1
|
Hernández-Esquivel L, Del Mazo-Monsalvo I, Pacheco-Velázquez SC, Feregrino-Mondragón RD, Robledo-Cadena DX, Sánchez-Thomas R, Jasso-Chávez R, Saavedra E, Marín-Hernández Á. Modeling Krebs cycle from liver, heart and hepatoma mitochondria, supported Complex I as target for specific inhibition of cancer cell proliferation. Front Oncol 2025; 15:1557638. [PMID: 40206582 PMCID: PMC11979947 DOI: 10.3389/fonc.2025.1557638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction The Krebs cycle (KC) is an important pathway for cancer cells because it produces reduced coenzymes for ATP synthesis and precursors for cellular proliferation. Described changes in cancer KC enzyme activities suggested modifications in the reactions that control the KC flux compared to normal cells. Methods In this work, kinetic metabolic models of KC of mitochondria from cancer (HepM), liver (RLM) and heart (RHM) to identify targets to decrease the KC flux were constructed from kinetic parameters (Vmax and Km) of enzymes here determined. Results The enzymes Vmax values were higher in the following order: RHM > HepM > RLM; meanwhile, Km values were similar. Kinetic modeling indicated that the NADH consumption reaction (complex I) exerted higher control on the Krebs cycle flux in HepM versus RLM and to a lesser extent in RHM. These results suggested that cancer cells may be more sensitive to complex I inhibition than heart and other non-cancer cells. Indeed, cancer cell proliferation was more sensitive to rotenone (a complex I inhibitor) than heart and non-cancer cells. In contrast, cell proliferation had similar sensitivities to malonate, an inhibitor of succinate dehydrogenase, an enzyme that does not exert control. Discussion Our results showed that kinetic modeling and metabolic control analysis allow the identification of high flux-controlling targets in cancer cells that help to design strategies to specifically inhibit their proliferation. This can minimize the toxic effects in normal cells, such as the cardiac ones that are highly sensitive to conventional chemotherapy.
Collapse
Affiliation(s)
- Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Isis Del Mazo-Monsalvo
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | - Rosina Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Álvaro Marín-Hernández
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
2
|
Zhao Y, Yang Y, Yang R, Sun C, Gao X, Gu X, Yuan Y, Nie Y, Xu S, Han R, Zhang L, Li J, Hu P, Wang Y, Chen H, Cao X, Wu J, Wang Z, Gu Y, Ye J. IDH1 mutation inhibits differentiation of astrocytes and glioma cells with low oxoglutarate dehydrogenase expression by disturbing α-ketoglutarate-related metabolism and epigenetic modification. LIFE METABOLISM 2024; 3:loae002. [PMID: 39872214 PMCID: PMC11749698 DOI: 10.1093/lifemeta/loae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/30/2025]
Abstract
Isocitrate dehydrogenase (IDH) mutations frequently occur in lower-grade gliomas and secondary glioblastomas. Mutant IDHs exhibit a gain-of-function activity, leading to the production of D-2-hydroxyglutarate (D-2HG) by reducing α-ketoglutarate (α-KG), a central player in metabolism and epigenetic modifications. However, the role of α-KG homeostasis in IDH-mutated gliomagenesis remains elusive. In this study, we found that low expression of oxoglutarate dehydrogenase (OGDH) was a common feature in IDH-mutated gliomas, as well as in astrocytes. This low expression of OGDH resulted in the accumulation of α-KG and promoted astrocyte maturation. However, IDH1 mutation significantly reduced α-KG levels and increased glutaminolysis and DNA/histone methylation in astrocytes. These metabolic and epigenetic alterations inhibited astrocyte maturation and led to cortical dysplasia in mice. Moreover, our results also indicated that reduced OGDH expression can promote the differentiation of glioma cells, while IDH1 mutations impeded the differentiation of glioma cells with low OGDH by reducing the accumulation of α-KG and increasing glutaminolysis. Finally, we found that l-glutamine increased α-KG levels and augmented the differentiation-promoting effects of AGI5198, an IDH1-mutant inhibitor, in IDH1-mutant glioma cells. Collectively, this study reveals that low OGDH expression is a crucial metabolic characteristic of IDH-mutant gliomas, providing a potential strategy for the treatment of IDH-mutant gliomas by targeting α-KG homeostasis.
Collapse
Affiliation(s)
- Yuanlin Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Ying Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Risheng Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Department of Pathology, Air Force Hospital of Southern Theater Command, Guangzhou, Guangdong 510000, China
| | - Chao Sun
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Xing Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xiwen Gu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yuan Yuan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yating Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Shenhui Xu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Ruili Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Lijun Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Jing Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Peizhen Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yingmei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Huangtao Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Xiangmei Cao
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jing Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Zhe Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yu Gu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Jing Ye
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
3
|
Vaglio-Garro A, Kozlov AV, Smirnova YD, Weidinger A. Pathological Interplay between Inflammation and Mitochondria Aggravates Glutamate Toxicity. Int J Mol Sci 2024; 25:2276. [PMID: 38396952 PMCID: PMC10889519 DOI: 10.3390/ijms25042276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial dysfunction and glutamate toxicity are associated with neural disorders, including brain trauma. A review of the literature suggests that toxic and transmission actions of neuronal glutamate are spatially and functionally separated. The transmission pathway utilizes synaptic GluN2A receptors, rapidly released pool of glutamate, evoked release of glutamate mediated by Synaptotagmin 1 and the amount of extracellular glutamate regulated by astrocytes. The toxic pathway utilizes extrasynaptic GluN2B receptors and a cytoplasmic pool of glutamate, which results from the spontaneous release of glutamate mediated by Synaptotagmin 7 and the neuronal 2-oxoglutarate dehydrogenase complex (OGDHC), a tricarboxylic acid (TCA) cycle enzyme. Additionally, the inhibition of OGDHC observed upon neuro-inflammation is due to an excessive release of reactive oxygen/nitrogen species by immune cells. The loss of OGDHC inhibits uptake of glutamate by mitochondria, thus facilitating its extracellular accumulation and stimulating toxic glutamate pathway without affecting transmission. High levels of extracellular glutamate lead to dysregulation of intracellular redox homeostasis and cause ferroptosis, excitotoxicity, and mitochondrial dysfunction. The latter affects the transmission pathway demanding high-energy supply and leading to cell death. Mitochondria aggravate glutamate toxicity due to impairments in the TCA cycle and become a victim of glutamate toxicity, which disrupts oxidative phosphorylation. Thus, therapies targeting the TCA cycle in neurological disorders may be more efficient than attempting to preserve mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Yuliya D. Smirnova
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
4
|
Gao Y, Zimmer JT, Vasic R, Liu C, Gbyli R, Zheng SJ, Patel A, Liu W, Qi Z, Li Y, Nelakanti R, Song Y, Biancon G, Xiao AZ, Slavoff S, Kibbey RG, Flavell RA, Simon MD, Tebaldi T, Li HB, Halene S. ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through m 6A modification-mediated RNA stability control. Cell Rep 2023; 42:113163. [PMID: 37742191 PMCID: PMC10636609 DOI: 10.1016/j.celrep.2023.113163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.
