1
|
Chai X, Zhang Y, Zhang W, Feng K, Jiang Y, Zhu A, Chen X, Di L, Wang R. Tumor Metabolism: A New Field for the Treatment of Glioma. Bioconjug Chem 2024; 35:1116-1141. [PMID: 39013195 DOI: 10.1021/acs.bioconjchem.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The clinical treatment of glioma remains relatively immature. Commonly used clinical treatments for gliomas are surgery combined with chemotherapy and radiotherapy, but there is a problem of drug resistance. In addition, immunotherapy and targeted therapies also suffer from the problem of immune evasion. The advent of metabolic therapy holds immense potential for advancing more efficacious and tolerable therapies against this aggressive disease. Metabolic therapy alters the metabolic processes of tumor cells at the molecular level to inhibit tumor growth and spread, and lead to better outcomes for patients with glioma that are insensitive to conventional treatments. Moreover, compared with conventional therapy, it has less impact on normal cells, less toxicity and side effects, and higher safety. The objective of this review is to examine the changes in metabolic characteristics throughout the development of glioma, enumerate the current methodologies employed for studying tumor metabolism, and highlight the metabolic reprogramming pathways of glioma along with their potential molecular mechanisms. Importantly, it seeks to elucidate potential metabolic targets for glioblastoma (GBM) therapy and summarize effective combination treatment strategies based on various studies.
Collapse
Affiliation(s)
- Xiaoqian Chai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yingjie Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Wen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Kuanhan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yingyu Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Anran Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Xiaojin Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| |
Collapse
|
2
|
Trejo-Solís C, Castillo-Rodríguez RA, Serrano-García N, Silva-Adaya D, Vargas-Cruz S, Chávez-Cortéz EG, Gallardo-Pérez JC, Zavala-Vega S, Cruz-Salgado A, Magaña-Maldonado R. Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells. Metabolites 2024; 14:249. [PMID: 38786726 PMCID: PMC11122955 DOI: 10.3390/metabo14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | | | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico 14330, Mexico
| | - Salvador Vargas-Cruz
- Departamento de Cirugía, Hospital Ángeles del Pedregal, Camino a Sta. Teresa, Ciudad de Mexico 10700, Mexico;
| | | | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de Mexico 14080, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| |
Collapse
|
3
|
Hu W, Yang Y, Cheng C, Tu Y, Chang H, Tsai K. Overexpression of malic enzyme is involved in breast cancer growth and is correlated with poor prognosis. J Cell Mol Med 2024; 28:e18163. [PMID: 38445776 PMCID: PMC10915829 DOI: 10.1111/jcmm.18163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Malic enzyme (ME) genes are key functional metabolic enzymes playing a crucial role in carcinogenesis. However, the detailed effects of ME gene expression on breast cancer progression remain unclear. Here, our results revealed ME1 expression was significantly upregulated in breast cancer, especially in patients with oestrogen receptor/progesterone receptor-negative and human epidermal growth factor receptor 2-positive breast cancer. Furthermore, upregulation of ME1 was significantly associated with more advanced pathological stages (p < 0.001), pT stage (p < 0.001) and tumour grade (p < 0.001). Kaplan-Meier analysis revealed ME1 upregulation was associated with poor disease-specific survival (DSS: p = 0.002) and disease-free survival (DFS: p = 0.003). Multivariate Cox regression analysis revealed ME1 upregulation was significantly correlated with poor DSS (adjusted hazard ratio [AHR] = 1.65; 95% CI: 1.08-2.52; p = 0.021) and DFS (AHR, 1.57; 95% CI: 1.03-2.41; p = 0.038). Stratification analysis indicated ME1 upregulation was significantly associated with poor DSS (p = 0.039) and DFS (p = 0.038) in patients with non-triple-negative breast cancer (TNBC). However, ME1 expression did not affect the DSS of patients with TNBC. Biological function analysis revealed ME1 knockdown could significantly suppress the growth of breast cancer cells and influence its migration ability. Furthermore, the infiltration of immune cells was significantly reduced when they were co-cultured with breast cancer cells with ME1 knockdown. In summary, ME1 plays an oncogenic role in the growth of breast cancer; it may serve as a potential biomarker of progression and constitute a therapeutic target in patients with breast cancer.
Collapse
Affiliation(s)
- Wan‐Chung Hu
- Department of Clinical Pathology and Medical Research, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Yi‐Fang Yang
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Ching‐Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Department of PediatricsTzu Chi UniversityHualienTaiwan
| | - Ya‐Ting Tu
- Department of ResearchTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Hong‐Tai Chang
- Department of SurgeryKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Kuo‐Wang Tsai
- Department of ResearchTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
- Department of NursingCardinal Tien Junior College of Healthcare and ManagementNew Taipei CityTaiwan
| |
Collapse
|
4
|
Afzal AR, Jeon J, Jung CH. Fumarase activity in NAD-dependent malic enzyme, MaeA, from Escherichia coli. Biochem Biophys Res Commun 2023; 678:144-147. [PMID: 37634412 DOI: 10.1016/j.bbrc.2023.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
NAD-dependent malic enzymes catalyze NAD reduction to NADH while converting malate to pyruvate and CO2. In this study, NAD was reduced to NADH by MaeA, NAD-dependent malic enzyme from Escherichia coli, when fumarate was used as substrate. This suggested that MaeA catalyzed the conversion of fumarate to malate and then malate to pyruvate. The K0.5 value for fumarate was determined as 13 mM, different from previously characterized fumarases in Escherichia coli. Fumarate inhibited the malic enzyme activity of MaeA where NAD reduction to NADH was examined in the presence of malate as substrate. Human ME2, an NAD-dependent malic enzyme, also converted NAD to NADH in the presence of fumarate, suggesting that the duplex activity as fumarase and malic enzyme might be conserved in various NAD-dependent malic enzymes. MaeB, NADP-dependent malic enzyme from Escherichia coli, did not reduce NADP to NADPH in the presence of fumarate, suggesting the fumarase activities of MaeA and ME2 were specific.
Collapse
Affiliation(s)
- Aqeel Rana Afzal
- Department of Medical Science, Chonam National University, Gwangju, 61186, South Korea
| | - Jinyoung Jeon
- Department of Medical Science, Chonam National University, Gwangju, 61186, South Korea
| | - Che-Hun Jung
- Department of Medical Science, Chonam National University, Gwangju, 61186, South Korea; Department of Chemistry, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
5
|
Kao Y, Chou CH, Huang LC, Tsai CK. Momordicine I suppresses glioma growth by promoting apoptosis and impairing mitochondrial oxidative phosphorylation. EXCLI JOURNAL 2023; 22:482-498. [PMID: 37534227 PMCID: PMC10391611 DOI: 10.17179/excli2023-6129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/04/2023]
Abstract
Glioblastoma (GBM) is the most common type of primary brain tumor. Patients with GBM have poor survival outcomes. Isolated components of Momordica charantia have anticancer effects. However, the bioactivity of M. charantia extracts against GBM remains unknown. We tested four major extracts of M. charantia and found that momordicine I reduced glioma cell viability without serious cytotoxic effects on astrocytes. Momordicine I suppressed glioma cell colony formation, proliferation, migration, and invasion. Momordicine I also induced apoptosis, intracellular reactive oxygen species (ROS) production, and senescence in glioma cells. Moreover, momordicine I decreased the oxidative phosphorylation capacity of glioma cells and inhibited tumor sphere formation in temozolomide (TMZ)-resistant GBM cells. We further explored whether the antiglioma effect of momordicine I may be related to cell cycle modulation and DLGPA5 expression. Our results indicate that the cytotoxic effect of momordicine I on glioma cells suggests its potential therapeutic application to GBM treatment. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Ying Kao
- Division of Neurosurgery, Department of Surgery, Taipei City Hospital Zhongxing Branch, Taipei 10341, Taiwan
- Taipei City University, Taipei 100234, Taiwan
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
6
|
Shimpi AA, Tan ML, Vilkhovoy M, Dai D, Roberts LM, Kuo J, Huang L, Varner JD, Paszek M, Fischbach C. Convergent Approaches to Delineate the Metabolic Regulation of Tumor Invasion by Hyaluronic Acid Biosynthesis. Adv Healthc Mater 2023; 12:e2202224. [PMID: 36479976 PMCID: PMC10238572 DOI: 10.1002/adhm.202202224] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Metastasis is the leading cause of breast cancer-related deaths and is often driven by invasion and cancer-stem like cells (CSCs). Both the CSC phenotype and invasion are associated with increased hyaluronic acid (HA) production. How these independent observations are connected, and which role metabolism plays in this process, remains unclear due to the lack of convergent approaches integrating engineered model systems, computational tools, and cancer biology. Using microfluidic invasion models, metabolomics, computational flux balance analysis, and bioinformatic analysis of patient data, the functional links between the stem-like, invasive, and metabolic phenotype of breast cancer cells as a function of HA biosynthesis are investigated. These results suggest that CSCs are more invasive than non-CSCs and that broad metabolic changes caused by overproduction of HA play a role in this process. Accordingly, overexpression of hyaluronic acid synthases (HAS) 2 or 3 induces a metabolic phenotype that promotes cancer cell stemness and invasion in vitro and upregulates a transcriptomic signature predictive of increased invasion and worse patient survival. This study suggests that HA overproduction leads to metabolic adaptations to satisfy the energy demands for 3D invasion of breast CSCs highlighting the importance of engineered model systems and multidisciplinary approaches in cancer research.
Collapse
Affiliation(s)
- Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Matthew L. Tan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Michael Vilkhovoy
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - David Dai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - L. Monet Roberts
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Joe Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Lingting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Jeffrey D. Varner
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
7
|
Hsieh JY, Chen KC, Wang CH, Liu GY, Ye JA, Chou YT, Lin YC, Lyu CJ, Chang RY, Liu YL, Li YH, Lee MR, Ho MC, Hung HC. Suppression of the human malic enzyme 2 modifies energy metabolism and inhibits cellular respiration. Commun Biol 2023; 6:548. [PMID: 37217557 DOI: 10.1038/s42003-023-04930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
Human mitochondrial NAD(P)+-dependent malic enzyme (ME2) is well-known for its role in cell metabolism, which may be involved in cancer or epilepsy. We present potent ME2 inhibitors based on cyro-EM structures that target ME2 enzyme activity. Two structures of ME2-inhibitor complexes demonstrate that 5,5'-Methylenedisalicylic acid (MDSA) and embonic acid (EA) bind allosterically to ME2's fumarate-binding site. Mutagenesis studies demonstrate that Asn35 and the Gln64-Tyr562 network are required for both inhibitors' binding. ME2 overexpression increases pyruvate and NADH production while decreasing the cell's NAD+/NADH ratio; however, ME2 knockdown has the opposite effect. MDSA and EA inhibit pyruvate synthesis and thus increase the NAD+/NADH ratio, implying that these two inhibitors interfere with metabolic changes by inhibiting cellular ME2 activity. ME2 silence or inhibiting ME2 activity with MDSA or EA decreases cellular respiration and ATP synthesis. Our findings suggest that ME2 is crucial for mitochondrial pyruvate and energy metabolism, as well as cellular respiration, and that ME2 inhibitors could be useful in the treatment of cancer or other diseases that involve these processes.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Kun-Chi Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan ROC
| | - Guang-Yaw Liu
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan ROC
| | - Jie-An Ye
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan ROC
| | - Yu-Tung Chou
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Yi-Chun Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Cheng-Jhe Lyu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Rui-Ying Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Yi-Liang Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Yen-Hsien Li
- Instrument Center, Office of Research and Development, National Chung Hsing University, Taichung, 40227, Taiwan ROC
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Mau-Rong Lee
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan ROC.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan ROC.
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC.
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 402, Taiwan ROC.
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan ROC.
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan ROC.
| |
Collapse
|
8
|
Rho SB, Byun HJ, Kim BR, Lee CH. Liver Kinase B1 Mediates Its Anti-Tumor Function by Binding to the N-Terminus of Malic Enzyme 3. Biomol Ther (Seoul) 2023; 31:330-339. [PMID: 37095735 PMCID: PMC10129855 DOI: 10.4062/biomolther.2023.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/26/2023] Open
Abstract
Liver kinase B1 (LKB1) is a crucial tumor suppressor involved in various cellular processes, including embryonic development, tumor initiation and progression, cell adhesion, apoptosis, and metabolism. However, the precise mechanisms underlying its functions remain elusive. In this study, we demonstrate that LKB1 interacts directly with malic enzyme 3 (ME3) through the N-terminus of the enzyme and identified the binding regions necessary for this interaction. The binding activity was confirmed to promote the expression of ME3 in an LKB1-dependent manner and was also shown to induce apoptosis activity. Furthermore, LKB1 and ME3 overexpression upregulated the expression of tumour suppressor proteins (p53 and p21) and downregulated the expression of antiapoptotic proteins (nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and B-cell lymphoma 2 (Bcl-2)). Additionally, LKB1 and ME3 enhanced the transcription of p21 and p53 and inhibited the transcription of NF-κB. Moreover, LKB1 and ME3 suppressed the phosphorylation of various components of the phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B signaling pathway. Overall, these results suggest that LKB1 promotes pro-apoptotic activities by inducing ME3 expression.
Collapse
Affiliation(s)
- Seung Bae Rho
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408
| | - Hyun Jung Byun
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Boh-Ram Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
9
|
Bhowmick R, Sarkar RR. Identification of potential microRNAs regulating metabolic plasticity and cellular phenotypes in glioblastoma. Mol Genet Genomics 2023; 298:161-181. [PMID: 36357622 DOI: 10.1007/s00438-022-01966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
MicroRNAs (miRNAs) play important role in regulating cellular metabolism, and are currently being explored in cancer. As metabolic reprogramming in cancer is a major mediator of phenotypic plasticity, understanding miRNA-regulated metabolism will provide opportunities to identify miRNA targets that can regulate oncogenic phenotypes by taking control of cellular metabolism. In the present work, we studied the effect of differentially expressed miRNAs on metabolism, and associated oncogenic phenotypes in glioblastoma (GBM) using patient-derived data. Networks of differentially expressed miRNAs and metabolic genes were created and analyzed to identify important miRNAs that regulate major metabolism in GBM. Graph network-based approaches like network diffusion, backbone extraction, and different centrality measures were used to analyze these networks for identification of potential miRNA targets. Important metabolic processes and cellular phenotypes were annotated to trace the functional responses associated with these miRNA-regulated metabolic genes and associated phenotype networks. miRNA-regulated metabolic gene subnetworks of cellular phenotypes were extracted, and important miRNAs regulating these phenotypes were identified. The most important outcome of the study is the target miRNA combinations predicted for five different oncogenic phenotypes that can be tested experimentally for miRNA-based therapeutic design in GBM. Strategies implemented in the study can be used to generate testable hypotheses in other cancer types as well, and design context-specific miRNA-based therapy for individual patient. Their usability can be further extended to other gene regulatory networks in cancer and other genetic diseases.
Collapse
Affiliation(s)
- Rupa Bhowmick
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Parkinson EK, Adamski J, Zahn G, Gaumann A, Flores-Borja F, Ziegler C, Mycielska ME. Extracellular citrate and metabolic adaptations of cancer cells. Cancer Metastasis Rev 2021; 40:1073-1091. [PMID: 34932167 PMCID: PMC8825388 DOI: 10.1007/s10555-021-10007-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022]
Abstract
It is well established that cancer cells acquire energy via the Warburg effect and oxidative phosphorylation. Citrate is considered to play a crucial role in cancer metabolism by virtue of its production in the reverse Krebs cycle from glutamine. Here, we review the evidence that extracellular citrate is one of the key metabolites of the metabolic pathways present in cancer cells. We review the different mechanisms by which pathways involved in keeping redox balance respond to the need of intracellular citrate synthesis under different extracellular metabolic conditions. In this context, we further discuss the hypothesis that extracellular citrate plays a role in switching between oxidative phosphorylation and the Warburg effect while citrate uptake enhances metastatic activities and therapy resistance. We also present the possibility that organs rich in citrate such as the liver, brain and bones might form a perfect niche for the secondary tumour growth and improve survival of colonising cancer cells. Consistently, metabolic support provided by cancer-associated and senescent cells is also discussed. Finally, we highlight evidence on the role of citrate on immune cells and its potential to modulate the biological functions of pro- and anti-tumour immune cells in the tumour microenvironment. Collectively, we review intriguing evidence supporting the potential role of extracellular citrate in the regulation of the overall cancer metabolism and metastatic activity.
Collapse
Affiliation(s)
- E Kenneth Parkinson
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK.
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Department of Experimental Genetics, Technical University of Munich, Munich, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Andreas Gaumann
- Institute of Pathology Kaufbeuren-Ravensburg, 87600, Kaufbeuren, Germany
| | - Fabian Flores-Borja
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| | - Christine Ziegler
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
11
|
Lee D, Zhang MS, Tsang FHC, Bao MHR, Xu IMJ, Lai RKH, Chiu DKC, Tse APW, Law CT, Chan CYK, Yuen VWH, Chui NNQ, Ng IOL, Wong CM, Wong CCL. Adaptive and Constitutive Activations of Malic Enzymes Confer Liver Cancer Multilayered Protection Against Reactive Oxygen Species. Hepatology 2021; 74:776-796. [PMID: 33619771 DOI: 10.1002/hep.31761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/18/2020] [Accepted: 01/03/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS HCC undergoes active metabolic reprogramming. Reactive oxygen species (ROS) are excessively generated in cancer cells and are neutralized by NADPH. Malic enzymes (MEs) are the less studied NADPH producers in cancer. APPROACH AND RESULTS We found that ME1, but not ME3, was regulated by the typical oxidative stress response pathway mediated by kelch-like ECH associated protein 1/nuclear factor erythroid 2-related factor (NRF2). Surprisingly, ME3 was constitutively induced by superenhancers. Disruption of any ME regulatory pathways decelerated HCC progression and sensitized HCC to sorafenib. Therapeutically, simultaneous blockade of NRF2 and a superenhancer complex completely impeded HCC growth. We show that superenhancers allow cancer cells to counteract the intrinsically high level of ROS through constitutively activating ME3 expression. When HCC cells encounter further episodes of ROS insult, NRF2 allows cancer cells to adapt by transcriptionally activating ME1. CONCLUSIONS Our study reveals the complementary regulatory mechanisms which control MEs and provide cancer cells multiple layers of defense against oxidative stress. Targeting both regulatory mechanisms represents a potential therapeutic approach for HCC treatment.
Collapse
Affiliation(s)
- Derek Lee
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Misty Shuo Zhang
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Felice Ho-Ching Tsang
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Macus Hao-Ran Bao
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Iris Ming-Jing Xu
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Robin Kit-Ho Lai
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - David Kung-Chun Chiu
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Aki Pui-Wah Tse
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Cheuk-Ting Law
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Cerise Yuen-Ki Chan
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Vincent Wai-Hin Yuen
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Noreen Nog-Qin Chui
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Irene Oi-Lin Ng
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong.,State Key Laboratory of Liver ResearchThe University of Hong KongHong KongHong Kong
| | - Chun-Ming Wong
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong.,State Key Laboratory of Liver ResearchThe University of Hong KongHong KongHong Kong
| | - Carmen Chak-Lui Wong
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong.,State Key Laboratory of Liver ResearchThe University of Hong KongHong KongHong Kong
| |
Collapse
|
12
|
Yang M, Chen X, Zhang J, Xiong E, Wang Q, Fang W, Li L, Fei F, Gong A. ME2 Promotes Proneural-Mesenchymal Transition and Lipogenesis in Glioblastoma. Front Oncol 2021; 11:715593. [PMID: 34381734 PMCID: PMC8351415 DOI: 10.3389/fonc.2021.715593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Malic enzyme 2 (ME2) catalyzes the formation of pyruvate from malic acid and is abnormally expressed in some tumors. However, the exact effects of ME2 on proneural–mesenchymal transition (PMT) and lipogenesis in glioblastoma multiforme (GBM) remain unexplored. Here, we found that ME2 expression was significantly higher in GBM than in normal brain tissues and negatively correlated with overall survival of patients with GBM. Furthermore, we demonstrated that ME2 was positively correlated with mesenchymal features in GBM and promoted proliferation, migration, and invasion of glioma cells. Moreover, ME2 upregulated the expression of mesenchymal markers (N-cadherin, vimentin, YKL40, and MET), whereas it inhibited the expression of proneural maker OLIG2, indicating that ME2 might promote PMT in GBM. We also found that ME2 inhibited the production of mitochondrial reactive oxygen species and AMPK phosphorylation, resulting in SREBP-1 maturation and nuclear localization and enhancing the ACSS2 lipogenesis pathway. Taken together, these results suggest that ME2 promotes PMT and is linked with reprogramming of lipogenesis via AMPK–SREBP-1–ACSS2 signaling in GBM. Therefore, ME2 has potential as a new classification marker in GBM and could provide a new approach to glioma treatment.
Collapse
Affiliation(s)
- Mengting Yang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xi Chen
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Junyao Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ermeng Xiong
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Qianqian Wang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenjing Fang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fei Fei
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Liu X, Chen JY, Chien Y, Yang YP, Chen MT, Lin LT. Overview of the molecular mechanisms of migration and invasion in glioblastoma multiforme. J Chin Med Assoc 2021; 84:669-677. [PMID: 34029218 DOI: 10.1097/jcma.0000000000000552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is one of the most devastating cancers, with an approximate median survival of only 16 months. Although some new insights into the fantastic heterogeneity of this kind of brain tumor have been revealed in recent studies, all subclasses of GBM still demonstrate highly aggressive invasion properties to the surrounding parenchyma. This behavior has become the main obstruction to current curative therapies as invasive GBM cells migrate away from these foci after surgical therapies. Therefore, this review aimed to provide a relatively comprehensive study of GBM invasion mechanisms, which contains an intricate network of interactions and signaling pathways with the extracellular matrix (ECM). Among these related molecules, TGF-β, the ECM, Akt, and microRNAs are most significant in terms of cellular procedures related to GBM motility and invasion. Moreover, we also review data indicating that Musashi-1 (MSI1), a neural RNA-binding protein (RBP), regulates GBM motility and invasion, maintains stem cell populations in GBM, and promotes drug-resistant GBM phenotypes by stimulating necessary oncogenic signaling pathways through binding and regulating mRNA stability. Importantly, these necessary oncogenic signaling pathways have a close connection with TGF-β, ECM, and Akt. Thus, it appears promising to find MSI-specific inhibitors or RNA interference-based treatments to prevent the actions of these molecules despite using RBPs, which are known as hard therapeutic targets. In summary, this review aims to provide a better understanding of these signaling pathways to help in developing novel therapeutic approaches with better outcomes in preclinical studies.
Collapse
Affiliation(s)
- Xian Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ju-Yu Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ming-Teh Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Education & Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Liang-Ting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Department of Health Technology and Informatics, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Prochownik EV, Wang H. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells. Cells 2021; 10:cells10040762. [PMID: 33808495 PMCID: PMC8066905 DOI: 10.3390/cells10040762] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Pyruvate occupies a central metabolic node by virtue of its position at the crossroads of glycolysis and the tricarboxylic acid (TCA) cycle and its production and fate being governed by numerous cell-intrinsic and extrinsic factors. The former includes the cell’s type, redox state, ATP content, metabolic requirements and the activities of other metabolic pathways. The latter include the extracellular oxygen concentration, pH and nutrient levels, which are in turn governed by the vascular supply. Within this context, we discuss the six pathways that influence pyruvate content and utilization: 1. The lactate dehydrogenase pathway that either converts excess pyruvate to lactate or that regenerates pyruvate from lactate for use as a fuel or biosynthetic substrate; 2. The alanine pathway that generates alanine and other amino acids; 3. The pyruvate dehydrogenase complex pathway that provides acetyl-CoA, the TCA cycle’s initial substrate; 4. The pyruvate carboxylase reaction that anaplerotically supplies oxaloacetate; 5. The malic enzyme pathway that also links glycolysis and the TCA cycle and generates NADPH to support lipid bio-synthesis; and 6. The acetate bio-synthetic pathway that converts pyruvate directly to acetate. The review discusses the mechanisms controlling these pathways, how they cross-talk and how they cooperate and are regulated to maximize growth and achieve metabolic and energetic harmony.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA 15213, USA
- The Hillman Cancer Center, UPMC, Pittsburgh, PA 15213, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15260, USA
- Correspondence: ; Tel.: +1-(412)-692-6795
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
15
|
Kang HG, Park JE, Lee SY, Choi JE, Do SK, Hong MJ, Lee JH, Jeong JY, Do YW, Lee EB, Shin KM, Lee WK, Choi SH, Lee YH, Seo HW, Yoo SS, Lee J, Cha SI, Kim CH, Cho S, Jheon S, Park JY. Genetic Polymorphisms in Activating Transcription Factor 3 Binding Site and the Prognosis of Early-Stage Non-Small Cell Lung Cancer. Oncology 2021; 99:336-344. [PMID: 33626541 DOI: 10.1159/000514131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Activating transcription factor 3 (ATF3) plays a significant role in cancer development and progression. We investigated the association between variants in expression quantitative trait loci (eQTLs) within ATF3 binding regions and the prognosis of non-small cell lung cancer (NSCLC) after surgery. METHODS A total of 772 patients with NSCLC who underwent curative surgery were enrolled. Using a public database (http://galaxyproject.org), we selected 104 single nucleotide polymorphisms (SNPs) in eQTLs in the ATF3 binding regions. The association of those SNPs with disease-free survival (DFS) was evaluated. RESULTS Among those SNPs, HAX1 rs11265425T>G was associated with significantly worse DFS (aHR = 1.30, 95% CI = 1.00-1.69, p = 0.05), and ME3 rs10400291C>A was associated with significantly better DFS (aHR = 0.66, 95% CI = 0.46-0.95, p = 0.03). Regarding HAX1 rs11265425T>G, the significant association remained only in adenocarcinoma, and the association was significant only in squamous cell carcinoma regarding ME3 rs10400291C>A. ChIP-qPCR assays showed that the two variants reside in active enhancers where H3K27Ac and ATF3 binding occurs. Promoter assays showed that rs11265425 G allele had significantly higher HAX1 promoter activity than T allele. HAX1 RNA expression was significantly higher in tumor than in normal lung, and higher in rs11265425 TG+GG genotypes than in TT genotype. Conversely, ME3 expression was significantly lower in tumor than in normal lung, and higher in rs10400291 AA genotype than in CC+CA genotypes. CONCLUSIONS In conclusion, this study shows that the functional polymorphisms in ATF3 binding sites, HAX1 rs11265425T>G and ME3 rs10400291C>A are associated with the clinical outcomes of patients in surgically resected NSCLC.
Collapse
Affiliation(s)
- Hyo-Gyoung Kang
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Eun Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea, .,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea,
| | - Jin Eun Choi
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sook Kyung Do
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Jeong Hong
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jang Hyuck Lee
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young Woo Do
- Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.,Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eung Bae Lee
- Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.,Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Min Shin
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won Ki Lee
- Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Ha Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hye Won Seo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University School of Medicine, Seoul, Republic of Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University School of Medicine, Seoul, Republic of Korea
| | - Jae Yong Park
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
16
|
You D, Du D, Zhao X, Li X, Ying M, Hu X. Mitochondrial malic enzyme 2 promotes breast cancer metastasis via stabilizing HIF-1α under hypoxia. Chin J Cancer Res 2021; 33:308-322. [PMID: 34321828 PMCID: PMC8286887 DOI: 10.21147/j.issn.1000-9604.2021.03.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/22/2021] [Indexed: 12/29/2022] Open
Abstract
Objective α-ketoglutarate (α-KG) is the substrate to hydroxylate collagen and hypoxia-inducible factor-1α (HIF-1α), which are important for cancer metastasis. Previous studies have shown that the upregulation of collagen prolyl 4-hydroxylase in breast cancer cells stabilizes the expression of HIF-1α by depleting α-KG levels. We hypothesized that mitochondrial malic enzyme 2 (ME2) might also affect HIF-1α expression via modulating α-KG levels in breast cancer cells. Methods We evaluated ME2 protein expression in 100 breast cancer patients using immunohistochemistry and correlated with clinicopathological indicators. The effect of ME2 knockout on cancer metastasis was evaluated using an orthotopic breast cancer model. The effect of ME2 knockout or knockdown on the levels of α-KG and HIF-1α proteins in breast cancer cell lines was determined both in vitro and in vivo. Results ME2 was found to be upregulated in the human breast cancerous tissues compared with the matched precancerous tissues (P<0.001). The elevated expression of ME2 was associated with a poor prognosis (P=0.019). ME2 upregulation was also related to lymph node metastasis (P=0.016), pathological staging (P=0.033), and vascular cancer embolus (P=0.014). Also, ME2 knockout significantly inhibited lung metastasisin vivo. In the tumors formed by ME2 knockout cells, the levels of α-KG were significantly increased and collagen hydroxylation level did not change significantly but HIF-1α protein expression was significantly decreased, compared to the control samples. In cell culture, cells with ME2 knockout or knockdown demonstrated significantly higher α-KG levels but significantly lower HIF-1α protein expression than control cells under hypoxia. Exogenous malate and α-KG exerted similar effect on HIF-1α in breast cancer cells to ME2 knockout or knockdown. Additionally, treatment with malate significantly decreased 4T1 breast cancer lung metastasis. ME2 expression was associated with HIF-1α levels in human breast cancer samples (P=0.008). Conclusions Our results provide evidence that upregulation of ME2 is associated with a poor prognosis of breast cancer patients and propose a mechanistic understanding of a link between ME2 and breast cancer metastasis.
Collapse
Affiliation(s)
- Duo You
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Danfeng Du
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory of Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China
| | - Xueke Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory of Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China
| | - Xinmin Li
- Department of Pathology, Women and Infants Hospital of Zhengzhou, Zhengzhou 450000, China
| | - Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
17
|
Simmen FA, Alhallak I, Simmen RCM. Malic enzyme 1 (ME1) in the biology of cancer: it is not just intermediary metabolism. J Mol Endocrinol 2020; 65:R77-R90. [PMID: 33064660 PMCID: PMC7577320 DOI: 10.1530/jme-20-0176] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/11/2020] [Indexed: 12/25/2022]
Abstract
Malic enzyme 1 (ME1) is a cytosolic protein that catalyzes the conversion of malate to pyruvate while concomitantly generating NADPH from NADP. Early studies identified ME1 as a mediator of intermediary metabolism primarily through its participatory roles in lipid and cholesterol biosynthesis. ME1 was one of the first identified insulin-regulated genes in liver and adipose and is a transcriptional target of thyroxine. Multiple studies have since documented that ME1 is pro-oncogenic in numerous epithelial cancers. In tumor cells, the reduction of ME1 gene expression or the inhibition of its activity resulted in decreases in proliferation, epithelial-to-mesenchymal transition and in vitro migration, and conversely, in promotion of oxidative stress, apoptosis and/or cellular senescence. Here, we integrate recent findings to highlight ME1's role in oncogenesis, provide a rationale for its nexus with metabolic syndrome and diabetes, and raise the prospects of targeting the cytosolic NADPH network to improve therapeutic approaches against multiple cancers.
Collapse
Affiliation(s)
- Frank A Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Iad Alhallak
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rosalia C M Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
18
|
NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther 2020; 5:231. [PMID: 33028807 PMCID: PMC7542157 DOI: 10.1038/s41392-020-00326-0] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/09/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms, and provides the reducing power for anabolic reactions and redox balance. NADPH homeostasis is regulated by varied signaling pathways and several metabolic enzymes that undergo adaptive alteration in cancer cells. The metabolic reprogramming of NADPH renders cancer cells both highly dependent on this metabolic network for antioxidant capacity and more susceptible to oxidative stress. Modulating the unique NADPH homeostasis of cancer cells might be an effective strategy to eliminate these cells. In this review, we summarize the current existing literatures on NADPH homeostasis, including its biological functions, regulatory mechanisms and the corresponding therapeutic interventions in human cancers, providing insights into therapeutic implications of targeting NADPH metabolism and the associated mechanism for cancer therapy.
Collapse
|
19
|
Wu C, Li H, Xiao Y, Deng W, Sun Z. Expression levels of SIX1, ME2, and AP2M1 in adenoid cystic carcinoma and mucoepidermoid carcinoma. Oral Dis 2020; 26:1687-1695. [PMID: 32564485 DOI: 10.1111/odi.13506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Cong‐Cong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Wei‐Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Zhi‐Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
- Department of Oral and Maxillofacial‐Head Neck Surgery School & Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
20
|
Zhang Q, Fu Y, Zhao Y, Cui S, Wang J, Liu F, Yuan Y, Galons H, Yu P, Teng Y. 5-Acetamido-1-(methoxybenzyl) isatin inhibits tumor cell proliferation, migration, and angiogenesis. RSC Adv 2019; 9:36690-36698. [PMID: 35539063 PMCID: PMC9075125 DOI: 10.1039/c9ra07002h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/31/2019] [Indexed: 01/09/2023] Open
Abstract
Indole and its derivatives are widely distributed in both animals and plants. Among its array of biological activities, the anti-tumor activity of indole has garnered much attention. Furthermore, the synthesis and activity of indole derivatives, including isatin, constitute a flourishing research topic. Previously, many isatin derivatives were synthesized by our group, and 5-acetamido-1-(methoxybenzyl) isatin was screened as a candidate anti-tumor agent. In this study, we found that 5-acetamido-1-(methoxybenzyl) isatin inhibited the proliferation of several tumor cell lines, especially the human leukemia cell line K562. Morphological observation suggested that 5-acetamido-1-(methoxybenzyl) isatin induced apoptosis and caused cell cycle arrest in K562 cells. Flow cytometry revealed that 5-acetamido-1-(methoxybenzyl) isatin induced mitochondrial pathway-mediated apoptosis in K562 cells. Moreover, it downregulated Cyclin B and CDC25C and upregulated p-CDC25C and p-CDK1 (Thr14), and induced K562 cell cycle arrest in the G2/M phase. