1
|
Qiao J, Yu Z, Zhou H, Wang W, Wu H, Ye J. The Pentose Phosphate Pathway: From Mechanisms to Implications for Gastrointestinal Cancers. Int J Mol Sci 2025; 26:610. [PMID: 39859324 PMCID: PMC11765532 DOI: 10.3390/ijms26020610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The pentose phosphate pathway (PPP), traditionally recognized for its role in generating nicotinamide adenine dinucleotide phosphate (NADPH) and ribose-5-phosphate (R5P), has emerged as a critical metabolic hub with involvements in various gastrointestinal (GI) cancers. The PPP plays crucial roles in the initiation, development, and tumor microenvironment (TME) of GI cancers by modulating redox homeostasis and providing precursors for nucleotide biosynthesis. Targeting PPP enzymes and their regulatory axis has been a potential strategy in anti-GI cancer therapies. In this review, we summarize the regulatory mechanisms of PPP enzymes, elucidate the relationships between the PPP and TME's elements, and discuss the therapeutic potential of targeting the PPP in GI cancers.
Collapse
Affiliation(s)
- Jincheng Qiao
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (J.Q.); (Z.Y.)
- Cancer Institute (A Key Laboratory for Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Zhengchen Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (J.Q.); (Z.Y.)
- Cancer Institute (A Key Laboratory for Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Han Zhou
- Cancer Institute (A Key Laboratory for Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Wankun Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Hao Wu
- Cancer Institute (A Key Laboratory for Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (J.Q.); (Z.Y.)
| |
Collapse
|
2
|
Vitorakis N, Gargalionis AN, Papavassiliou KA, Adamopoulos C, Papavassiliou AG. Precision Targeting Strategies in Pancreatic Cancer: The Role of Tumor Microenvironment. Cancers (Basel) 2024; 16:2876. [PMID: 39199647 PMCID: PMC11352254 DOI: 10.3390/cancers16162876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic cancer demonstrates an ever-increasing incidence over the last years and represents one of the top causes of cancer-associated mortality. Cells of the tumor microenvironment (TME) interact with cancer cells in pancreatic ductal adenocarcinoma (PDAC) tumors to preserve cancer cells' metabolism, inhibit drug delivery, enhance immune suppression mechanisms and finally develop resistance to chemotherapy and immunotherapy. New strategies target TME genetic alterations and specific pathways in cell populations of the TME. Complex molecular interactions develop between PDAC cells and TME cell populations including cancer-associated fibroblasts, myeloid-derived suppressor cells, pancreatic stellate cells, tumor-associated macrophages, tumor-associated neutrophils, and regulatory T cells. In the present review, we aim to fully explore the molecular landscape of the pancreatic cancer TME cell populations and discuss current TME targeting strategies to provide thoughts for further research and preclinical testing.
Collapse
Affiliation(s)
- Nikolaos Vitorakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios N Gargalionis
- Department of Clinical Biochemistry, 'Attikon' University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Lyu P, Gu X, Wang F, Sun H, Zhou Q, Yang S, Yuan W. Advances in targeting cancer-associated fibroblasts through single-cell spatial transcriptomic sequencing. Biomark Res 2024; 12:73. [PMID: 39075612 PMCID: PMC11287900 DOI: 10.1186/s40364-024-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment and are related to tumor proliferation, metastasis, relapse, and drug resistance. With the development of sequencing technologies, single-cell RNA sequencing has become a popular method for identifying CAFs in the tumor microenvironment. Whereas the drawbacks of CAFs, such as the lack of a spatial landscape, still exist, recent research has utilized spatial transcriptomics combined with single-cell RNA sequencing to address this issue. These multiomics analyses can resolve the single-cell resolution problem in spatial transcriptomics. In this review, we summarized the recent literature regarding the targeting of CAFs to address drug resistance, angiogenesis, metabolic reprogramming and metastasis in tumor tissue.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
4
|
Wang Z, Dong S, Zhou W. Pancreatic stellate cells: Key players in pancreatic health and diseases (Review). Mol Med Rep 2024; 30:109. [PMID: 38695254 PMCID: PMC11082724 DOI: 10.3892/mmr.2024.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
As a pluripotent cell, activated pancreatic stellate cells (PSCs) can differentiate into various pancreatic parenchymal cells and participate in the secretion of extracellular matrix and the repair of pancreatic damage. Additionally, PSCs characteristics allow them to contribute to pancreatic inflammation and carcinogenesis. Moreover, a detailed study of the pathogenesis of activated PSCs in pancreatic disease can offer promise for the development of innovative therapeutic strategies and improved patient prognoses. Therefore, the present study review aimed to examine the involvement of activated PSCs in pancreatic diseases and elucidate the underlying mechanisms to provide a viable therapeutic strategy for the management of pancreas‑related diseases.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
5
|
Schwarcz S, Kovács P, Nyerges P, Ujlaki G, Sipos A, Uray K, Bai P, Mikó E. The bacterial metabolite, lithocholic acid, has antineoplastic effects in pancreatic adenocarcinoma. Cell Death Discov 2024; 10:248. [PMID: 38782891 PMCID: PMC11116504 DOI: 10.1038/s41420-024-02023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Lithocholic acid (LCA) is a secondary bile acid. LCA enters the circulation after bacterial synthesis in the gastrointestinal tract, reaches distantly located cancer cells, and influences their behavior. LCA was considered carcinogenic, but recent studies demonstrated that LCA has antitumor effects. We assessed the possible role of LCA in pancreatic adenocarcinoma. At the serum reference concentration, LCA induced a multi-pronged antineoplastic program in pancreatic adenocarcinoma cells. LCA inhibited cancer cell proliferation and induced mesenchymal-to-epithelial (MET) transition that reduced cell invasion capacity. LCA induced oxidative/nitrosative stress by decreasing the expression of nuclear factor, erythroid 2-like 2 (NRF2) and inducing inducible nitric oxide synthase (iNOS). The oxidative/nitrosative stress increased protein nitration and lipid peroxidation. Suppression of oxidative stress by glutathione (GSH) or pegylated catalase (pegCAT) blunted LCA-induced MET. Antioxidant genes were overexpressed in pancreatic adenocarcinoma and decreased antioxidant levels correlated with better survival of pancreatic adenocarcinoma patients. Furthermore, LCA treatment decreased the proportions of cancer stem cells. Finally, LCA induced total and ATP-linked mitochondrial oxidation and fatty acid oxidation. LCA exerted effects through the farnesoid X receptor (FXR), vitamin D receptor (VDR), and constitutive androstane receptor (CAR). LCA did not interfere with cytostatic agents used in the chemotherapy of pancreatic adenocarcinoma. Taken together, LCA is a non-toxic compound and has antineoplastic effects in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Szandra Schwarcz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Petra Nyerges
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
| |
Collapse
|
6
|
Gu M, Liu Y, Xin P, Guo W, Zhao Z, Yang X, Ma R, Jiao T, Zheng W. Fundamental insights and molecular interactions in pancreatic cancer: Pathways to therapeutic approaches. Cancer Lett 2024; 588:216738. [PMID: 38401887 DOI: 10.1016/j.canlet.2024.216738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/β-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
7
|
Wang Z, He R, Dong S, Zhou W. Pancreatic stellate cells in pancreatic cancer: as potential targets for future therapy. Front Oncol 2023; 13:1185093. [PMID: 37409257 PMCID: PMC10318188 DOI: 10.3389/fonc.2023.1185093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Pancreatic cancer is a strongly malignant gastrointestinal carcinoma characterized by late detection, high mortality rates, poor patient prognosis and lack of effective treatments. Consequently, there is an urgent need to identify novel therapeutic strategies for this disease. Pancreatic stellate cells, which constitute a significant component of the mesenchymal cellular layer within the pancreatic tumor microenvironment, play a pivotal role in modulating this environment through their interactions with pancreatic cancer cells. This paper reviews the mechanisms by which pancreatic stellate cells inhibit antitumor immune responses and promote cancer progression. We also discuss preclinical studies focusing on these cells, with the goal of providing some theoretical references for the development of new therapeutic approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ru He
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
| | - Wence Zhou
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Yagishita Y, Chartoumpekis DV, Kensler TW, Wakabayashi N. NRF2 and the Moirai: Life and Death Decisions on Cell Fates. Antioxid Redox Signal 2023; 38:684-708. [PMID: 36509429 PMCID: PMC10025849 DOI: 10.1089/ars.2022.0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: The transcription factor NRF2 (NF-E2-related factor 2) plays an important role as a master regulator of the cellular defense system by activating transcriptional programs of NRF2 target genes encoding multiple enzymes related to cellular redox balance and xenobiotic detoxication. Comprehensive transcriptional analyses continue to reveal an ever-broadening range of NRF2 target genes, demonstrating the sophistication and diversification of NRF2 biological signatures beyond its canonical cytoprotective roles. Recent Advances: Accumulating evidence indicates that NRF2 has a strong association with the regulation of cell fates by influencing key processes of cellular transitions in the three major phases of the life cycle of the cell (i.e., cell birth, cell differentiation, and cell death). The molecular integration of NRF2 signaling into this regulatory program occurs through a wide range of NRF2 target genes encompassing canonical functions and those manipulating cell fate pathways. Critical Issues: A singular focus on NRF2 signaling for dissecting its actions limits in-depth understanding of its intersection with the molecular machinery of cell fate determinations. Compensatory responses of downstream pathways governed by NRF2 executed by a variety of transcription factors and multifactorial signaling crosstalk require further exploration. Future Directions: Further investigations using optimized in vivo models and active engagement of overarching approaches to probe the interplay of widespread pathways are needed to study the properties and capabilities of NRF2 signaling as a part of a large network within the cell fate regulatory domain. Antioxid. Redox Signal. 38, 684-708.
Collapse
Affiliation(s)
- Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nobunao Wakabayashi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
9
|
Rahim NS, Wu YS, Sim MS, Velaga A, Bonam SR, Gopinath SCB, Subramaniyan V, Choy KW, Teow SY, Fareez IM, Samudi C, Sekaran SD, Sekar M, Guad RM. Three Members of Transmembrane-4-Superfamily, TM4SF1, TM4SF4, and TM4SF5, as Emerging Anticancer Molecular Targets against Cancer Phenotypes and Chemoresistance. Pharmaceuticals (Basel) 2023; 16:ph16010110. [PMID: 36678607 PMCID: PMC9867095 DOI: 10.3390/ph16010110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
There are six members of the transmembrane 4 superfamily (TM4SF) that have similar topology and sequence homology. Physiologically, they regulate tissue differentiation, signal transduction pathways, cellular activation, proliferation, motility, adhesion, and angiogenesis. Accumulating evidence has demonstrated, among six TM4SF members, the regulatory roles of transmembrane 4 L6 domain family members, particularly TM4SF1, TM4SF4, and TM4SF5, in cancer angiogenesis, progression, and chemoresistance. Hence, targeting derailed TM4SF for cancer therapy has become an emerging research area. As compared to others, this review aimed to present a focused insight and update on the biological roles of TM4SF1, TM4SF4, and TM4SF5 in the progression, metastasis, and chemoresistance of various cancers. Additionally, the mechanistic pathways, diagnostic and prognostic values, and the potential and efficacy of current anti-TM4SF antibody treatment were also deciphered. It also recommended the exploration of other interactive molecules to be implicated in cancer progression and chemoresistance, as well as potential therapeutic agents targeting TM4SF as future perspectives. Generally, these three TM4SF members interact with different integrins and receptors to significantly induce intracellular signaling and regulate the proliferation, migration, and invasion of cancer cells. Intriguingly, gene silencing or anti-TM4SF antibody could reverse their regulatory roles deciphered in different preclinical models. They also have prognostic and diagnostic value as their high expression was detected in clinical tissues and cells of various cancers. Hence, TM4SF1, TM4SF4, and TM4SF5 are promising therapeutic targets for different cancer types preclinically and deserve further investigation.
Collapse
Affiliation(s)
- Nur Syafiqah Rahim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Perlis Branch, Arau Campus, Arau 02600, Malaysia
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia
- Correspondence: (Y.S.W.); (R.M.G.)
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Appalaraju Velaga
- Department of Medicinal Chemistry, Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Malaysia
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau 02600, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | - Sin-Yeang Teow
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Quhai, Wenzhou 325060, China
| | - Ismail M. Fareez
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor Branch, Shah Alam Campus, 40450 Shah Alam, Malaysia
| | - Chandramathi Samudi
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shamala Devi Sekaran
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (Y.S.W.); (R.M.G.)
| |
Collapse
|
10
|
Wang D, Li Y, Ge H, Ghadban T, Reeh M, Güngör C. The Extracellular Matrix: A Key Accomplice of Cancer Stem Cell Migration, Metastasis Formation, and Drug Resistance in PDAC. Cancers (Basel) 2022; 14:cancers14163998. [PMID: 36010993 PMCID: PMC9406497 DOI: 10.3390/cancers14163998] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is rich in dense fibrotic stroma that are composed of extracellular matrix (ECM) proteins. A disruption of the balance between ECM synthesis and secretion and the altered expression of matrix remodeling enzymes lead to abnormal ECM dynamics in PDAC. This pathological ECM promotes cancer growth, survival, invasion, and alters the behavior of fibroblasts and immune cells leading to metastasis formation and chemotherapy resistance, which contribute to the high lethality of PDAC. Additionally, recent evidence highlights that ECM, as a major structural component of the tumor microenvironment, is a highly dynamic structure in which ECM proteins establish a physical and biochemical niche for cancer stem cells (CSCs). CSCs are characterized by self-renewal, tumor initiation, and resistance to chemotherapeutics. In this review, we will discuss the effects of the ECM on tumor biological behavior and its molecular impact on the fundamental signaling pathways in PDAC. We will also provide an overview of how the different ECM components are able to modulate CSCs properties and finally discuss the current and ongoing therapeutic strategies targeting the ECM. Given the many challenges facing current targeted therapies for PDAC, a better understanding of molecular events involving the interplay of ECM and CSC will be key in identifying more effective therapeutic strategies to eliminate CSCs and ultimately to improve survival in patients that are suffering from this deadly disease.
Collapse
|
11
|
Ohara Y, Valenzuela P, Hussain SP. The interactive role of inflammatory mediators and metabolic reprogramming in pancreatic cancer. Trends Cancer 2022; 8:556-569. [PMID: 35525794 PMCID: PMC9233125 DOI: 10.1016/j.trecan.2022.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its highly reactive inflammatory desmoplastic stroma with evidence of an extensive tumor stromal interaction largely mediated by inflammatory factors. KRAS mutation and inflammatory signaling promote protumorigenic events, including metabolic reprogramming with several inter-regulatory crosstalks to fulfill the high demand of energy and regulate oxidative stress for tumor growth and progression. Notably, the more aggressive molecular subtype of PDAC enhances influx of glycolytic intermediates. This review focuses on the interactive role of inflammatory signaling and metabolic reprogramming with emerging evidence of crosstalk, which supports the development, progression, and therapeutic resistance of PDAC. Understanding the emerging crosstalk between inflammation and metabolic adaptations may identify potential targets and develop novel therapeutic approaches for PDAC.
Collapse
Affiliation(s)
- Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paloma Valenzuela
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Hamada S, Matsumoto R, Masamune A. HIF-1 and NRF2; Key Molecules for Malignant Phenotypes of Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14020411. [PMID: 35053572 PMCID: PMC8773475 DOI: 10.3390/cancers14020411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer progression involves interactions between cancer cells and stromal cells in harsh tumor microenvironments, which are characterized by hypoxia, few nutrients, and oxidative stress. Clinically, cancer cells overcome therapeutic interventions, such as chemotherapy and radiotherapy, to continue to survive. Activation of the adaptation mechanism is required for cancer cell survival under these conditions, and it also contributes to the acquisition of the malignant phenotype. Stromal cells, especially pancreatic stellate cells, play a critical role in the formation of a cancer-promoting microenvironment. We here review the roles of key molecules, hypoxia inducible factor-1 and KEAP1-NRF2, in stress response mechanisms for the adaptation to hypoxia and oxidative stress in pancreatic cancer cells and stellate cells. Various cancer-promoting properties associated with these molecules have been identified, and they might serve as novel therapeutic targets in the future. Abstract Pancreatic cancer is intractable due to early progression and resistance to conventional therapy. Dense fibrotic stroma, known as desmoplasia, is a characteristic feature of pancreatic cancer, and develops through the interactions between pancreatic cancer cells and stromal cells, including pancreatic stellate cells. Dense stroma forms harsh tumor microenvironments characterized by hypoxia, few nutrients, and oxidative stress. Pancreatic cancer cells as well as pancreatic stellate cells survive in the harsh microenvironments through the altered expression of signaling molecules, transporters, and metabolic enzymes governed by various stress response mechanisms. Hypoxia inducible factor-1 and KEAP1-NRF2, stress response mechanisms for hypoxia and oxidative stress, respectively, contribute to the aggressive behaviors of pancreatic cancer. These key molecules for stress response mechanisms are activated, both in pancreatic cancer cells and in pancreatic stellate cells. Both factors are involved in the mutual activation of cancer cells and stellate cells, by inducing cancer-promoting signals and their mediators. Therapeutic interventions targeting these pathways are promising approaches for novel therapies. In this review, we summarize the roles of stress response mechanisms, focusing on hypoxia inducible factor-1 and KEAP1-NRF2, in pancreatic cancer. In addition, we discuss the potential of targeting these molecules for the treatment of pancreatic cancer.
Collapse
|
13
|
Role of Nrf2 in Pancreatic Cancer. Antioxidants (Basel) 2021; 11:antiox11010098. [PMID: 35052602 PMCID: PMC8773052 DOI: 10.3390/antiox11010098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic tumors are a serious health problem with a 7% mortality rate worldwide. Inflammatory processes and oxidative stress play important roles in the development of pancreatic diseases/cancer. To maintain homeostasis, a balance between free radicals and the antioxidant system is essential. Nuclear Factor Erythroid 2-Related Factor 2/NFE2L2 (Nrf2) and its negative regulator Kelch-Like ECH-Associated Protein 1 (Keap1) provide substantial protection against damage induced by oxidative stress, and a growing body of evidence points to the canonical and noncanonical Nrf2 signaling pathway as a pharmacological target in the treatment of pancreatic diseases. In this review, we present updated evidence on the activation of the Nrf2 signaling pathway and its importance in pancreatic cancer. Our review covers potential modulators of canonical and noncanonical pathway modulation mechanisms that may have a positive effect on the therapeutic response. Finally, we describe some interesting recent discoveries of novel treatments related to the antioxidant system for pancreatic cancer, including natural or synthetic compounds with therapeutic properties.