Collapse
Affiliation(s)
- Yimeng Gao
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Joshua T Zimmer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Radovan Vasic
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine, University of Toronto, Toronto, ON M5S3H2, Canada
| | - Chengyang Liu
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rana Gbyli
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shu-Jian Zheng
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Amisha Patel
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wei Liu
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhihong Qi
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yaping Li
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Raman Nelakanti
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yuanbin Song
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andrew Z Xiao
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sarah Slavoff
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Richard G Kibbey
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA; Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
Audet-Delage Y, Rouleau M, Villeneuve L, Guillemette C. The Glycosyltransferase Pathway: An Integrated Analysis of the Cell Metabolome. Metabolites 2022; 12:metabo12101006. [PMID: 36295907 PMCID: PMC9609030 DOI: 10.3390/metabo12101006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Nucleotide sugar-dependent glycosyltransferases (UGTs) are critical to the homeostasis of endogenous metabolites and the detoxification of xenobiotics. Their impact on the cell metabolome remains unknown. Cellular metabolic changes resulting from human UGT expression were profiled by untargeted metabolomics. The abundant UGT1A1 and UGT2B7 were studied as UGT prototypes along with their alternative (alt.) splicing-derived isoforms displaying structural differences. Nineteen biochemical routes were modified, beyond known UGT substrates. Significant variations in glycolysis and pyrimidine pathways, and precursors of the co-substrate UDP-glucuronic acid were observed. Bioactive lipids such as arachidonic acid and endocannabinoids were highly enriched by up to 13.3-fold (p < 0.01) in cells expressing the canonical enzymes. Alt. UGT2B7 induced drastic and unique metabolic perturbations, including higher glucose (18-fold) levels and tricarboxylic acid cycle (TCA) cycle metabolites and abrogated the effects of the UGT2B7 canonical enzyme when co-expressed. UGT1A1 proteins promoted the accumulation of branched-chain amino acids (BCAA) and TCA metabolites upstream of the mitochondrial oxoglutarate dehydrogenase complex (OGDC). Alt. UGT1A1 exacerbated these changes, likely through its interaction with the OGDC component oxoglutarate dehydrogenase-like (OGDHL). This study expands the breadth of biochemical pathways associated with UGT expression and establishes extensive connectivity between UGT enzymes, alt. proteins and other metabolic processes.
Collapse
Affiliation(s)
- Yannick Audet-Delage
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Michèle Rouleau
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Lyne Villeneuve
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Chantal Guillemette
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
- Canada Research Chair in Pharmacogenomics, Université Laval, Québec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-(418)-654-2296
| |
Collapse
|
6
|
Oliva CR, Ali MY, Flor S, Griguer CE. Effect of Expression of Nuclear-Encoded Cytochrome C Oxidase Subunit 4 Isoforms on Metabolic Profiles of Glioma Cells. Metabolites 2022; 12:metabo12080748. [PMID: 36005623 PMCID: PMC9415780 DOI: 10.3390/metabo12080748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Although often effective at treating newly diagnosed glioblastoma (GBM), increasing evidence suggests that chemo- and radiotherapy-induced alterations in tumor metabolism promote GBM recurrence and aggressiveness, as well as treatment resistance. Recent studies have demonstrated that alterations in glioma cell metabolism, induced by a switch in the isoform expression of cytochrome c oxidase subunit 4 (COX4), a key regulatory subunit of mammalian cytochrome c oxidase, could promote these effects. To understand how the two COX4 isoforms (COX4-1 and COX4-2) differentially affect glioma metabolism, glioma samples harvested from COX4-1- or COX4-2-overexpressing U251 cells were profiled using Gas chromatography–mass spectrometry GC-MS and Liquid Chromatography - Tandem Mass Spectrometry LC-MS/MS metabolomics platforms. The concentration of 362 metabolites differed significantly in the two cell types. The two most significantly upregulated pathways associated with COX4-1 overexpression were purine and glutathione metabolism; the two most significantly downregulated metabolic pathways associated with COX4-1 expression were glycolysis and fatty acid metabolism. Our study provides new insights into how Cytochrome c oxidase (CcO) regulatory subunits affect cellular metabolic networks in GBM and identifies potential targets that may be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Claudia R. Oliva
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Md Yousuf Ali
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Human Toxicology, Department Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Susanne Flor
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Corinne E. Griguer
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
7
|
Chang LC, Chiang SK, Chen SE, Hung MC. Targeting 2-oxoglutarate dehydrogenase for cancer treatment. Am J Cancer Res 2022; 12:1436-1455. [PMID: 35530286 PMCID: PMC9077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023] Open
Abstract
Tricarboxylic acid (TCA) cycle, also called Krebs cycle or citric acid cycle, is an amphoteric pathway, contributing to catabolic degradation and anaplerotic reactions to supply precursors for macromolecule biosynthesis. Oxoglutarate dehydrogenase complex (OGDHc, also called α-ketoglutarate dehydrogenase) a highly regulated enzyme in TCA cycle, converts α-ketoglutarate (αKG) to succinyl-Coenzyme A in accompany with NADH generation for ATP generation through oxidative phosphorylation. The step collaborates with glutaminolysis at an intersectional point to govern αKG levels for energy production, nucleotide and amino acid syntheses, and the resources for macromolecule synthesis in cancer cells with rapid proliferation. Despite being a flavoenzyme susceptible to electron leakage contributing to mitochondrial reactive oxygen species (ROS) production, OGDHc is highly sensitive to peroxides such as HNE (4-hydroxy-2-nonenal) and moreover, its activity mediates the activation of several antioxidant pathways. The characteristics endow OGDHc as a critical redox sensor in mitochondria. Accumulating evidences suggest that dysregulation of OGDHc impairs cellular redox homeostasis and disturbs substrate fluxes, leading to a buildup of oncometabolites along the pathogenesis and development of cancers. In this review, we describe molecular interactions, regulation of OGDHc expression and activity and its relationships with diseases, specifically focusing on cancers. In the end, we discuss the potential of OGDHs as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 404, Taiwan
| | - Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing UniversityTaichung 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing UniversityTaichung 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing UniversityTaiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- Deparment of Biotechnology, Asia UniversityTaichung 413, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 404, Taiwan
| |
Collapse
|
8
|
Increasing Inhibition of the Rat Brain 2-Oxoglutarate Dehydrogenase Decreases Glutathione Redox State, Elevating Anxiety and Perturbing Stress Adaptation. Pharmaceuticals (Basel) 2022; 15:ph15020182. [PMID: 35215295 PMCID: PMC8875720 DOI: 10.3390/ph15020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
Specific inhibitors of mitochondrial 2-oxoglutarate dehydrogenase (OGDH) are administered to animals to model the downregulation of the enzyme as observed in neurodegenerative diseases. Comparison of the effects of succinyl phosphonate (SP, 0.02 mmol/kg) and its uncharged precursor, triethyl succinyl phosphonate (TESP, 0.02 and 0.1 mmol/kg) reveals a biphasic response of the rat brain metabolism and physiology to increasing perturbation of OGDH function. At the low (TE)SP dose, glutamate, NAD+, and the activities of dehydrogenases of 2-oxoglutarate and malate increase, followed by their decreases at the high TESP dose. The complementary changes, i.e., an initial decrease followed by growth, are demonstrated by activities of pyruvate dehydrogenase and glutamine synthetase, and levels of oxidized glutathione and citrulline. While most of these indicators return to control levels at the high TESP dose, OGDH activity decreases and oxidized glutathione increases, compared to their control values. The first phase of metabolic perturbations does not cause significant physiological changes, but in the second phase, the ECG parameters and behavior reveal decreased adaptability and increased anxiety. Thus, lower levels of OGDH inhibition are compensated by the rearranged metabolic network, while the increased levels induce a metabolic switch to a lower redox state of the brain, associated with elevated stress of the animals.
