and cell cycle arrest, anti-metastasis, formation of cancer stem cells, and potentiation of antitumor immunity. This review summarized the main bioactive constituents of S. miltiorrhiza and their derivatives or nanoparticles that possess anti-breast cancer activity. Besides, the synergistic combination with other drugs and the underlying molecular mechanisms were also summarized to provide a reference for future research on S. miltiorrhiza for breast cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yi Liang
- *Correspondence: Yi Liang, ; Guoyin Kai,
| | - Guoyin Kai
- *Correspondence: Yi Liang, ; Guoyin Kai,
| |
Collapse
|
8
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
9
|
Shen Q, Xiao Y, Cheng B, Sun Z, Hu Y, Yang H, Luo Y. PRMT1 promotes extracellular matrix degradation and apoptosis of chondrocytes in temporomandibular joint osteoarthritis via the AKT/FOXO1 signaling pathway. Int J Biochem Cell Biol 2021; 141:106112. [PMID: 34715362 DOI: 10.1016/j.biocel.2021.106112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/28/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a chronic degenerative joint disease characterized by extracellular matrix (ECM) degradation and chondrocyte apoptosis. The aim of this study was to investigate the role of PRMT1 in TMJOA pathogenesis and its underlying molecular mechanism. Compared to the control group, PRMT1 was highly expressed in IL-1β-treated chondrocytes and articular cartilage following MIA injection into rat TMJs. Furthermore, knocking down PRMT1 considerably inhibited ECM degradation and apoptosis induced by IL-1β. Mechanistic analyses further revealed that PRMT1 knockdown activated the PI3K/AKT signaling pathway and prevented FOXO1 from translocating to the nucleus. Moreover, an inhibitor of AKT (LY294002) rescued the effect of PRMT1 knockdown on IL-1β-induced ECM degradation and apoptosis, and AMI-1, a selective inhibitor of PRMT1, inhibited PRMT1 expression and reversed the pathological progress of TMJOA. Thus, our findings suggest that PRMT1 plays an essential role in ECM degradation and chondrocyte apoptosis in TMJOA via the AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Qinhao Shen
- Department of Periodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China; Yunnan Key Laboratory of Stomatology, Kunming 650500, Yunnan Province, China; The First Dental Clinic of the Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650221, Yunnan Province, China
| | - Yiwen Xiao
- Yunnan Key Laboratory of Stomatology, Kunming 650500, Yunnan Province, China; Department of Orthodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China
| | - Bei Cheng
- Department of Periodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China; Yunnan Key Laboratory of Stomatology, Kunming 650500, Yunnan Province, China
| | - Zheyi Sun
- Yunnan Key Laboratory of Stomatology, Kunming 650500, Yunnan Province, China
| | - Yu Hu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming 650500, Yunnan Province, China.
| | - Yingwei Luo
- Department of Periodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China; The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China.
| |
Collapse
|
10
|
Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front Cell Dev Biol 2021; 9:736935. [PMID: 34595180 PMCID: PMC8476812 DOI: 10.3389/fcell.2021.736935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Hao Wu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shiyao Sui
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Qin Wang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shouping Xu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
11
|
Creamer BA, Sloan SNB, Dennis JF, Rogers R, Spencer S, McCuen A, Persaud P, Staudinger JL. Associations between Pregnane X Receptor and Breast Cancer Growth and Progression. Cells 2020; 9:cells9102295. [PMID: 33076284 PMCID: PMC7602492 DOI: 10.3390/cells9102295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Pregnane X receptor (PXR, NR1I2) is a member of the ligand-activated nuclear receptor superfamily. This receptor is promiscuous in its activation profile and is responsive to a broad array of both endobiotic and xenobiotic ligands. PXR is involved in pivotal cellular detoxification processes to include the regulation of genes that encode key drug-metabolizing cytochrome-P450 enzymes, oxidative stress response, as well as enzymes that drive steroid and bile acid metabolism. While PXR clearly has important regulatory roles in the liver and gastrointestinal tract, this nuclear receptor also has biological functions in breast tissue. In this review, we highlight current knowledge of PXR’s role in mammary tumor carcinogenesis. The elevated level of PXR expression in cancerous breast tissue suggests a likely interface between aberrant cell division and xeno-protection in cancer cells. Moreover, PXR itself exerts positive effect on the cell cycle, thereby predisposing tumor cells to unchecked proliferation. Activation of PXR also plays a key role in regulating apoptosis, as well as in acquired resistance to chemotherapeutic agents. The repressive role of PXR in regulating inflammatory mediators along with the existence of genetic polymorphisms within the sequence of the PXR gene may predispose individuals to developing breast cancer. Further investigations into the role that PXR plays in driving tumorigenesis are needed.
Collapse
|
12
|
Xie VK, He J, Xie K. Protein arginine methylation promotes therapeutic resistance in human pancreatic cancer. Cytokine Growth Factor Rev 2020; 55:58-69. [PMID: 32739260 DOI: 10.1016/j.cytogfr.2020.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022]
Abstract
Pancreatic cancer is a lethal disease with limited treatment options for cure. A high degree of intrinsic and acquired therapeutic resistance may result from cellular alterations in genes and proteins involved in drug transportation and metabolism, or from the influences of cancer microenvironment. Mechanistic basis for therapeutic resistance remains unclear and should profoundly impact our ability to understand pancreatic cancer pathogenesis and its effective clinical management. Recent evidences have indicated the importance of epigenetic changes in pancreatic cancer, including posttranslational modifications of proteins. We will review new knowledge on protein arginine methylation and its consequential contribution to therapeutic resistance of pancreatic cancer, underlying molecular mechanism, and clinical application of potential strategies of its reversal.
Collapse
Affiliation(s)
- Victoria Katie Xie
- Department of Gastroenterology, Guangzhou First People's Hospital Affiliated to The South China University of Technology School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jie He
- Department of Gastroenterology, Guangzhou First People's Hospital Affiliated to The South China University of Technology School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Keping Xie
- Department of Gastroenterology, Guangzhou First People's Hospital Affiliated to The South China University of Technology School of Medicine, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Kim E, Jang J, Park JG, Kim KH, Yoon K, Yoo BC, Cho JY. Protein Arginine Methyltransferase 1 (PRMT1) Selective Inhibitor, TC-E 5003, Has Anti-Inflammatory Properties in TLR4 Signaling. Int J Mol Sci 2020; 21:ijms21093058. [PMID: 32357521 PMCID: PMC7246892 DOI: 10.3390/ijms21093058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is the most predominant PRMT and is type I, meaning it generates monomethylarginine and asymmetric dimethylarginine. PRMT1 has functions in oxidative stress, inflammation and cancers, and modulates diverse diseases; consequently, numerous trials to develop PRMT1 inhibitors have been attempted. One selective PRMT1 inhibitor is N,N′-(Sulfonyldi-4,1-phenylene)bis(2-chloroacetamide), also named TC-E 5003 (TC-E). In this study, we investigated whether TC-E regulated inflammatory responses. Nitric oxide (NO) production was evaluated by the Griess assay and the inflammatory gene expression was determined by conducting RT-PCR. Western blot analyzing was carried out for inflammatory signaling exploration. TC-E dramatically reduced lipopolysaccharide (LPS)-induced NO production and the expression of inflammatory genes (inducible NO synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α and interleukin (IL)-6) as determined using RT-PCR. TC-E downregulated the nuclear translocation of the nuclear factor (NF)-κB subunits p65 and p50 and the activator protein (AP)-1 transcriptional factor c-Jun. Additionally, TC-E directly regulated c-Jun gene expression following LPS treatment. In NF-κB signaling, the activation of IκBα and Src was attenuated by TC-E. Taken together, these data show that TC-E modulates the lipopolysaccharide (LPS)-induced AP-1 and NF-κB signaling pathways and could possibly be further developed as an anti-inflammatory compound.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Jiwon Jang
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Jae Gwang Park
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Kyung-Hee Kim
- Proteomic Analysis Team, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Keejung Yoon
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea;
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
14
|
Liu Z, Wang Q, Mao J, Wang K, Fang Z, Miao QR, Ye M. Comparative proteomic analysis of protein methylation provides insight into the resistance of hepatocellular carcinoma to 5-fluorouracil. J Proteomics 2020; 219:103738. [PMID: 32198070 DOI: 10.1016/j.jprot.2020.103738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/22/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022]
Abstract
Protein methylation is one of the common post-translational modifications involved in diverse biological processes including signal transduction, transcriptional regulation, DNA repairing, gene activation, gene repression, and RNA processing. Due to technique limitation, the investigation of protein methylation in cancer cells is not well achieved, which hinders our understanding of the contribution of protein methylation to drug resistance. In this study, we analyzed the methylproteomes of both 5-fluorouracil (5-Fu) resistant Bel/5-Fu cell line and its parental Bel cell line by employing SPE-SCX based label-free quantitative proteomics. We identified 313 methylation forms on 294 sites in Bel cells and 294 methylation forms on 260 sites in Bel/5-Fu cells with high localization confidence. In addition, we quantified 251 methylation forms and found that 77 methylation forms significantly changed. After normalizing with the protein abundance, the 89 methylation forms were determined with the significant changes in site stoichiometry. The sequence characteristics of these significantly changed methylation sites are different. Gene ontology analysis showed that these significantly changed methylated proteins mainly involved in the biological processes of translation and transcription. Together, our findings indicated that protein methylation occurring in hepatocellular carcinoma might play a critical role in requiring drug resistance. SIGNIFICANCE: The drug resistance acquired in cancer cells has been considered as a major challenge for the cancer treatment. Due to complexity, the molecular mechanisms are still largely unknown. Identifying the key markers will improve our understanding of the mechanisms and is crucial for the development of new therapeutic strategies to overcome resistance. To date, increasing number of proteomics and phosphoproteomics studies were reported to investigate the mechanisms of drug resistance. However, the methylproteomics studies related to drug resistance were not reported yet. Here, we performed the SPE-SCX based label-free quantitative proteomics to analyze the methylproteomes of both resistant cell line Bel/5-Fu and sensitive cell line Bel. Through the qualitative and quantitative analysis, we found that the sequence characteristics of methylation sites were evidently different between these two cell lines. The results suggested that some methyltransferases might play a crucial role in the regulation of drug resistance. We also performed the analysis of methyl-site stoichiometry by normalizing the protein abundances. It was found that 89 methylation forms were determined with the significant changes in site stoichiometry, which may contribute to the development of the Bel cells into resistant cells. Our methylproteomes dataset would be useful to reveal novel molecular mechanisms of drug resistance acquired in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhen Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keyun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing R Miao
- Divisions of Pediatric Surgery and Pediatric Pathology, Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA.
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
The prognostic significance of protein arginine methyltransferase 6 expression in colon cancer. Oncotarget 2017; 9:9010-9020. [PMID: 29507670 PMCID: PMC5823663 DOI: 10.18632/oncotarget.23809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 11/16/2017] [Indexed: 01/27/2023] Open
Abstract
Protein arginine methylation is involved in cellular differentiation and proliferation. Recently, aberrant expression of protein arginine methyltransferases, which are responsible for the methylation reaction, has been reported in various types of cancer. However, there is no clear evidence regarding the prognostic value of abnormal PRMT6 expression in colorectal cancer or the effect of PRMT6 regulation on CRC cells. We investigated the expression patterns of PRMT6 in patients with stage II and III CRC. We detected nuclear expression of PRMT6 in 23.7% of carcinoma samples by immunohistochemistry. Among the clinicopathological parameters, the ratio of poorly differentiated cancer cells was approximately two-fold higher in patients with PRMT6-positive disease than in those with PRMT6-negative disease (p = 0.002). Patients with PRMT6-positive CRC had a shorter disease-free survival than those with PRMT6-negative CRC in both univariate and multivariate analyses (p = 0.018 and p = 0.035, respectively). siRNA-mediated inhibition of PRMT6 expression in CRC cells induced p21WAF1/CIP1 overexpression and suppressed cell growth and colony-forming ability. Concomitantly, apoptosis was induced in PRMT6-suppressed CRC cells. These data suggest that PRMT6 can serve as a biomarker for unfavorable prognosis and as a therapeutic target in CRC.
Collapse
|
16
|
Oladimeji P, Cui H, Zhang C, Chen T. Regulation of PXR and CAR by protein-protein interaction and signaling crosstalk. Expert Opin Drug Metab Toxicol 2016; 12:997-1010. [PMID: 27295009 DOI: 10.1080/17425255.2016.1201069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Protein-protein interaction and signaling crosstalk contribute to the regulation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) and broaden their cellular function. AREA COVERED This review covers key historic discoveries and recent advances in our understanding of the broad function of PXR and CAR and their regulation by protein-protein interaction and signaling crosstalk. EXPERT OPINION PXR and CAR were first discovered as xenobiotic receptors; however, it is clear that PXR and CAR perform a much broader range of cellular functions through protein-protein interaction and signaling crosstalk, which typically mutually affect the function of all the partners involved. Future research on PXR and CAR should, therefore, look beyond their xenobiotic function.
Collapse
Affiliation(s)
- Peter Oladimeji
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Hongmei Cui
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Chen Zhang
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Taosheng Chen
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| |
Collapse
|
17
|
Pondugula SR, Pavek P, Mani S. Pregnane X Receptor and Cancer: Context-Specificity is Key. NUCLEAR RECEPTOR RESEARCH 2016; 3. [PMID: 27617265 DOI: 10.11131/2016/101198] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pregnane X receptor (PXR) is an adopted orphan nuclear receptor that is activated by a wide-range of endobiotics and xenobiotics, including chemotherapy drugs. PXR plays a major role in the metabolism and clearance of xenobiotics and endobiotics in liver and intestine via induction of drug-metabolizing enzymes and drug-transporting proteins. However, PXR is expressed in several cancer tissues and the accumulating evidence strongly points to the differential role of PXR in cancer growth and progression as well as in chemotherapy outcome. In cancer cells, besides regulating the gene expression of enzymes and proteins involved in drug metabolism and transport, PXR also regulates other genes involved in proliferation, metastasis, apoptosis, anti-apoptosis, inflammation, and oxidative stress. In this review, we focus on the differential role of PXR in a variety of cancers, including prostate, breast, ovarian, endometrial, and colon. We also discuss the future directions to further understand the differential role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators to target PXR in PXR-expressing cancers.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Petr Pavek
- Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, Hradec Králové 500 05, Czech Republic, European Union
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|