Collapse
|
14
|
Ramli S, Sim MS, Guad RM, Gopinath SCB, Subramaniyan V, Fuloria S, Fuloria NK, Choy KW, Rana S, Wu YS. Long Noncoding RNA UCA1 in Gastrointestinal Cancers: Molecular Regulatory Roles and Patterns, Mechanisms, and Interactions. JOURNAL OF ONCOLOGY 2021; 2021:5519720. [PMID: 33936199 PMCID: PMC8055404 DOI: 10.1155/2021/5519720] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/08/2023]
Abstract
The rising trend of gastrointestinal (GI) cancer has become a global burden due to its aggressive nature and poor prognosis. Long noncoding RNAs (lncRNAs) have recently been reported to be overexpressed in different GI cancers and may contribute to cancer progression and chemoresistance. They are featured with more than 200 nucleotides, commonly polyadenylated, and lacking an open reading frame. LncRNAs, particularly urothelial carcinoma-associated 1 (UCA1), are oncogenes involved in regulating cancer progression, such as cell proliferation, invasion, migration, and chemoresistance, particularly in GI cancer. This review was aimed to present an updated focus on the molecular regulatory roles and patterns of lncRNA UCA1 in progression and chemoresistance of different GI cancers, as well as deciphering the underlying mechanisms and its interactions with key molecules involved, together with a brief presentation on its diagnostic and prognostic values. The regulatory roles of lncRNA UCA1 are implicated in esophageal cancer, gastric cancer, pancreatic cancer, hepatobiliary cancer, and colorectal cancer, where they shared similar molecular mechanisms in regulating cancer phenotypes and chemoresistance. Comparatively, gastric cancer is the most intensively studied type in GI cancer. LncRNA UCA1 is implicated in biological roles of different GI cancers via interactions with various molecules, particularly microRNAs, and signaling pathways. In conclusion, lncRNA UCA1 is a potential molecular target for GI cancer, which may lead to the development of a novel chemotherapeutic agent. Hence, it also acts as a potential diagnostic and prognostic marker for GI cancer patients.
Collapse
Affiliation(s)
- Suaidah Ramli
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Rhanye M. Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Subash C. B Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Perlis, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Kedah 08100, Malaysia
| | - Neeraj K. Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Kedah 08100, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Shah Alam, Sungai Buloh 47000, Selangor, Malaysia
| | - Sohel Rana
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore-7400, Bangladesh
| | - Yuan Seng Wu
- Department of Biochemistry, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| |
Collapse
|
15
|
Stellate Cells Aid Growth-Permissive Metabolic Reprogramming and Promote Gemcitabine Chemoresistance in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13040601. [PMID: 33546284 PMCID: PMC7913350 DOI: 10.3390/cancers13040601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The great majority, more than 90%, of patients with pancreatic ductal adenocarcinoma (PDAC) die within less than five years after detection of the disease, despite recent treatment advances. The poor prognosis is related to late diagnosis, aggressive disease progression, and tumor resistance to conventional chemotherapy. PDAC tumor tissue is characterized by dense fibrosis and poor nutrient availability. A large portion of the tumor is made up of stromal fibroblasts, the pancreatic stellate cells (PSCs), which are known to contribute to tumor progression in several ways. PSCs have been shown to act as an alternate energy source, induce drug resistance, and inhibit drug availability in tumor cells, however, the underlying exact molecular mechanisms remain unknown. In this literature review, we discuss recent available knowledge about the contributions of PSCs to the overall progression of PDAC via changes in tumor metabolism and how this is linked to therapy resistance. Abstract Pancreatic ductal adenocarcinoma (PDAC), also known as pancreatic cancer (PC), is characterized by an overall poor prognosis and a five-year survival that is less than 10%. Characteristic features of the tumor are the presence of a prominent desmoplastic stromal response, an altered metabolism, and profound resistance to cancer drugs including gemcitabine, the backbone of PDAC chemotherapy. The pancreatic stellate cells (PSCs) constitute the major cellular component of PDAC stroma. PSCs are essential for extracellular matrix assembly and form a supportive niche for tumor growth. Various cytokines and growth factors induce activation of PSCs through autocrine and paracrine mechanisms, which in turn promote overall tumor growth and metastasis and induce chemoresistance. To maintain growth and survival in the nutrient-poor, hypoxic environment of PDAC, tumor cells fulfill their high energy demands via several unconventional ways, a process generally referred to as metabolic reprogramming. Accumulating evidence indicates that activated PSCs not only contribute to the therapy-resistant phenotype of PDAC but also act as a nutrient supplier for the tumor cells. However, the precise molecular links between metabolic reprogramming and an acquired therapy resistance in PDAC remain elusive. This review highlights recent findings indicating the importance of PSCs in aiding growth-permissive metabolic reprogramming and gemcitabine chemoresistance in PDAC.
Collapse
|
16
|
Robinson CM, Talty A, Logue SE, Mnich K, Gorman AM, Samali A. An Emerging Role for the Unfolded Protein Response in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13020261. [PMID: 33445669 PMCID: PMC7828145 DOI: 10.3390/cancers13020261] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and one of the leading causes of cancer-associated deaths in the world. It is characterised by dismal response rates to conventional therapies. A major challenge in treatment strategies for PDAC is the presence of a dense stroma that surrounds the tumour cells, shielding them from treatment. This unique tumour microenvironment is fuelled by paracrine signalling between pancreatic cancer cells and supporting stromal cell types including the pancreatic stellate cells (PSC). While our molecular understanding of PDAC is improving, there remains a vital need to develop effective, targeted treatments. The unfolded protein response (UPR) is an elaborate signalling network that governs the cellular response to perturbed protein homeostasis in the endoplasmic reticulum (ER) lumen. There is growing evidence that the UPR is constitutively active in PDAC and may contribute to the disease progression and the acquisition of resistance to therapy. Given the importance of the tumour microenvironment and cytokine signalling in PDAC, and an emerging role for the UPR in shaping the tumour microenvironment and in the regulation of cytokines in other cancer types, this review explores the importance of the UPR in PDAC biology and its potential as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Claire M. Robinson
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Aaron Talty
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Susan E. Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Katarzyna Mnich
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Adrienne M. Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
- Correspondence:
| |
Collapse
|
17
|
Han M, Li N, Li F, Wang H, Ma L. MiR-27b-3p exerts tumor suppressor effects in esophageal squamous cell carcinoma by targeting Nrf2. Hum Cell 2020; 33:641-651. [PMID: 32419118 DOI: 10.1007/s13577-020-00329-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
Abstract
MiR-27b-3p has been reported to function as tumor suppressor in several tumors, including breast cancer and lung cancer. Recently, miR-27b-3p has been identified to be significantly down-regulated in esophageal cancer. However, the clinical significance and biological role of miR-27b-3p in esophageal squamous cell carcinoma (ESCC) still remain unclear. In this study, the expression levels of miR-27b-3p were significantly reduced in ESCC clinical tissues and ESCC cell lines (EC97069 and TE-1). Moreover, down-regulated expression of miR-27b-3p was associated with poor cell differentiation, TNM stage and lymph node metastasis. Specially, overexpression of miR-27b-3p significantly suppressed cell proliferation, migration and invasion in vitro using CCK-8 and transwell assays. Targetscan bioinformatics predictions and luciferase reporter assay confirmed that nuclear factor erythroid 2-related factor 2 (NFE2L2, Nrf2) was a direct target gene of miR-27b-3p. Nrf2 expression was significantly increased in ESCC tissues compared with adjacent tissues. Up-regulated expression of Nrf2 was correlated with TNM stage and lymph node metastasis. Functionally, knockdown of Nrf2 exhibited similar effects to overexpression of miR-27b-3p. Higher expression of ZO-1, E-cadherin and lower expression of N-cadherin, Vimentin and Claudin-1 were observed after miR-27b-3p overexpression of Nrf2 knockdown. Rescue experiments proved that miR-27b-3p suppressed cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT) via suppression of Nrf2. Taken together, the newly identified miR-27b-3p/Nrf2 axis might represent a new candidate therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Mei Han
- Department of Digestive System, Xinjiang Medical University Affiliated Tumor Hospital, No. 789, Suzhou East Street, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Na Li
- Department of Digestive System, Xinjiang Medical University Affiliated Tumor Hospital, No. 789, Suzhou East Street, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Fanzhou Li
- Department of Digestive System, Xinjiang Medical University Affiliated Tumor Hospital, No. 789, Suzhou East Street, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Hua Wang
- Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lanying Ma
- Department of Digestive System, Xinjiang Medical University Affiliated Tumor Hospital, No. 789, Suzhou East Street, Xinshi District, Urumqi, 830000, Xinjiang, China.
| |
Collapse
|
18
|
Ramakrishnan P, Loh WM, Gopinath SC, Bonam SR, Fareez IM, Mac Guad R, Sim MS, Wu YS. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer. Acta Pharm Sin B 2020; 10:399-413. [PMID: 32140388 PMCID: PMC7049637 DOI: 10.1016/j.apsb.2019.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/23/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
Activated pancreatic stellate cells (PSCs) have been widely accepted as a key precursor of excessive pancreatic fibrosis, which is a crucial hallmark of chronic pancreatitis (CP) and its formidable associated disease, pancreatic cancer (PC). Hence, anti-fibrotic therapy has been identified as a novel therapeutic strategy for treating CP and PC by targeting PSCs. Most of the anti-fibrotic agents have been limited to phase I/II clinical trials involving vitamin analogs, which are abundant in medicinal plants and have proved to be promising for clinical application. The use of phytomedicines, as new anti-fibrotic agents, has been applied to a variety of complementary and alternative approaches. The aim of this review was to present a focused update on the selective new potential anti-fibrotic agents, including curcumin, resveratrol, rhein, emodin, green tea catechin derivatives, metformin, eruberin A, and ellagic acid, in combating PSC in CP and PC models. It aimed to describe the mechanism(s) of the phytochemicals used, either alone or in combination, and the associated molecular targets. Most of them were tested in PC models with similar mechanism of actions, and curcumin was tested intensively. Future research may explore the issues of bioavailability, drug design, and nano-formulation, in order to achieve successful clinical outcomes with promising activity and tolerability.
Collapse
Affiliation(s)
- Puvanesswaray Ramakrishnan
- Ageing and Age-Associated Disorders Research Group, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Wei Mee Loh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Subash C.B. Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Srinivasa Reddy Bonam
- UMR 7242, CNRS-University of Strasbourg, Biotechnology and Cell Signaling/Laboratory of Excellence Medalis, Illkirch 67400, France
| | - Ismail M. Fareez
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
- Corresponding authors. Tel./fax: +60 3 51022709 (Yuan Seng Wu); +60 3 79675749 (Maw Shin Sim).
| | - Yuan Seng Wu
- Department of Biochemistry, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor 42610, Malaysia
- Corresponding authors. Tel./fax: +60 3 51022709 (Yuan Seng Wu); +60 3 79675749 (Maw Shin Sim).
| |
Collapse
|
19
|
Qin JJ, Cheng XD, Zhang J, Zhang WD. Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review. Cell Commun Signal 2019; 17:121. [PMID: 31511020 PMCID: PMC6740038 DOI: 10.1186/s12964-019-0435-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal diseases with a very high rate of metastasis and low rate of survival. Despite the advances in understanding this devastating disease, PC still accounts for 3% of all cancers and causes almost 7% of death of cancer patients. Recent studies have demonstrated that the transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) and its key negative regulator Kelch-like ECH-associated protein 1 (Keap1) are dysregulated in PC and the Keap1-Nrf2 pathway is an emerging target for PC prevention and therapy. Indeed, Nrf2 plays an either tumor-suppressive or promoting function in PC, which depends on the developmental stages of the disease and the cellular context. Several natural-product Nrf2 activators have been developed to prevent pancreatic carcinogenesis, while the Nrf2 inhibitors have been examined for their efficacy in inhibiting PC growth and metastasis and reversing chemoresistance. However, further preclinical and clinical studies for determining the effectiveness and safety of targeting the Keap1-Nrf2 pathway for PC prevention and therapy are warranted. In this review, we comprehensively discuss the dual roles of the Keap1-Nrf2 signaling pathway in PC as well as the current targeting strategies and known activators and inhibitors of Nrf2. We also propose new strategies that may be used to address the current issues and develop more specific and more effective Nrf2 activator/inhibitors for PC prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China. .,Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | | | - Jia Zhang
- Shanxi Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Yangpu District, Shanghai, 200433, China. .,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
20
|
Yang Q, Deng H, Xia H, Xu M, Pan G, Mao J, Tao S, Yamanaka K, An Y. High NF-E2-related factor 2 expression predicts poor prognosis in patients with lung cancer: a meta-analysis of cohort studies. Free Radic Res 2019; 54:790-798. [DOI: 10.1080/10715762.2019.1642472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Hanyi Deng
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China
| | - Haixuan Xia
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Mengchuan Xu
- Shihezi University School of Medicine, Shihezi, China
| | - Guotao Pan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jiayuan Mao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Shasha Tao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | | | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Stress responses in stromal cells and tumor homeostasis. Pharmacol Ther 2019; 200:55-68. [PMID: 30998941 DOI: 10.1016/j.pharmthera.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
In most (if not all) solid tumors, malignant cells are outnumbered by their non-malignant counterparts, including immune, endothelial and stromal cells. However, while the mechanisms whereby cancer cells adapt to microenvironmental perturbations have been studied in great detail, relatively little is known on stress responses in non-malignant compartments of the tumor microenvironment. Here, we discuss the mechanisms whereby cancer-associated fibroblasts and other cellular components of the tumor stroma react to stress in the context of an intimate crosstalk with malignant, endothelial and immune cells, and how such crosstalk influences disease progression and response to treatment.
Collapse
|
22
|
Schnittert J, Bansal R, Prakash J. Targeting Pancreatic Stellate Cells in Cancer. Trends Cancer 2019; 5:128-142. [PMID: 30755305 DOI: 10.1016/j.trecan.2019.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic stellate cells (PSCs) are the major contributor to the aggressive, metastatic, and resilient nature of pancreatic ductal adenocarcinoma (PDAC), which has a poor prognosis with a 5-year survival rate of 8%. PSCs constitute more than 50% of the tumor stroma in PDAC, where they induce extensive desmoplasia by secreting abundant extracellular matrix (ECM) proteins. In addition, they establish dynamic crosstalk with cancer cells and other stromal cells, which collectively supports tumor progression via various inter- and intracellular pathways. These cellular interactions and associated pathways may reveal novel therapeutic opportunities against this unmet clinical problem. In this review article, we discuss the role of PSCs in inducing tumor progression, their crosstalk with other cells, and therapeutic strategies to target PSCs.
Collapse
Affiliation(s)
- Jonas Schnittert
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; ScarTec Therapeutics BV, Enschede, The Netherlands.
| |
Collapse
|
23
|
Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018; 13:1854-1872. [PMID: 29927521 DOI: 10.1002/cmdc.201800343] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lakshmi Tunki
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahabalarao Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, 67000, France
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, 522034, India
| |
Collapse
|
24
|
Wang Y, Fang T, Huang L, Wang H, Zhang L, Wang Z, Cui Y. Neutrophils infiltrating pancreatic ductal adenocarcinoma indicate higher malignancy and worse prognosis. Biochem Biophys Res Commun 2018; 501:313-319. [PMID: 29738769 DOI: 10.1016/j.bbrc.2018.05.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
CD177 is considered to represent neutrophils. We analyzed mRNA expression level of CD177 and clinical follow-up survey of PDAC to estimate overall survival (OS) from Gene Expression Omnibus (GEO) dataset (GSE21501, containing samples from 102 PDAC patients) by R2 platform (http://r2.amc.nl). We also analyzed correlated genes of CD177 by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to predict the potential relationship between neutrophils and prognosis of PDAC. We then performed hematoxylin and eosin (H&E) staining and immunohistochemical staining of surgical specimens to verify infiltration of neutrophils in PDAC tissues. After analyzing mRNA expression data and clinical follow-up survey provided in the GEO dataset (GSE21501, containing samples from 102 PDAC patients) and clinicopathological data of 23 PDAC patients, we demonstrated that CD177 was correlated with poor prognosis. The univariate Kaplan-Meier survival analysis revealed that OS was inversely associated with increased expression of CD177 (P = 0.012). Expression of phosphodiesterase (PDE)4D was positively related to CD177 in gene correlation analysis (R = 0.413, P < 0.001) by R2 platform. H&E staining and immunohistochemistry of CD177 in 23 PDAC surgical samples showed accumulation of neutrophils in the stroma and blood vessels around the cancer cells. In addition, immunohistochemical staining showed that CD177 was highly expressed in the stroma and blood vessels around tumor tissues of PDAC, which was similar to H&E staining. Expression of CD177 can be used to represent infiltration of neutrophils, which may have potential prognostic value in PDAC.
Collapse
Affiliation(s)
- Yufu Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Tianyi Fang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Lining Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Hao Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Lei Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Zhidong Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China.
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China.
| |
Collapse
|
25
|
Li MH, Ruan LY, Chen C, Xing YX, Hong W, Du RH, Wang JS. Protective effects of Polygonum multiflorum on ischemic stroke rat model analysed by 1H NMR metabolic profiling. J Pharm Biomed Anal 2018; 155:91-103. [PMID: 29625260 DOI: 10.1016/j.jpba.2018.03.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 01/27/2023]
Abstract
Stroke is the third most common cause of death in most industrialized countries. Polygonum multiflorum (He-Shou-Wu, HSW) is one of the traditional Chinese medicines with multiple pharmacological activities which is widely used in Chinese recipe. This study aims to explore the protective effect of HSW on ischemic stroke rat model and to elucidate the underlying mechanisms. The mortality rate, neurological deficit, cerebral infarct size, histopathology, immunohistochemistry, biochemical parameters, quantitative real-time polymerase chain reaction and western blotting were used to access the treatment effects of HSW on ischemic stroke. Proton nuclear magnetic resonance (1H NMR) based metabolomics analysis disclosed that HSW could relieve stroke rats suffering from the ischemia/reperfusion injury by ameliorating the disturbed energy and amino acids metabolisms, alleviating the oxidative stress from reactive oxygen species and reducing the inflammation. HSW treatment increased levels of cellular antioxidants that scavenged reactive oxygen species during ischemia-reperfusion via the nuclear erythroid 2-related factor 2 signaling pathway, and exert anti-inflammatory effect by decreasing the levels of inflammatory factors such as cyclooxygenase-2, interleukin-1β, interleukin-6 and tumor necrosis factor-α. The integrated metabolomics approach showed its potential in understanding mechanisms of HSW in relieving ischemic stroke. Further study to develop HSW as an effective therapeutic agent to treat ischemic stroke is warranted.
Collapse
Affiliation(s)
- Ming-Hui Li
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Ling-Yu Ruan
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Cheng Chen
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Yue-Xiao Xing
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wei Hong
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Rong-Hui Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Medicine, Nanjing University, Nanjing 210093, China
| | - Jun-Song Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| |
Collapse
|
26
|
Zhang Q, Wang J, Zhang C, Liao S, Li P, Xu D, Lv Y, Yang M, Kong L. The components of Huang-Lian-Jie-Du-Decoction act synergistically to exert protective effects in a rat ischemic stroke model. Oncotarget 2018; 7:80872-80887. [PMID: 27779107 PMCID: PMC5348361 DOI: 10.18632/oncotarget.12645] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/28/2016] [Indexed: 11/25/2022] Open
Abstract
Huang-Lian-Jie-Du-Decoction (HLJDD, Oren-gedoku-to in Japanese) is commonly used in traditional Chinese medicine (TCM) to treat ischemic stroke. This study investigated the efficacy of various combinations of the major components of HLJDD, berberine (A), baicalin (B), and jasminoidin (C), on the treatment of ischemic stroke modeled by middle cerebral artery occlusion (MCAO) in rats. The effects of A, B and C individually and their combinations were investigated using proton nuclear magnetic resonance (1H NMR)-based metabolomics complemented with neurologic deficit scoring, infarct volume measurement, biochemistry, histopathology and immunohistochemistry, as well as quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Ischemic stroke produces severe oxidative stress, which induces further damage. Our results show that the ABC combination treatment increased levels of cellular antioxidants that scavenged reactive oxygen species during ischemia-reperfusion via the nuclear erythroid 2-related factor 2 (Nrf2) signaling cascade. These protective effects were not observed with the other treatments. These results suggest that a combination of component herbs in HLJDD exhibit stronger effects than the individual herbs alone. Our integrated metabolomics approach also provides a tractable, powerful tool for understanding the science behind TCM formulations.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Shanting Liao
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Pei Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Dingqiao Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Yan Lv
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| |
Collapse
|
27
|
Fu Y, Liu S, Zeng S, Shen H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol Cancer 2018; 17:62. [PMID: 29458370 PMCID: PMC5817854 DOI: 10.1186/s12943-018-0815-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant diseases worldwide. It is refractory to conventional treatments, and consequently has a documented 5-year survival rate as low as 7%. Increasing evidence indicates that activated pancreatic stellate cells (PSCs), one of the stromal components in tumor microenvironment (TME), play a crucial part in the desmoplasia, carcinogenesis, aggressiveness, metastasis associated with PDAC. Despite the current understanding of PSCs as a "partner in crime" to PDAC, detailed regulatory roles of PSCs and related microenvironment remain obscure. In addition to multiple paracrine signaling pathways, recent research has confirmed that PSCs-mediated tumor microenvironment may influence behaviors of PDAC via diverse mechanisms, such as rewiring metabolic networks, suppressing immune responses. These new activities are closely linked with treatment and prognosis of PDAC. In this review, we discuss the recent advances regarding new functions of activated PSCs, including PSCs-cancer cells interaction, mechanisms involved in immunosuppressive regulation, and metabolic reprogramming. It's clear that these updated experimental or clinical studies of PSCs may provide a promising approach for PDAC treatment in the near future.
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
28
|
Nrf2-Mediated Metabolic Reprogramming in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9304091. [PMID: 29670683 PMCID: PMC5833252 DOI: 10.1155/2018/9304091] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/16/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is one of the hallmarks of cancer. Nrf2 pathway is one of the critical signaling cascades involved in cell defense and survival against oxidative stress. The significance of Nrf2 in cancer metabolism begins to be recognized. In this minireview, we focus on the Nrf2-mediated cancer metabolic reprogramming and intend to highlight the role of Nrf2 in the regulation of malignant transformation, cancer proliferation, and the development of treatment resistance via metabolic adaptations. We hope for the development of noninvasive biomarkers and novel therapeutic approaches for cancer based on Nrf2-directed cancer metabolic reprogramming in the near future.
Collapse
|
29
|
Bhavsar C, Momin M, Khan T, Omri A. Targeting tumor microenvironment to curb chemoresistance via novel drug delivery strategies. Expert Opin Drug Deliv 2018; 15:641-663. [PMID: 29301448 DOI: 10.1080/17425247.2018.1424825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Tumor is a heterogeneous mass of malignant cells co-existing with non-malignant cells. This co-existence evolves from the initial developmental stages of the tumor and is one of the hallmarks of cancer providing a protumorigenic niche known as tumor microenvironment (TME). Proliferation, invasiveness, metastatic potential and maintenance of stemness through cross-talk between tumors and its stroma forms the basis of TME. AREAS COVERED The article highlights the developmental phases of a tumor from dysplasia to the formation of clinically detectable tumors. The authors discuss the mechanistic stages involved in the formation of TME and its contribution in tumor outgrowth and chemoresistance. The authors have reviewed various approaches for targeting TME and its hallmarks along with their advantages and pitfalls. The authors also highlight cancer stem cells (CSCs) that are resistant to chemotherapeutics and thus a primary reason for tumor recurrence thereby, posing a challenge for the oncologists. EXPERT OPINION Recent understanding of the cellular and molecular mechanisms involved in acquired chemoresistance has enabled scientists to target the tumor niche and TME and modulate and/or disrupt this communication leading to the transformation from a tumor-supportive niche environment to a tumor-non-supporting environment and give synergistic results towards an effective management of cancer.
Collapse
Affiliation(s)
- Chintan Bhavsar
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Munira Momin
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Tabassum Khan
- b Department of Quality Assurance and Pharmaceutical Chemistry, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Abdelwahab Omri
- c The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry , Laurentian University , Sudbury , ON , Canada
| |
Collapse
|
30
|
Experimental models of pancreatic cancer desmoplasia. J Transl Med 2018; 98:27-40. [PMID: 29155423 DOI: 10.1038/labinvest.2017.127] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 01/18/2023] Open
Abstract
Desmoplasia is a fibro-inflammatory process and a well-established feature of pancreatic cancer. A key contributor to pancreatic cancer desmoplasia is the pancreatic stellate cell. Various in vitro and in vivo methods have emerged for the isolation, characterization, and use of pancreatic stellate cells in models of cancer-associated fibrosis. In addition to cell culture models, genetically engineered animal models have been established that spontaneously develop pancreatic cancer with desmoplasia. These animal models are currently being used for the study of pancreatic cancer pathogenesis and for evaluating therapeutics against pancreatic cancer. Here, we review various in vitro and in vivo models that are being used or have the potential to be used to study desmoplasia in pancreatic cancer.
Collapse
|
31
|
Hamada S, Taguchi K, Masamune A, Yamamoto M, Shimosegawa T. Nrf2 promotes mutant K-ras/p53-driven pancreatic carcinogenesis. Carcinogenesis 2017; 38:661-670. [PMID: 29240881 DOI: 10.1093/carcin/bgx043] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/07/2017] [Indexed: 12/12/2022] Open
Abstract
The Keap1-Nrf2 system contributes to the maintenance of homeostasis by regulating oxidative stress responses in normal tissues and organs, and is exploited in various cancers for proliferation, survival and acquisition of therapy resistance. Pancreatic cancer remains one of the intractable cancers, despite the improved clinical outcomes of other types of cancer, due to its invasive and refractory nature to therapeutic intervention. The current study aimed to clarify the contribution of Nrf2 to pancreatic carcinogenesis using a pancreas-specific mutant K-ras and p53 (KPC) mouse model. Deletion of Nrf2 in KPC mice (KPCN) decreased the formation of precancerous lesions as well as the development of invasive pancreatic cancer. The pancreatic tumor-derived cancer cell lines from KPCN mouse showed decreased expression of glutathione S-transferases (GST), UDP glucuronosyltransferases (UGT) and ABC transporters. Along with these biochemical changes, cell lines from KPCN mice revealed increased sensitivity to oxidative stress and chemotherapeutic agent. The current study revealed that Nrf2 contributes to pancreatic carcinogenesis in a way distinct from the chemoresistance of lung and esophagus, and that Nrf2 could be a novel therapeutic target of pancreatic cancer.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
32
|
Wu Q, Tian Y, Zhang J, Zhang H, Gu F, Lu Y, Zou S, Chen Y, Sun P, Xu M, Sun X, Xia C, Chi H, Ying Zhu A, Tang D, Wang D. Functions of pancreatic stellate cell-derived soluble factors in the microenvironment of pancreatic ductal carcinoma. Oncotarget 2017; 8:102721-102738. [PMID: 29254283 PMCID: PMC5731993 DOI: 10.18632/oncotarget.21970] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer with poor prognosis because it is highly resistant to traditional chemotherapy and radiotherapy and it has a low rate of surgical resection eligibility. Pancreatic stellate cells (PSC) have become a research hotspot in recent years, and play a vital role in PDAC microenvironment by secreting soluble factors such as transforming growth factor β, interleukin-6, stromal cell-derived factor-1, hepatocyte growth factor and galectin-1. These PSC-derived cytokines and proteins contribute to PSC activation, participating in PDAC cell proliferation, migration, fibrosis, angiogenesis, immunosuppression, epithelial-mesenchymal transition, and chemoradiation resistance, leading to malignant outcome. Consequently, targeting these cytokines and proteins or their downstream signaling pathways is promising for treating PDAC.
Collapse
Affiliation(s)
- Qi Wu
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Ying Tian
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Jingqiu Zhang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Hongpeng Zhang
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Fengming Gu
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Yongdie Lu
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Shengnan Zou
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Yuji Chen
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Pengxiang Sun
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Mengyue Xu
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Xiaoming Sun
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Chao Xia
- Nanjing Medical University, Nanjing, P.R. China
| | - Hao Chi
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - A Ying Zhu
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Pancreatic stellate cells (PSCs) play an integral role in the pathogenesis of pancreatitis and pancreatic cancer. With the developing knowledge of this important cell type, we are at the cusp of developing effective therapies for the above diseases based upon targeting the PSC and modulating its function. RECENT FINDINGS The major themes of the recent PSC literature include: PSC interactions with the extracellular matrix and other stromal components; intracellular calcium physiology as drivers of mechanical interactions and necrosis; the relationship between proinflammatory, protumoural, angiogenic, and metabolic pathways in pancreatic necrosis, fibrosis, and carcinogenesis; and targeting of the stroma for antitumoural and antifibrotic effects. SUMMARY Traditionally, there have been few treatment options for pancreatitis and pancreatic cancer. The elucidation of the wide-ranging functions of PSCs provide an opportunity for treatments based on stromal reprogramming.
Collapse
|
34
|
Liu Q, Liao Q, Zhao Y. Chemotherapy and tumor microenvironment of pancreatic cancer. Cancer Cell Int 2017; 17:68. [PMID: 28694739 PMCID: PMC5498917 DOI: 10.1186/s12935-017-0437-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an extremely dismal malignance. Chemotherapy has been widely applied to treat this intractable tumor. It has exclusive tumor microenvironment (TME), characterized by dense desmoplasia and profound infiltrations of immunosuppressive cells. Interactions between stromal cells and cancer cells play vital roles to affect the biological behaviors of pancreatic cancer. Targeting the stromal components of pancreatic cancer has shown promising results. In addition to the direct toxic effects of chemotherapeutic drugs on cancer cells, they can also remodel the TME, eventually affecting their efficacy. Herein, we reviewed the following four aspects; (1) clinical landmark advances of chemotherapy in pancreatic cancer, since 2000; (2) interactions and mechanisms between stromal cells and pancreatic cancer cells; (3) remodeling effects and mechanisms of chemotherapy on TME; (4) targeting stromal components in pancreatic cancer.
Collapse
Affiliation(s)
- Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| |
Collapse
|
35
|
Wu YS, Chung I, Wong WF, Masamune A, Sim MS, Looi CY. Paracrine IL-6 signaling mediates the effects of pancreatic stellate cells on epithelial-mesenchymal transition via Stat3/Nrf2 pathway in pancreatic cancer cells. Biochim Biophys Acta Gen Subj 2016; 1861:296-306. [PMID: 27750041 DOI: 10.1016/j.bbagen.2016.10.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/11/2016] [Accepted: 10/11/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND We previously showed that pancreatic stellate cells (PSC) secreted interleukin (IL)-6 and promoted pancreatic ductal adenocarcinoma (PDAC) cell proliferation via nuclear factor erythroid 2 (Nrf2)-mediated metabolic reprogramming. Epithelial-mesenchymal transition (EMT) is a key process for the metastatic cascade. To study the mechanism of PDAC progression to metastasis, we investigated the role of PSC-secreted IL-6 in activating EMT and the involvement of Nrf2 in this process. METHODS Gene expression of IL-6 and IL-6Rα in PSC and PDAC cells was measured with qRT-PCR. The role of PSC-secreted IL-6, JAK/Stat3 signaling, and Nrf2 mediation on EMT-related genes expression was also examined with qRT-PCR. EMT phenotypes were assessed with morphological change, wound healing, migration, and invasion. RESULTS PSC expressed higher mRNA levels of IL-6 but lower IL-6Rα compared to PDAC cells. Neutralizing IL-6 in PSC secretion reduced mesenchymal-like morphology, migration and invasion capacity, and mesenchymal-like gene expression of N-cadherin, vimentin, fibronectin, collagen I, Sip1, Snail, Slug, and Twist2. Inhibition of JAK/Stat3 signaling induced by IL-6 repressed EMT and Nrf2 gene expression. Induction of Nrf2 activity by tert-butylhydroquinone (tBHQ) increased both EMT phenotypes and gene expression (N-cadherin, fibronectin, Twist2, Snail, and Slug) repressed by IL-6 neutralizing antibody. Simultaneous inhibition of Nrf2 expression with siRNA and Stat3 signaling further repressed EMT gene expression, indicating that Stat3/Nrf2 pathway mediates EMT induced by IL-6. CONCLUSIONS IL-6 from PSC promotes EMT in PDAC cells via Stat3/Nrf2 pathway. GENERAL SIGNIFICANCE Targeting Stat3/Nrf2 pathway activated by PSC-secreted IL-6 may provide a novel therapeutic option to improve the prognosis of PDAC.
Collapse
Affiliation(s)
- Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University of Graduate School of Medicine, Sendai, Miyagi Prefecture 980-8574, Japan
| | - Maw Shin Sim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|