Collapse
|
9
|
Aleshin VA, Zhou X, Krishnan S, Karlsson A, Bunik VI. Interplay Between Thiamine and p53/p21 Axes Affects Antiproliferative Action of Cisplatin in Lung Adenocarcinoma Cells by Changing Metabolism of 2-Oxoglutarate/Glutamate. Front Genet 2021; 12:658446. [PMID: 33868388 PMCID: PMC8047112 DOI: 10.3389/fgene.2021.658446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Thiamine (vitamin B1) is often deficient in oncopatients, particularly those undergoing chemotherapy. However, interaction between the thiamine deficiency and anticancer action of drugs has not been characterized. A major natural thiamine derivative, thiamine diphosphate (ThDP), is a coenzyme of central metabolism, also known to affect transcriptional activity of the master metabolic regulator and genome guardian p53. A direct transcriptional target of p53, p21, regulates cell cycle dynamics and DNA damage response. Our work focuses on dependence of the action of the DNA damaging anticancer drug cisplatin on metabolic regulation through p53/p21 axes and cellular thiamine status in human lung adenocarcinoma cells A549. These cells are used as a model of a hardly curable cancer, known to develop chemoresistance to platinum drugs, such as cisplatin. Compared to wild type (A549WT), a stable line with a 60% knockdown of p21 (A549p21-) is less sensitive to antiproliferative action of cisplatin. In contrast, in the thiamine-deficient medium, cisplatin impairs the viability of A549p21- cells more than that of A549WT cells. Analysis of the associated metabolic changes in the cells indicates that (i) p21 knockdown restricts the production of 2-oxoglutarate via glutamate oxidation, stimulating that within the tricarboxylic acid (TCA) cycle; (ii) cellular cisplatin sensitivity is associated with a 4-fold upregulation of glutamic-oxaloacetic transaminase (GOT2) by cisplatin; (iii) cellular cisplatin resistance is associated with a 2-fold upregulation of p53 by cisplatin. Correlation analysis of the p53 expression and enzymatic activities upon variations in cellular thiamine/ThDP levels indicates that p21 knockdown substitutes positive correlation of the p53 expression with the activity of 2-oxoglutarate dehydrogenase complex (OGDHC) for that with the activity of glutamate dehydrogenase (GDH). The knockdown also changes correlations of the levels of OGDHC, GDH and GOT2 with those of the malate and isocitrate dehydrogenases. Thus, a p53/p21-dependent change in partitioning of the glutamate conversion to 2-oxoglutarate through GOT2 or GDH, linked to NAD(P)-dependent metabolism of 2-oxoglutarate in affiliated pathways, adapts A549 cells to thiamine deficiency or cisplatin treatment. Cellular thiamine deficiency may interfere with antiproliferative action of cisplatin due to their common modulation of the p53/p21-dependent metabolic switch between the glutamate oxidation and transamination.
Collapse
Affiliation(s)
- Vasily A. Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Xiaoshan Zhou
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Anna Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biological Chemistry, Sechenov University, Moscow, Russia
| |
Collapse
|
10
|
Artiukhov AV, Kazantsev AV, Lukashev NV, Bellinzoni M, Bunik VI. Selective Inhibition of 2-Oxoglutarate and 2-Oxoadipate Dehydrogenases by the Phosphonate Analogs of Their 2-Oxo Acid Substrates. Front Chem 2021; 8:596187. [PMID: 33511099 PMCID: PMC7835950 DOI: 10.3389/fchem.2020.596187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Phosphonate analogs of pyruvate and 2-oxoglutarate are established specific inhibitors of cognate 2-oxo acid dehydrogenases. The present work develops application of this class of compounds to specific in vivo inhibition of 2-oxoglutarate dehydrogenase (OGDH) and its isoenzyme, 2-oxoadipate dehydrogenase (OADH). The isoenzymes-enriched preparations from the rat tissues with different expression of OADH and OGDH are used to characterize their interaction with 2-oxoglutarate (OG), 2-oxoadipate (OA) and the phosphonate analogs. Despite a 100-fold difference in the isoenzymes ratio in the heart and liver, similar Michaelis saturations by OG are inherent in the enzyme preparations from these tissues (KmOG = 0.45 ± 0.06 and 0.27 ± 0.026 mM, respectively), indicating no significant contribution of OADH to the OGDH reaction, or similar affinities of the isoenzymes to OG. However, the preparations differ in the catalysis of OADH reaction. The heart preparation, where OADH/OGDH ratio is ≈ 0.01, possesses low-affinity sites to OA (KmOA = 0.55 ± 0.07 mM). The liver preparation, where OADH/OGDH ratio is ≈ 1.6, demonstrates a biphasic saturation with OA: the low-affinity sites (Km,2OA = 0.45 ± 0.12 mM) are similar to those of the heart preparation; the high-affinity sites (Km,1OA = 0.008 ± 0.001 mM), revealed in the liver preparation only, are attributed to OADH. Phosphonate analogs of C5-C7 dicarboxylic 2-oxo acids inhibit OGDH and OADH competitively to 2-oxo substrates in all sites. The high-affinity sites for OA are affected the least by the C5 analog (succinyl phosphonate) and the most by the C7 one (adipoyl phosphonate). The opposite reactivity is inherent in both the low-affinity OA-binding sites and OG-binding sites. The C6 analog (glutaryl phosphonate) does not exhibit a significant preference to either OADH or OGDH. Structural analysis of the phosphonates binding to OADH and OGDH reveals the substitution of a tyrosine residue in OGDH for a serine residue in OADH among structural determinants of the preferential binding of the bulkier ligands to OADH. The consistent kinetic and structural results expose adipoyl phosphonate as a valuable pharmacological tool for specific in vivo inhibition of the DHTKD1-encoded OADH, a new member of mammalian family of 2-oxo acid dehydrogenases, up-regulated in some cancers and associated with diabetes and obesity.
Collapse
Affiliation(s)
- Artem V Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Department of Biokinetics, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Marco Bellinzoni
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Department of Biokinetics, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biochemistry, Sechenov University, Moscow, Russia
| |
Collapse
|
11
|
Phan QT, Liu R, Tan WH, Imangali N, Cheong B, Schartl M, Winkler C. Macrophages Switch to an Osteo-Modulatory Profile Upon RANKL Induction in a Medaka ( Oryzias latipes) Osteoporosis Model. JBMR Plus 2020; 4:e10409. [PMID: 33210062 PMCID: PMC7657398 DOI: 10.1002/jbm4.10409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/16/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
In mammals, osteoclasts differentiate from macrophages in the monocyte lineage. Although many factors driving osteoclast formation are known, the detailed processes underlying precursor recruitment, differentiation, and interaction of macrophages with other cell types involved in bone remodeling are poorly understood. Using live imaging in a transgenic medaka osteoporosis model, where ectopic osteoclasts are induced by RANKL expression, we show that a subset of macrophages is recruited to bone matrix to physically interact with bone-forming osteoblast progenitors. These macrophages subsequently differentiate into cathepsin K- (ctsk-) positive osteoclasts. One day later, other macrophages are recruited to clear dying osteoclasts from resorbed bone by phagocytosis. To better understand the molecular changes underlying these dynamic processes, we performed transcriptome profiling of activated macrophages upon RANKL induction. This revealed an upregulation of several bone-related transcripts. Besides osteoclast markers, we unexpectedly also found expression of osteoblast-promoting signals in activated macrophages, suggesting a possible non-cell autonomous role in osteogenesis. Finally, we show that macrophage differentiation into osteoclasts is dependent on inflammatory signals. Medaka deficient for TNFα or treated with the TNFα-inhibitor pentoxifylline exhibited impaired macrophage recruitment and osteoclast differentiation. These results show the involvement of inflammatory signals and the dynamics of a distinct subset of macrophages during osteoclast formation. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Quang Tien Phan
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Ranran Liu
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Nurgul Imangali
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Benedict Cheong
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Manfred Schartl
- Department of Developmental Biochemistry, BiocenterUniversity of WürzburgWürzburgGermany
- The Xiphophorus Genetic Stock CenterTexas State UniversitySan MarcosTexasUSA
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
12
|
Pleńkowska J, Gabig-Cimińska M, Mozolewski P. Oxidative Stress as an Important Contributor to the Pathogenesis of Psoriasis. Int J Mol Sci 2020; 21:E6206. [PMID: 32867343 PMCID: PMC7503883 DOI: 10.3390/ijms21176206] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/23/2023] Open
Abstract
This review discusses how oxidative stress (OS), an imbalance between oxidants and antioxidants in favor of the oxidants, increased production of reactive oxygen species (ROS)/reactive nitrogen species (RNS), and decreased concentration/activity of antioxidants affect the pathogenesis or cause the enhancement of psoriasis (Ps). Here, we also consider how ROS/RNS-induced stress modulates the activity of transcriptional factors and regulates numerous protein kinase cascades that participate in the regulation of crosstalk between autophagy, apoptosis, and regeneration. Answers to these questions will likely uncover novel strategies for the treatment of Ps. Action in the field will avoid destructive effects of ROS/RNS-mediated OS resulting in cellular dysfunction and cell death. The combination of the fragmentary information on the role of OS can provide evidence to extend the full picture of Ps.
Collapse
Affiliation(s)
- Joanna Pleńkowska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80-822 Gdańsk, Poland
| | - Paweł Mozolewski
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| |
Collapse
|
13
|
Cardenas C, Lovy A, Silva-Pavez E, Urra F, Mizzoni C, Ahumada-Castro U, Bustos G, Jaňa F, Cruz P, Farias P, Mendoza E, Huerta H, Murgas P, Hunter M, Rios M, Cerda O, Georgakoudi I, Zakarian A, Molgó J, Foskett JK. Cancer cells with defective oxidative phosphorylation require endoplasmic reticulum-to-mitochondria Ca 2+ transfer for survival. Sci Signal 2020; 13:13/640/eaay1212. [PMID: 32665411 DOI: 10.1126/scisignal.aay1212] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spontaneous Ca2+ signaling from the InsP3R intracellular Ca2+ release channel to mitochondria is essential for optimal oxidative phosphorylation (OXPHOS) and ATP production. In cells with defective OXPHOS, reductive carboxylation replaces oxidative metabolism to maintain amounts of reducing equivalents and metabolic precursors. To investigate the role of mitochondrial Ca2+ uptake in regulating bioenergetics in these cells, we used OXPHOS-competent and OXPHOS-defective cells. Inhibition of InsP3R activity or mitochondrial Ca2+ uptake increased α-ketoglutarate (αKG) abundance and the NAD+/NADH ratio, indicating that constitutive endoplasmic reticulum (ER)-to-mitochondria Ca2+ transfer promoted optimal αKG dehydrogenase (αKGDH) activity. Reducing mitochondrial Ca2+ inhibited αKGDH activity and increased NAD+, which induced SIRT1-dependent autophagy in both OXPHOS-competent and OXPHOS-defective cells. Whereas autophagic flux in OXPHOS-competent cells promoted cell survival, it was impaired in OXPHOS-defective cells because of inhibition of autophagosome-lysosome fusion. Inhibition of αKGDH and impaired autophagic flux in OXPHOS-defective cells resulted in pronounced cell death in response to interruption of constitutive flux of Ca2+ from ER to mitochondria. These results demonstrate that mitochondria play a fundamental role in maintaining bioenergetic homeostasis of both OXPHOS-competent and OXPHOS-defective cells, with Ca2+ regulation of αKGDH activity playing a pivotal role. Inhibition of ER-to-mitochondria Ca2+ transfer may represent a general therapeutic strategy against cancer cells regardless of their OXPHOS status.
Collapse
Affiliation(s)
- Cesar Cardenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile. .,Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile.,Buck Institute for Research on Aging, Novato, CA 94945, USA.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alenka Lovy
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile.,Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Eduardo Silva-Pavez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Felix Urra
- Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile.,Program of Molecular and Clinical Pharmacology, Institute of Biomedical Science, Universidad de Chile, Santiago 8380453, Chile
| | - Craig Mizzoni
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Ulises Ahumada-Castro
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Galdo Bustos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Fabian Jaňa
- Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile.,Universidad de Aysén, Coyhaique, 5952073, 8380453, Chile
| | - Pablo Cruz
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Paula Farias
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Elizabeth Mendoza
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Hernan Huerta
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Paola Murgas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile
| | - Martin Hunter
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Melany Rios
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH), Santiago, Chile
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jordi Molgó
- Université Paris-Saclay, CEA, Institut des Sciences du Vivant Frédéric Joliot, ERL CNRS n° 9004, Département Médicaments et Technologies pour la Santé, Service d'Ingénierie Moléculaire pour la Santé (SIMoS), bâtiment 152, Point courrier 24, F-91191 Gif sur Yvette, France
| | - J Kevin Foskett
- Departments of Physiology and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Advantages of formate dehydrogenase reaction for efficient NAD + quantification in biological samples. Anal Biochem 2020; 603:113797. [PMID: 32562604 DOI: 10.1016/j.ab.2020.113797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
The medical significance of NAD+-dependent metabolic regulation acquires increasing attention, demanding rapid and clinically feasible quantification of NAD+ in complex biological samples. Here we describe the usage of formate dehydrogenase for a straightforward and highly specific fluorometric assay of NAD+ in tissue extracts, not requiring chromatographic separation of nucleotides. The assay employs the irreversible reaction of formate oxidation coupled to NAD+ reduction, catalyzed by the enzyme which has high affinity and specificity to NAD+, and is stable under a variety of conditions. The assay reliably quantifies NAD+ in the methanol extracts of the rat brain cortex and mitochondria.
Collapse
|
15
|
Activation of Mitochondrial 2-Oxoglutarate Dehydrogenase by Cocarboxylase in Human Lung Adenocarcinoma Cells A549 Is p53/p21-Dependent and Impairs Cellular Redox State, Mimicking the Cisplatin Action. Int J Mol Sci 2020; 21:ijms21113759. [PMID: 32466567 PMCID: PMC7312097 DOI: 10.3390/ijms21113759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022] Open
Abstract
Genetic up-regulation of mitochondrial 2-oxoglutarate dehydrogenase is known to increase reactive oxygen species, being detrimental for cancer cells. Thiamine diphosphate (ThDP, cocarboxylase) is an essential activator of the enzyme and inhibits p53–DNA binding in cancer cells. We hypothesize that the pleiotropic regulator ThDP may be of importance for anticancer therapies. The hypothesis is tested in the present work on lung adenocarcinoma cells A549 possessing the p53–p21 pathway as fully functional or perturbed by p21 knockdown. Molecular mechanisms of ThDP action on cellular viability and their interplay with the cisplatin and p53–p21 pathways are characterized. Despite the well-known antioxidant properties of thiamine, A549 cells exhibit decreases in their reducing power and glutathione level after incubation with 5 mM ThDP, not observed in non-cancer epithelial cells Vero. Moreover, thiamine deficiency elevates glutathione in A549 cells. Viability of the thiamine deficient A549 cells is increased at a low (0.05 mM) ThDP. However, the increase is attenuated by 5 mM ThDP, p21 knockdown, specific inhibitor of the 2-oxoglutarate dehydrogenase complex (OGDHC), or cisplatin. Cellular levels of the catalytically competent ThDP·OGDHC holoenzyme are dysregulated by p21 knockdown and correlate negatively with the A549 viability. The inverse relationship between cellular glutathione and holo-OGDHC is corroborated by their comparison in the A549 and Vero cells. The similarity, non-additivity, and p21 dependence of the dual actions of ThDP and cisplatin on A549 cells manifest a common OGDHC-mediated mechanism of the viability decrease. High ThDP saturation of OGDHC compromises the redox state of A549 cells under the control of p53–p21 axes.
Collapse
|
16
|
Artiukhov AV, Grabarska A, Gumbarewicz E, Aleshin VA, Kähne T, Obata T, Kazantsev AV, Lukashev NV, Stepulak A, Fernie AR, Bunik VI. Synthetic analogues of 2-oxo acids discriminate metabolic contribution of the 2-oxoglutarate and 2-oxoadipate dehydrogenases in mammalian cells and tissues. Sci Rep 2020; 10:1886. [PMID: 32024885 PMCID: PMC7002488 DOI: 10.1038/s41598-020-58701-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
The biological significance of the DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) remains obscure due to its catalytic redundancy with the ubiquitous OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH). In this work, metabolic contributions of OADH and OGDH are discriminated by exposure of cells/tissues with different DHTKD1 expression to the synthesized phosphonate analogues of homologous 2-oxodicarboxylates. The saccharopine pathway intermediates and phosphorylated sugars are abundant when cellular expressions of DHTKD1 and OGDH are comparable, while nicotinate and non-phosphorylated sugars are when DHTKD1 expression is order(s) of magnitude lower than that of OGDH. Using succinyl, glutaryl and adipoyl phosphonates on the enzyme preparations from tissues with varied DHTKD1 expression reveals the contributions of OADH and OGDH to oxidation of 2-oxoadipate and 2-oxoglutarate in vitro. In the phosphonates-treated cells with the high and low DHTKD1 expression, adipate or glutarate, correspondingly, are the most affected metabolites. The marker of fatty acid β-oxidation, adipate, is mostly decreased by the shorter, OGDH-preferring, phosphonate, in agreement with the known OGDH dependence of β-oxidation. The longest, OADH-preferring, phosphonate mostly affects the glutarate level. Coupled decreases in sugars and nicotinate upon the OADH inhibition link the perturbation in glucose homeostasis, known in OADH mutants, to the nicotinate-dependent NAD metabolism.
Collapse
Affiliation(s)
- Artem V Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aneta Grabarska
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Vasily A Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Biochemistry, George W. Beadle Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
17
|
Sánchez-Álvarez M, Strippoli R, Donadelli M, Bazhin AV, Cordani M. Sestrins as a Therapeutic Bridge between ROS and Autophagy in Cancer. Cancers (Basel) 2019; 11:cancers11101415. [PMID: 31546746 PMCID: PMC6827145 DOI: 10.3390/cancers11101415] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
The regulation of Reactive Oxygen Species (ROS) levels and the contribution therein from networks regulating cell metabolism, such as autophagy and the mTOR-dependent nutrient-sensing pathway, constitute major targets for selective therapeutic intervention against several types of tumors, due to their extensive rewiring in cancer cells as compared to healthy cells. Here, we discuss the sestrin family of proteins—homeostatic transducers of oxidative stress, and drivers of antioxidant and metabolic adaptation—as emerging targets for pharmacological intervention. These adaptive regulators lie at the intersection of those two priority nodes of interest in antitumor intervention—ROS control and the regulation of cell metabolism and autophagy—therefore, they hold the potential not only for the development of completely novel compounds, but also for leveraging on synergistic strategies with current options for tumor therapy and classification/stadiation to achieve personalized medicine.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid 28029, Spain.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy.
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome 00161, Italy.
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona 37134, Italy.
| | - Alexandr V Bazhin
- Department of General, Visceral and Transplantation Surgery, Ludwig-Maximilians University, Munich 81377, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich 80366, Germany.
| | - Marco Cordani
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain..
| |
Collapse
|
18
|
Lu X, Wu N, Yang W, Sun J, Yan K, Wu J. OGDH promotes the progression of gastric cancer by regulating mitochondrial bioenergetics and Wnt/β-catenin signal pathway. Onco Targets Ther 2019; 12:7489-7500. [PMID: 31686854 PMCID: PMC6752206 DOI: 10.2147/ott.s208848] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background/aims 2-oxoglutarate dehydrogenase (OGDH) is the first rate-limiting E1 subunit of OGDH complex (OGDHC), which plays as a regulatory point in the cross-road of TCA cycle and glutamine metabolism. Until now, the role of OGDH in carcinogenesis has been unclear. Methods In the present study, we determined the expression of OGDH in human gastric cancer (GC) tissues and cell lines by RT-qPCR, Western blotting and immunohistochemical staining respectively. The biological impacts of OGDH on cell growth and migration were explored through modulation OGDH expression in GC cells. Furthermore, mitochondrial functions and Wnt/β-catenin signal were analyzed to elucidate the mechanism by which OGDH was involved in GC progression. Results The results showed that the levels of OGDH mRNA and protein were significantly higher in GC tissues, which was positively correlated with clinicalpathological parameters of GC patients. OGDH inhibitor SP significantly suppressed GC cell viability. Modulation of OGDH had distinct effects on cell proliferation, cell cycle and cell migration in the GC cell lines AGS and BGC823. Overexpression of OGDH resulted in the downregulation of the EMT molecular markers E-cadherin and ZO-1, the upregulation of N-cadherin and claudin-1. OGDH deficiency had the opposite outcomes in GC cells. Meantime, OGDH knockdown cells showed decreased mitochondrial membrane potential, oxygen consumption rate, intracellular ATP product, and increased ROS level and NADP+/NADPH ratio. Consistently, overexpression of OGDH enhanced the mitochondrial function in GC cells. Furthermore, OGDH knockdown reduced the expressions of β-catenin, slug and TCF8/ZEB1, and the downstream targets cyclin D1 and MMP9 in GC cells. OGDH overexpression facilitated the activation of Wnt/β-catenin signal pathway. Additionally, overexpression of OGDH promoted tumorigenesis of GC cells in nude mice. Conclusion Taken together, these results indicate that OGDH serves as a positive regulator of GC progression through enhancement of mitochondrial function and activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xin Lu
- Biomedical-Information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Nan Wu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Wanli Yang
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Jia Sun
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Kemin Yan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Jing Wu
- Biomedical-Information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| |
Collapse
|
19
|
Ikeda K, Horie-Inoue K, Suzuki T, Hobo R, Nakasato N, Takeda S, Inoue S. Mitochondrial supercomplex assembly promotes breast and endometrial tumorigenesis by metabolic alterations and enhanced hypoxia tolerance. Nat Commun 2019; 10:4108. [PMID: 31511525 PMCID: PMC6739376 DOI: 10.1038/s41467-019-12124-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/12/2019] [Indexed: 01/08/2023] Open
Abstract
Recent advance in cancer research sheds light on the contribution of mitochondrial respiration in tumorigenesis, as they efficiently produce ATP and oncogenic metabolites that will facilitate cancer cell growth. Here we show that a stabilizing factor for mitochondrial supercomplex assembly, COX7RP/COX7A2L/SCAF1, is abundantly expressed in clinical breast and endometrial cancers. Moreover, COX7RP overexpression associates with prognosis of breast cancer patients. We demonstrate that COX7RP overexpression in breast and endometrial cancer cells promotes in vitro and in vivo growth, stabilizes mitochondrial supercomplex assembly even in hypoxic states, and increases hypoxia tolerance. Metabolomic analyses reveal that COX7RP overexpression modulates the metabolic profile of cancer cells, particularly the steady-state levels of tricarboxylic acid cycle intermediates. Notably, silencing of each subunit of the 2-oxoglutarate dehydrogenase complex decreases the COX7RP-stimulated cancer cell growth. Our results indicate that COX7RP is a growth-regulatory factor for breast and endometrial cancer cells by regulating metabolic pathways and energy production.
Collapse
Affiliation(s)
- Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Takashi Suzuki
- Departments of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Rutsuko Hobo
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan.,Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, 1981, Tsujido, Kamoda, Kawagoe-shi, Saitama, 350-8550, Japan
| | - Norie Nakasato
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan.,Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, 1981, Tsujido, Kamoda, Kawagoe-shi, Saitama, 350-8550, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, 1981, Tsujido, Kamoda, Kawagoe-shi, Saitama, 350-8550, Japan.,Department of Obstetrics and Gynecology, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan. .,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
20
|
Lu X, Yang P, Zhao X, Jiang M, Hu S, Ouyang Y, Zeng L, Wu J. OGDH mediates the inhibition of SIRT5 on cell proliferation and migration of gastric cancer. Exp Cell Res 2019; 382:111483. [PMID: 31247190 DOI: 10.1016/j.yexcr.2019.06.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 12/28/2022]
Abstract
SIRT5 has a wide range of functions in different cellular processes such as glycolysis, TCA cycle and antioxidant defense, which mediates lysine desuccinylation, deglutarylation and demalonylation. Recent evidences have implicated that SIRT5 is a potential suppressor of gastric cancer (GC). However, the underlying mechanism of SIRT5 in gastric cancer is still unclear. Here, we show that SIRT5 expression is significantly decreased in human GC tissues. Functional analysis demonstrates that SIRT5 inhibits cell growth in vitro and in vivo, arrests the cell cycle in G1/S transition, and suppresses migration and invasion of GC cells via regulating epithelial-to-mesenchymal transition. Mechanistically, we demonstrate that there is the direct interaction between SIRT5 and 2-oxoglutarate dehydrogenase (OGDH), and desuccinylation of OGDH by SIRT5 inhibits the activity of OGDH complex. Further studies of the relationship between SIRT5 and OGDH show OGDH inhibition by succinyl phosphonate (SP) or siRNA suppresses the increase in cell growth and migration induced by SIRT5 deletion. Moreover, SIRT5 decreases mitochondrial membrane potential (ΔΨm), ATP products and increases the ROS levels and NADP/NADPH ratio in GC cells through the inhibition of OGDH complex activity. Therefore, SIRT5 suppresses GC cell growth and migration through desuccinylating OGDH and inhibiting OGDH complex activity to disturb mitochondrial functions and redox status.
Collapse
Affiliation(s)
- Xin Lu
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Pengfei Yang
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Xinrui Zhao
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Mingzu Jiang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Sijun Hu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yanan Ouyang
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Li Zeng
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Jing Wu
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
21
|
Bunik VI. Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance. Antioxid Redox Signal 2019; 30:1911-1947. [PMID: 30187773 DOI: 10.1089/ars.2017.7311] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE This article develops a holistic view on production of reactive oxygen species (ROS) by 2-oxo acid dehydrogenase complexes. Recent Advances: Catalytic and structural properties of the complexes and their components evolved to minimize damaging effects of side reactions, including ROS generation, simultaneously exploiting the reactions for homeostatic signaling. CRITICAL ISSUES Side reactions of the complexes, characterized in vitro, are analyzed in view of protein interactions and conditions in vivo. Quantitative data support prevalence of the forward 2-oxo acid oxidation over the backward NADH oxidation in feeding physiologically significant ROS production by the complexes. Special focus on interactions between the active sites within 2-oxo acid dehydrogenase complexes highlights the central relevance of the complex-bound thiyl radicals in regulation of and signaling by complex-generated ROS. The thiyl radicals arise when dihydrolipoyl residues of the complexes regenerate FADH2 from the flavin semiquinone coproduced with superoxide anion radical in 1e- oxidation of FADH2 by molecular oxygen. FUTURE DIRECTIONS Interaction of 2-oxo acid dehydrogenase complexes with thioredoxins (TRXs), peroxiredoxins, and glutaredoxins mediates scavenging of the thiyl radicals and ROS generated by the complexes, underlying signaling of disproportional availability of 2-oxo acids, CoA, and NAD+ in key metabolic branch points through thiol/disulfide exchange and medically important hypoxia-inducible factor, mammalian target of rapamycin (mTOR), poly (ADP-ribose) polymerase, and sirtuins. High reactivity of the coproduced ROS and thiyl radicals to iron/sulfur clusters and nitric oxide, peroxynitrite reductase activity of peroxiredoxins and transnitrosylating function of thioredoxin, implicate the side reactions of 2-oxo acid dehydrogenase complexes in nitric oxide-dependent signaling and damage.
Collapse
Affiliation(s)
- Victoria I Bunik
- 1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
22
|
Cordani M, Sánchez-Álvarez M, Strippoli R, Bazhin AV, Donadelli M. Sestrins at the Interface of ROS Control and Autophagy Regulation in Health and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1283075. [PMID: 31205582 PMCID: PMC6530209 DOI: 10.1155/2019/1283075] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/14/2019] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS) and autophagy are two highly complex and interrelated components of cell physiopathology, but our understanding of their integration and their contribution to cell homeostasis and disease is still limited. Sestrins (SESNs) belong to a family of highly conserved stress-inducible proteins that orchestrate antioxidant and autophagy-regulating functions protecting cells from various noxious stimuli, including DNA damage, oxidative stress, hypoxia, and metabolic stress. They are also relevant modulators of metabolism as positive regulators of the key energy sensor AMP-dependent protein kinase (AMPK) and inhibitors of mammalian target of rapamycin complex 1 (mTORC1). Since perturbations in these pathways are central to multiple disorders, SESNs might constitute potential novel therapeutic targets of broad interest. In this review, we discuss the current understanding of regulatory and effector networks of SESNs, highlighting their significance as potential biomarkers and therapeutic targets for different diseases, such as aging-related diseases, metabolic disorders, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Marco Cordani
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad de Nanobiotecnología”, Madrid 28049, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Raffaele Strippoli
- Department of Cellular Biotechnologies and Hematology, Section of Molecular Genetics, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Rome, Italy
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplantation Surgery, Ludwig Maximilian University, Munich, Germany
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
23
|
Saberianpour S, Karimi A, Nemati S, Amini H, Alizadeh Sardroud H, Khaksar M, Mamipour M, Nouri M, Rahbarghazi R. Encapsulation of rat cardiomyoblasts with alginate-gelatin microspheres preserves stemness feature in vitro. Biomed Pharmacother 2018; 109:402-407. [PMID: 30399575 DOI: 10.1016/j.biopha.2018.10.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION The emergence of numerous tissue engineering and regenerative medicine techniques cell encapsulation paves a way to heal and restore the function of various injured tissues mainly cardiovascular system. Here, we aimed to investigate the role of alginate-gelatin encapsulation on the dynamic of rat cardiomyoblasts in vitro. MATERIALS AND METHODS Rat cardiomyoblasts cell line H9C2 were enclosed by using alginate-gelatin microspheres and incubated for 7 days. MTT method was used to examine cell viability. The level of genes associated with cardiomyoblasts maturation MYL7, NPPA, NKX2-5, and GATA4 real-time PCR. ELISA was used to measure the protein levels of Bcl-2 and Bax factor post-encapsulation. The level of SOD, GPx, and TAC was detected by biochemical analyses. Western blotting was performed to measure the content of AMP-activated protein kinase. RESULTS We found that encapsulation was able to increase the viability of rat cardiomyocytes after 7 days. The decreased level of Bcl-2 (p < 0.001) coincided with non-significant differences in the level of Bax (p > 0.05). The transcription level of all genes MYL7, NPPA, NKX2-5, and GATA4 were found to down-regulate compared to the control non-treated cells (p < 0.05). No significant differences were found regarding the level of SOD, GPx, and TAC compared to the control (p>0.05). According to western blotting, revealed a reduced level of AMPK following 7-day incubation of rat cardiomyoblasts (p < 0.05). CONCLUSION Data confirmed that the encapsulation of rat cardiomyoblasts with alginate-gelatin microspheres maintained the cells multipotentiality.
Collapse
Affiliation(s)
- Shirin Saberianpour
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorour Nemati
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Thoracic Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Alizadeh Sardroud
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran; Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Majid Khaksar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Mamipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Yue J, Du C, Ji J, Xie T, Chen W, Chang E, Chen L, Jiang Z, Shi S. Inhibition of α-ketoglutarate dehydrogenase activity affects adventitious root growth in poplar via changes in GABA shunt. PLANTA 2018; 248:963-979. [PMID: 29982922 DOI: 10.1007/s00425-018-2929-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/30/2018] [Indexed: 05/24/2023]
Abstract
Blocking α-ketoglutarate dehydrogenase results in up-regulation of γ-aminobutyric acid (GABA) shunt activity, and inhibits the growth of poplar adventitious roots (ARs), indicating that AR growth is closely associated with GABA shunt. γ-Aminobutyric acid (GABA) shunt starts from α-ketoglutarate in the tricarboxylic acid cycle, which is thought to represent the cross road between carbon and nitrogen metabolism. Previous studies (Araújo et al. 2012b, Plant Cell 24: 2328-2351) have shown that blocking α-ketoglutarate dehydrogenase (α-KGDH) affects the GABA shunt activity, and inhibits growth. However, its effects on the growth of adventitious roots (ARs) are unclear. In this study, the growth of ARs in tissue-cultured 84K poplar (Populus alba × Populus glandulosa cv. '84K') was significantly inhibited when succinyl phosphate (SP), a specific inhibitor of α-KGDH, was supplied. The inhibition of ARs was associated with significant changes in the levels of soluble sugars, organic acids, and amino acids, and was coupled with the up-regulation of the GABA shunt activity at the transcriptional and translational levels. Exogenous GABA also inhibited AR growth following the increase of the endogenous GABA level. Transcriptomic analyses further showed that genes related to cell wall carbon metabolism and phytohormone (indoleacetic acid, ABA, and ethylene) signaling were affected by the changes of GABA shunt activity, resulting from the α-KGDH inhibition. Thus, our study indicates that the inhibition of poplar AR growth by blocking α-KGDH is closely associated with GABA shunt, which would benefit a better understanding of GABA's roles in plant development and stress response.
Collapse
Affiliation(s)
- Jianyun Yue
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Jing Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Tiantian Xie
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Wei Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Lanzhen Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Risk Assessment Laboratory for Bee Products, Quality and Safety of Ministry of Agriculture, Beijing, China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China.
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China.
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China.
| |
Collapse
|
25
|
Positive correlation between rat brain glutamate concentrations and mitochondrial 2-oxoglutarate dehydrogenase activity. Anal Biochem 2018; 552:100-109. [DOI: 10.1016/j.ab.2018.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 01/08/2023]
|
26
|
Thiamine and selected thiamine antivitamins - biological activity and methods of synthesis. Biosci Rep 2018; 38:BSR20171148. [PMID: 29208764 PMCID: PMC6435462 DOI: 10.1042/bsr20171148] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
Thiamine plays a very important coenzymatic and non-coenzymatic role in the regulation of basic metabolism. Thiamine diphosphate is a coenzyme of many enzymes, most of which occur in prokaryotes. Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes as well as transketolase are the examples of thiamine-dependent enzymes present in eukaryotes, including human. Therefore, thiamine is considered as drug or diet supplement which can support the treatment of many pathologies including neurodegenerative and vascular system diseases. On the other hand, thiamine antivitamins, which can interact with thiamine-dependent enzymes impeding their native functions, thiamine transport into the cells or a thiamine diphosphate synthesis, are good propose to drug design. The development of organic chemistry in the last century allowed the synthesis of various thiamine antimetabolites such as amprolium, pyrithiamine, oxythiamine, or 3-deazathiamine. Results of biochemical and theoretical chemistry research show that affinity to thiamine diphosphate-dependent enzymes of these synthetic molecules exceeds the affinity of native coenzyme. Therefore, some of them have already been used in the treatment of coccidiosis (amprolium), other are extensively studied as cytostatics in the treatment of cancer or fungal infections (oxythiamine and pyrithiamine). This review summarizes the current knowledge concerning the synthesis and mechanisms of action of selected thiamine antivitamins and indicates the potential of their practical use.
Collapse
|
27
|
Bunik VI, Brand MD. Generation of superoxide and hydrogen peroxide by side reactions of mitochondrial 2-oxoacid dehydrogenase complexes in isolation and in cells. Biol Chem 2018; 399:407-420. [DOI: 10.1515/hsz-2017-0284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/03/2018] [Indexed: 01/06/2023]
Abstract
Abstract
Mitochondrial 2-oxoacid dehydrogenase complexes oxidize 2-oxoglutarate, pyruvate, branched-chain 2-oxoacids and 2-oxoadipate to the corresponding acyl-CoAs and reduce NAD+ to NADH. The isolated enzyme complexes generate superoxide anion radical or hydrogen peroxide in defined reactions by leaking electrons to oxygen. Studies using isolated mitochondria in media mimicking cytosol suggest that the 2-oxoacid dehydrogenase complexes contribute little to the production of superoxide or hydrogen peroxide relative to other mitochondrial sites at physiological steady states. However, the contributions may increase under pathological conditions, in accordance with the high maximum capacities of superoxide or hydrogen peroxide-generating reactions of the complexes, established in isolated mitochondria. We assess available data on the use of modulations of enzyme activity to infer superoxide or hydrogen peroxide production from particular 2-oxoacid dehydrogenase complexes in cells, and limitations of such methods to discriminate specific superoxide or hydrogen peroxide sources in vivo.
Collapse
Affiliation(s)
- Victoria I. Bunik
- A.N. Belozersky Institute of Physicochemical Biology , Lomonosov Moscow State University , 119992 Moscow , Russia
| | - Martin D. Brand
- Buck Institute for Research on Aging , 8001 Redwood Blvd. , Novato, CA 94945 , USA
| |
Collapse
|
28
|
Allen EL, Ulanet DB, Pirman D, Mahoney CE, Coco J, Si Y, Chen Y, Huang L, Ren J, Choe S, Clasquin MF, Artin E, Fan ZP, Cianchetta G, Murtie J, Dorsch M, Jin S, Smolen GA. Differential Aspartate Usage Identifies a Subset of Cancer Cells Particularly Dependent on OGDH. Cell Rep 2017; 17:876-890. [PMID: 27732861 DOI: 10.1016/j.celrep.2016.09.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 08/18/2016] [Accepted: 09/16/2016] [Indexed: 12/16/2022] Open
Abstract
Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA) cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization, via the malate-aspartate shuttle, as a predictor of whether OGDH is required for proliferation in 3D culture assays and for the growth of xenograft tumors. These findings highlight an anaplerotic role of aspartate and, more broadly, suggest that differential nutrient utilization patterns can identify subsets of cancers with distinct metabolic dependencies for potential pharmacological intervention.
Collapse
Affiliation(s)
- Eric L Allen
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA 02139, USA
| | | | - David Pirman
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA 02139, USA
| | | | - John Coco
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA 02139, USA
| | - Yaguang Si
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA 02139, USA
| | - Ying Chen
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203 Shanghai, China
| | - Lingling Huang
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203 Shanghai, China
| | - Jinmin Ren
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203 Shanghai, China
| | - Sung Choe
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA 02139, USA
| | | | - Erin Artin
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA 02139, USA
| | - Zi Peng Fan
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA 02139, USA
| | | | - Joshua Murtie
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA 02139, USA
| | - Marion Dorsch
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA 02139, USA
| | - Shengfang Jin
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA 02139, USA
| | | |
Collapse
|
29
|
Tsepkova PM, Artiukhov AV, Boyko AI, Aleshin VA, Mkrtchyan GV, Zvyagintseva MA, Ryabov SI, Ksenofontov AL, Baratova LA, Graf AV, Bunik VI. Thiamine Induces Long-Term Changes in Amino Acid Profiles and Activities of 2-Oxoglutarate and 2-Oxoadipate Dehydrogenases in Rat Brain. BIOCHEMISTRY (MOSCOW) 2017; 82:723-736. [PMID: 28601082 DOI: 10.1134/s0006297917060098] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Molecular mechanisms of long-term changes in brain metabolism after thiamine administration (single i.p. injection, 400 mg/kg) were investigated. Protocols for discrimination of the activities of the thiamine diphosphate (ThDP)-dependent 2-oxoglutarate and 2-oxoadipate dehydrogenases were developed to characterize specific regulation of the multienzyme complexes of the 2-oxoglutarate (OGDHC) and 2-oxoadipate (OADHC) dehydrogenases by thiamine. The thiamine-induced changes depended on the brain-region-specific expression of the ThDP-dependent dehydrogenases. In the cerebral cortex, the original levels of OGDHC and OADHC were relatively high and not increased by thiamine, whereas in the cerebellum thiamine upregulated the OGDHC and OADHC activities, whose original levels were relatively low. The effects of thiamine on each of the complexes were different and associated with metabolic rearrangements, which included (i) the brain-region-specific alterations of glutamine synthase and/or glutamate dehydrogenase and NADP+-dependent malic enzyme, (ii) the brain-region-specific changes of the amino acid profiles, and (iii) decreased levels of a number of amino acids in blood plasma. Along with the assays of enzymatic activities and average levels of amino acids in the blood and brain, the thiamine-induced metabolic rearrangements were assessed by analysis of correlations between the levels of amino acids. The set and parameters of the correlations were tissue-specific, and their responses to the thiamine treatment provided additional information on metabolic changes, compared to that gained from the average levels of amino acids. Taken together, the data suggest that thiamine decreases catabolism of amino acids by means of a complex and long-term regulation of metabolic flux through the tricarboxylic acid cycle, which includes coupled changes in activities of the ThDP-dependent dehydrogenases of 2-oxoglutarate and 2-oxoadipate and adjacent enzymes.
Collapse
Affiliation(s)
- P M Tsepkova
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Goode G, Gunda V, Chaika NV, Purohit V, Yu F, Singh PK. MUC1 facilitates metabolomic reprogramming in triple-negative breast cancer. PLoS One 2017; 12:e0176820. [PMID: 28464016 PMCID: PMC5413086 DOI: 10.1371/journal.pone.0176820] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
Background Mucin1 (MUC1), a glycoprotein associated with chemoresistance and an aggressive cancer phenotype, is aberrantly overexpressed in triple-negative breast cancer (TNBC). Recent studies suggest that MUC1 plays a role in modulating cancer cell metabolism and thereby supports tumor growth. Herein, we examined the role of MUC1 in metabolic reprogramming in TNBC. Methods MUC1 was stably overexpressed in MDA-MB-231 TNBC cells and stably knocked down in MDA-MB-468 cells. We performed liquid chromatography-coupled tandem mass spectrometry-assisted metabolomic analyses and physiological assays, which indicated significant alterations in the metabolism of TNBC cells due to MUC1 expression. Results Differential analyses identified significant differences in metabolic pathways implicated in cancer cell growth. In particular, MUC1 expression altered glutamine dependency of the cells, which can be attributed in part to the changes in the expression of genes that regulate glutamine metabolism, as observed by real-time PCR analysis. Furthermore, MUC1 expression altered the sensitivity of cells to transaminase inhibitor aminooxyacetate (AOA), potentially by altering glutamine metabolism. Conclusions Collectively, these results suggest that MUC1 serves as a metabolic regulator in TNBC, facilitating the metabolic reprogramming of glutamine utilization that influences TNBC tumor growth.
Collapse
Affiliation(s)
- Gennifer Goode
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Nina V. Chaika
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vinee Purohit
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Oncogenic PIK3CA mutations are found in a significant fraction of human cancers, but therapeutic inhibition of PI3K has only shown limited success in clinical trials. To understand how mutant PIK3CA contributes to cancer cell proliferation, we used genome scale loss-of-function screening in a large number of genomically annotated cancer cell lines. As expected, we found that PIK3CA mutant cancer cells require PIK3CA but also require the expression of the TCA cycle enzyme 2-oxoglutarate dehydrogenase (OGDH). To understand the relationship between oncogenic PIK3CA and OGDH function, we interrogated metabolic requirements and found an increased reliance on glucose metabolism to sustain PIK3CA mutant cell proliferation. Functional metabolic studies revealed that OGDH suppression increased levels of the metabolite 2-oxoglutarate (2OG). We found that this increase in 2OG levels, either by OGDH suppression or exogenous 2OG treatment, resulted in aspartate depletion that was specifically manifested as auxotrophy within PIK3CA mutant cells. Reduced levels of aspartate deregulated the malate-aspartate shuttle, which is important for cytoplasmic NAD+ regeneration that sustains rapid glucose breakdown through glycolysis. Consequently, because PIK3CA mutant cells exhibit a profound reliance on glucose metabolism, malate-aspartate shuttle deregulation leads to a specific proliferative block due to the inability to maintain NAD+/NADH homeostasis. Together these observations define a precise metabolic vulnerability imposed by a recurrently mutated oncogene.
Collapse
|
32
|
Snezhkina AV, Krasnov GS, Zaretsky AR, Zhavoronkov A, Nyushko KM, Moskalev AA, Karpova IY, Afremova AI, Lipatova AV, Kochetkov DV, Fedorova MS, Volchenko NN, Sadritdinova AF, Melnikova NV, Sidorov DV, Popov AY, Kalinin DV, Kaprin AD, Alekseev BY, Dmitriev AA, Kudryavtseva AV. Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer. BMC Genomics 2016; 17:1011. [PMID: 28105922 PMCID: PMC5249009 DOI: 10.1186/s12864-016-3351-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. CRC molecular pathogenesis is heterogeneous and may be followed by mutations in oncogenes and tumor suppressor genes, chromosomal and microsatellite instability, alternative splicing alterations, hypermethylation of CpG islands, oxidative stress, impairment of different signaling pathways and energy metabolism. In the present work, we have studied the alterations of alternative splicing patterns of genes related to energy metabolism in CRC. RESULTS Using CrossHub software, we analyzed The Cancer Genome Atlas (TCGA) RNA-Seq datasets derived from colon tumor and matched normal tissues. The expression of 1014 alternative mRNA isoforms involved in cell energy metabolism was examined. We found 7 genes with differentially expressed alternative transcripts whereas overall expression of these genes was not significantly altered in CRC. A set of 8 differentially expressed transcripts of interest has been validated by qPCR. These eight isoforms encoded by OGDH, COL6A3, ICAM1, PHPT1, PPP2R5D, SLC29A1, and TRIB3 genes were up-regulated in colorectal tumors, and this is in concordance with the bioinformatics data. The alternative transcript NM_057167 of COL6A3 was also strongly up-regulated in breast, lung, prostate, and kidney tumors. Alternative transcript of SLC29A1 (NM_001078177) was up-regulated only in CRC samples, but not in the other tested tumor types. CONCLUSIONS We identified tumor-specific expression of alternative spliced transcripts of seven genes involved in energy metabolism in CRC. Our results bring new knowledge on alternative splicing in colorectal cancer and suggest a set of mRNA isoforms that could be used for cancer diagnosis and development of treatment methods.
Collapse
Affiliation(s)
| | - George Sergeevich Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Alex Zhavoronkov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University Eastern Campus, Baltimore, Maryland, USA
| | | | - Alexey Alexandrovich Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | | | | | | | | | - Asiya Fayazovna Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | | | | | | | - Andrey Dmitrievich Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Yakovlevich Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Anna Viktorovna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
33
|
Artiukhov AV, Graf AV, Bunik VI. Directed regulation of multienzyme complexes of 2-oxo acid dehydrogenases using phosphonate and phosphinate analogs of 2-oxo acids. BIOCHEMISTRY (MOSCOW) 2016; 81:1498-1521. [DOI: 10.1134/s0006297916120129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications. BIOLOGY 2016; 5:biology5040053. [PMID: 27983623 PMCID: PMC5192433 DOI: 10.3390/biology5040053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/26/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022]
Abstract
Glutamate dehydrogenase (GDH) of animal cells is usually considered to be a mitochondrial enzyme. However, this enzyme has recently been reported to be also present in nucleus, endoplasmic reticulum and lysosomes. These extramitochondrial localizations are associated with moonlighting functions of GDH, which include acting as a serine protease or an ATP-dependent tubulin-binding protein. Here, we review the published data on kinetics and localization of multiple forms of animal GDH taking into account the splice variants, post-translational modifications and GDH isoenzymes, found in humans and apes. The kinetic properties of human GLUD1 and GLUD2 isoenzymes are shown to be similar to those published for GDH1 and GDH2 from bovine brain. Increased functional diversity and specific regulation of GDH isoforms due to alternative splicing and post-translational modifications are also considered. In particular, these structural differences may affect the well-known regulation of GDH by nucleotides which is related to recent identification of thiamine derivatives as novel GDH modulators. The thiamine-dependent regulation of GDH is in good agreement with the fact that the non-coenzyme forms of thiamine, i.e., thiamine triphosphate and its adenylated form are generated in response to amino acid and carbon starvation.
Collapse
|
35
|
Cellular thiamine status is coupled to function of mitochondrial 2-oxoglutarate dehydrogenase. Neurochem Int 2016; 101:66-75. [PMID: 27773789 DOI: 10.1016/j.neuint.2016.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
Decreased thiamine and reduced activity of thiamine diphosphate (ThDP)-dependent 2-oxoglutarate dehydrogenase (OGDH) cause neurodegeneration. We hypothesized on concerted cell-specific regulation of the thiamine metabolism and ThDP-dependent reactions. We identified a smaller thiamine pool, a lower expression of the mitochondrial ThDP transporter, and a higher expression of OGDH in rat astrocytes versus neuroblastoma N2A. According to the data, the astrocytic OGDH may be up-regulated by an increase in intracellular ThDP, while the neuroblastomal OGDH functions at full ThDP saturation. Indeed, in rat astrocytes and brain cortex, OGDH inhibition by succinyl phosphonate (SP) enlarged the pool of thiamine compounds. Increased ThDP level in response to the OGDH inhibition presumably up-regulated the enzyme to compensate for a decrease in reducing power which occurred in SP-treated astrocytes. Under the same SP treatment of N2A cells, their thiamine pool and reducing power were unchanged, although SP action was evident from accumulation of glutamate. The presented data indicate that functional interplay between OGDH, other proteins of the tricarbocylic acid cycle and proteins of thiamine metabolism is an important determinant of physiology-specific networks and their homeostatic mechanisms.
Collapse
|