1
|
Vandecandelaere G, Ramapriyan R, Gaffey M, Richardson LG, Steuart SJ, Tazhibi M, Kalaw A, Grewal EP, Sun J, Curry WT, Choi BD. Pre-Clinical Models for CAR T-Cell Therapy for Glioma. Cells 2024; 13:1480. [PMID: 39273050 PMCID: PMC11394304 DOI: 10.3390/cells13171480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Immunotherapy represents a transformative shift in cancer treatment. Among myriad immune-based approaches, chimeric antigen receptor (CAR) T-cell therapy has shown promising results in treating hematological malignancies. Despite aggressive treatment options, the prognosis for patients with malignant brain tumors remains poor. Research leveraging CAR T-cell therapy for brain tumors has surged in recent years. Pre-clinical models are crucial in evaluating the safety and efficacy of these therapies before they advance to clinical trials. However, current models recapitulate the human tumor environment to varying degrees. Novel in vitro and in vivo techniques offer the opportunity to validate CAR T-cell therapies but also have limitations. By evaluating the strengths and weaknesses of various pre-clinical glioma models, this review aims to provide a roadmap for the development and pre-clinical testing of CAR T-cell therapies for brain tumors.
Collapse
Affiliation(s)
- Gust Vandecandelaere
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
- Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Rishab Ramapriyan
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Matthew Gaffey
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Leland Geoffrey Richardson
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Samuel Jeffrey Steuart
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Masih Tazhibi
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Adrian Kalaw
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Eric P. Grewal
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Jing Sun
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - William T. Curry
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Bryan D. Choi
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| |
Collapse
|
2
|
Hintzen G, Dulat HJ, Rajkovic E. Engaging innate immunity for targeting the epidermal growth factor receptor: Therapeutic options leveraging innate immunity versus adaptive immunity versus inhibition of signaling. Front Oncol 2022; 12:892212. [PMID: 36185288 PMCID: PMC9518002 DOI: 10.3389/fonc.2022.892212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a key player in the normal tissue physiology and the pathology of cancer. Therapeutic approaches have now been developed to target oncogenic genetic aberrations of EGFR, found in a subset of tumors, and to take advantage of overexpression of EGFR in tumors. The development of small-molecule inhibitors and anti-EGFR antibodies targeting EGFR activation have resulted in effective but limited treatment options for patients with mutated or wild-type EGFR-expressing cancers, while therapeutic approaches that deploy effectors of the adaptive or innate immune system are still undergoing development. This review discusses EGFR-targeting therapies acting through distinct molecular mechanisms to destroy EGFR-expressing cancer cells. The focus is on the successes and limitations of therapies targeting the activation of EGFR versus those that exploit the cytotoxic T cells and innate immune cells to target EGFR-expressing cancer cells. Moreover, we discuss alternative approaches that may have the potential to overcome limitations of current therapies; in particular the innate cell engagers are discussed. Furthermore, this review highlights the potential to combine innate cell engagers with immunotherapies, to maximize their effectiveness, or with unspecific cell therapies, to convert them into tumor-specific agents.
Collapse
|
3
|
Matias MI, Yong CS, Foroushani A, Goldsmith C, Mongellaz C, Sezgin E, Levental KR, Talebi A, Perrault J, Rivière A, Dehairs J, Delos O, Bertand-Michel J, Portais JC, Wong M, Marie JC, Kelekar A, Kinet S, Zimmermann VS, Levental I, Yvan-Charvet L, Swinnen JV, Muljo SA, Hernandez-Vargas H, Tardito S, Taylor N, Dardalhon V. Regulatory T cell differentiation is controlled by αKG-induced alterations in mitochondrial metabolism and lipid homeostasis. Cell Rep 2021; 37:109911. [PMID: 34731632 PMCID: PMC10167917 DOI: 10.1016/j.celrep.2021.109911] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/18/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Suppressive regulatory T cell (Treg) differentiation is controlled by diverse immunometabolic signaling pathways and intracellular metabolites. Here we show that cell-permeable α-ketoglutarate (αKG) alters the DNA methylation profile of naive CD4 T cells activated under Treg polarizing conditions, markedly attenuating FoxP3+ Treg differentiation and increasing inflammatory cytokines. Adoptive transfer of these T cells into tumor-bearing mice results in enhanced tumor infiltration, decreased FoxP3 expression, and delayed tumor growth. Mechanistically, αKG leads to an energetic state that is reprogrammed toward a mitochondrial metabolism, with increased oxidative phosphorylation and expression of mitochondrial complex enzymes. Furthermore, carbons from ectopic αKG are directly utilized in the generation of fatty acids, associated with lipidome remodeling and increased triacylglyceride stores. Notably, inhibition of either mitochondrial complex II or DGAT2-mediated triacylglyceride synthesis restores Treg differentiation and decreases the αKG-induced inflammatory phenotype. Thus, we identify a crosstalk between αKG, mitochondrial metabolism and triacylglyceride synthesis that controls Treg fate.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cells, Cultured
- Cytokines/genetics
- Cytokines/metabolism
- Diacylglycerol O-Acyltransferase/metabolism
- Energy Metabolism/drug effects
- Fibrosarcoma/genetics
- Fibrosarcoma/immunology
- Fibrosarcoma/metabolism
- Fibrosarcoma/therapy
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Homeostasis
- Humans
- Immunotherapy, Adoptive
- Ketoglutaric Acids/pharmacology
- Lipid Metabolism/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Phenotype
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Mice
Collapse
Affiliation(s)
- Maria I Matias
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Carmen S Yong
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Amir Foroushani
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Chloe Goldsmith
- Cancer Research Center of Lyon, University Lyon 1, Inserm/ CNRS, Labex DEVweCAN, Lyon France
| | - Cédric Mongellaz
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, Leuven, Belgium
| | - Julie Perrault
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Anais Rivière
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, Leuven, Belgium
| | - Océane Delos
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France; I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Justine Bertand-Michel
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France; I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Jean-Charles Portais
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Madeline Wong
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Julien C Marie
- Cancer Research Center of Lyon, University Lyon 1, Inserm/ CNRS, Labex DEVweCAN, Lyon France
| | - Ameeta Kelekar
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | | | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, Leuven, Belgium
| | - Stefan A Muljo
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Hector Hernandez-Vargas
- Cancer Research Center of Lyon, University Lyon 1, Inserm/ CNRS, Labex DEVweCAN, Lyon France
| | - Saverio Tardito
- Cancer Research UK, Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Pediatric Oncology Branch, NCI, CCR, NIH, Bethesda, MD, USA.
| | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
4
|
Hosseini M, Habibi Z, Hosseini N, Abdoli S, Rezaei N. Preclinical studies of chimeric antigen receptor-modified natural killer cells in cancer immunotherapy: a review. Expert Opin Biol Ther 2021; 22:349-366. [PMID: 34541989 DOI: 10.1080/14712598.2021.1983539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION As one of the most efficacious methods of cancer immunotherapy, chimeric antigen receptor-modified immune cells have recently drawn enormous attention. After the great success achieved with CAR-T-cells in cancer treatment both in preclinical setting and in the clinic, other types of immune cells, including natural killer (NK)-cells and macrophages, have been evaluated for their anti-cancer effects along with their potential superiority against CAR-T-cells, especially in terms of safety. First introduced by Tran et al. almost 26 years ago, CAR-NK-cells are now being considered as efficient immunotherapeutic modalities in various types of cancers, not only in preclinical setting but also in numerous phase I and II clinical studies. AREAS COVERED In this review, we aim to provide a comprehensive survey of the preclinical studies on CAR-NK-cells' development, with an evolutional approach on CAR structures and their associated signaling moieties. Current NK-cell sources and modes of gene transfer are also reviewed. EXPERT OPINION CAR-NK-cells have appeared as safe and effective immunotherapeutic tools in preclinical settings; however, designing CAR structures with an eye on their specific biology, along with choosing the optimal cell source and gene transfer method require further investigation to support clinical studies.
Collapse
Affiliation(s)
- Mina Hosseini
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Habibi
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Abdoli
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Chuntova P, Hou Y, Naka R, Yamamichi A, Chen T, Goretsky Y, Hatae R, Nejo T, Kohanbash G, Mende AL, Montoya M, Downey KM, Diebold D, Skinner J, Liang HE, Schwer B, Okada H. Novel EGFRvIII-CAR transgenic mice for rigorous preclinical studies in syngeneic mice. Neuro Oncol 2021; 24:259-272. [PMID: 34347086 DOI: 10.1093/neuonc/noab182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Rigorous preclinical studies of chimeric antigen receptor (CAR) immunotherapy will require large quantities of consistent and high-quality CAR-transduced T (CART)-cells that can be used in syngeneic mouse glioblastoma (GBM) models. To this end, we developed a novel transgenic (Tg) mouse strain with a fully murinized CAR targeting epidermal growth factor receptor variant III (EGFRvIII). METHODS We first established the murinized version of EGFRvIII-CAR and validated its function using a retroviral vector (RV) in C57BL/6J mice bearing syngeneic SB28 GBM expressing EGFRvIII. Next, we created C57BL/6J-background Tg mice carrying the anti-EGFRvIII-CAR downstream of a Lox-Stop-Lox cassette in the Rosa26 locus. We bred these mice with CD4-Cre Tg mice to allow CAR expression on T-cells and evaluated the function of the CART-cells both in vitro and in vivo. To inhibit immunosuppressive myeloid cells within SB28 GBM, we also evaluated a combination approach of CART and an anti-EP4 compound (ONO-AE3-208). RESULTS Both RV- and Tg-CART-cells demonstrated specific cytotoxic activities against SB28-EGFRvIII cells. A single intravenous infusion of EGFRvIII-CART-cells prolonged the survival of glioma-bearing mice when preceded by a lymphodepletion regimen with recurrent tumors displaying profound EGFRvIII loss. The addition of ONO-AE3-208 resulted in long-term survival in a fraction of CART-treated mice and those survivors demonstrated delayed growth of subcutaneously re-challenged both EGFRvIII + and parental EGFRvIII - SB28. CONCLUSION Our new syngeneic CAR Tg mouse model can serve as a useful tool to address clinically relevant questions and develop future immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bjoern Schwer
- Department of Neurological Surgery.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research.,Kavli Institute for Fundamental Neuroscience
| | - Hideho Okada
- Department of Neurological Surgery.,Helen Diller Family Comprehensive Cancer Center.,University of California San Francisco, San Francisco, California, The Parker Institute for Cancer Immunotherapy
| |
Collapse
|
6
|
Overhauling CAR T Cells to Improve Efficacy, Safety and Cost. Cancers (Basel) 2020; 12:cancers12092360. [PMID: 32825533 PMCID: PMC7564591 DOI: 10.3390/cancers12092360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is now surpassing 30 years of clinical experience and in that time a variety of approaches has been applied for the treatment of a wide range of pathologies. While the promise of gene therapy was over-stated in the 1990’s, the following decades were met with polar extremes between demonstrable success and devastating setbacks. Currently, the field of gene therapy is enjoying the rewards of overcoming the hurdles that come with turning new ideas into safe and reliable treatments, including for cancer. Among these modalities, the modification of T cells with chimeric antigen receptors (CAR-T cells) has met with clear success and holds great promise for the future treatment of cancer. We detail a series of considerations for the improvement of the CAR-T cell approach, including the design of the CAR, routes of gene transfer, introduction of CARs in natural killer and other cell types, combining the CAR approach with checkpoint blockade or oncolytic viruses, improving pre-clinical models as well as means for reducing cost and, thus, making this technology more widely available. While CAR-T cells serve as a prime example of translating novel ideas into effective treatments, certainly the lessons learned will serve to accelerate the current and future development of gene therapy drugs.
Collapse
|
7
|
Sievers NM, Dörrie J, Schaft N. CARs: Beyond T Cells and T Cell-Derived Signaling Domains. Int J Mol Sci 2020; 21:E3525. [PMID: 32429316 PMCID: PMC7279007 DOI: 10.3390/ijms21103525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
When optimizing chimeric antigen receptor (CAR) therapy in terms of efficacy, safety, and broadening its application to new malignancies, there are two main clusters of topics to be addressed: the CAR design and the choice of transfected cells. The former focuses on the CAR construct itself. The utilized transmembrane and intracellular domains determine the signaling pathways induced by antigen binding and thereby the cell-specific effector functions triggered. The main part of this review summarizes our understanding of common signaling domains employed in CARs, their interactions among another, and their effects on different cell types. It will, moreover, highlight several less common extracellular and intracellular domains that might permit unique new opportunities. Different antibody-based extracellular antigen-binding domains have been pursued and optimized to strike a balance between specificity, affinity, and toxicity, but these have been reviewed elsewhere. The second cluster of topics is about the cellular vessels expressing the CAR. It is essential to understand the specific attributes of each cell type influencing anti-tumor efficacy, persistence, and safety, and how CAR cells crosstalk with each other and bystander cells. The first part of this review focuses on the progress achieved in adopting different leukocytes for CAR therapy.
Collapse
Affiliation(s)
- Nico M. Sievers
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| |
Collapse
|
8
|
Wein L, Luen SJ, Savas P, Salgado R, Loi S. Checkpoint blockade in the treatment of breast cancer: current status and future directions. Br J Cancer 2018; 119:4-11. [PMID: 29808015 PMCID: PMC6035268 DOI: 10.1038/s41416-018-0126-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 04/03/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Abstract
There is now accumulating evidence that the host immune system plays an important role in influencing response to treatment and prognosis in breast cancer. Immunotherapy with immune checkpoint inhibitors is a promising and rapidly growing field of interest in many solid tumours, including breast cancer. Trials to date have largely focused on metastatic triple-negative disease, a genomically unstable subtype of breast cancer that is believed to be the most immunogenic and following the development of treatment resistance, has limited treatment options and a particularly poor prognosis. Both checkpoint inhibitor monotherapy and combinations with chemotherapy are being investigated. In this review, we discuss the current evidence for PD-1/PD-L1 blockade in metastatic triple-negative breast cancer (TNBC), HER2+ breast cancer and ER+ disease, as well as the emerging evidence for use in the early-stage (neoadjuvant) setting. We also propose potential ways of improving responses to checkpoint blockade in breast cancer.
Collapse
Affiliation(s)
- Lironne Wein
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen J Luen
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter Savas
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Roberto Salgado
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Pathology/GZA, Antwerp, Belgium
| | - Sherene Loi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Harrer DC, Dörrie J, Schaft N. Chimeric Antigen Receptors in Different Cell Types: New Vehicles Join the Race. Hum Gene Ther 2018; 29:547-558. [PMID: 29320890 DOI: 10.1089/hum.2017.236] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adoptive cellular therapy has evolved into a powerful force in the battle against cancer, holding promise for curative responses in patients with advanced and refractory tumors. Autologous T cells, reprogrammed to target malignant cells via the expression of a chimeric antigen receptor (CAR) represent the frontrunner in this approach. Tremendous clinical regressions have been achieved using CAR-T cells against a variety of cancers both in numerous preclinical studies and in several clinical trials, most notably against acute lymphoblastic leukemia, and resulted in a very recent United States Food and Drug Administration approval of the first CAR-T-cell therapy. In most studies CARs are transferred to conventional αβT cells. Nevertheless, transferring a CAR into different cell types, such as γδT cells, natural killer cells, natural killer T cells, and myeloid cells has yet received relatively little attention, although these cell types possess unique features that may aid in surmounting some of the hurdles CAR-T-cell therapy currently faces. This review focuses on CAR therapy using effectors beyond conventional αβT cells and discusses those strategies against the backdrop of developing a safe, powerful, and durable cancer therapy.
Collapse
Affiliation(s)
- Dennis C Harrer
- 1 Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Jan Dörrie
- 1 Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Niels Schaft
- 1 Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| |
Collapse
|
10
|
Bankaitis K, Borriello L, Cox T, Lynch C, Zijlstra A, Fingleton B, Gužvić M, Anderson R, Neman J. Meeting report: Metastasis Research Society-Chinese Tumor Metastasis Society joint conference on metastasis. Clin Exp Metastasis 2017; 34:203-213. [PMID: 28260197 DOI: 10.1007/s10585-017-9842-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Abstract
During September 16th-20th 2016, metastasis experts from around the world convened for the 16th Biennial Congress of the Metastasis Research Society and 12th National Congress of the Chinese Tumor Metastasis Society in Chengdu, China to share most current data covering basic, translational, and clinical metastasis research. Presentations of the more than 40 invited speakers of the main congress and presentations from the associated Young Investigator Satellite Meeting are summarized in this report by session topic. The congress program also included three concurrent short talk sessions, an advocacy forum with Chinese and American metastatic patient advocates, a 'Meet the Professors Roundtable' session for young investigators, and a 'Meet the Editors' session with editors from Cancer Cell and Nature Cell Biology. The goal of integrating expertise and exchanging the latest findings, ideas, and practices in cancer metastasis research was achieved magnificently, thanks to the excellent contributions of many leaders in the field.
Collapse
Affiliation(s)
- Katherine Bankaitis
- Metastasis Research Society (MRS), 124 Hunters Ridge Rd, Chapel Hill, NC, 27517, USA.
| | - Lucia Borriello
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Thomas Cox
- Cancer Division, The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, Australia
| | - Conor Lynch
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andries Zijlstra
- Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Barbara Fingleton
- Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Robin Anderson
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Grattan Street, Melbourne, VIC, Australia
| | - Josh Neman
- Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|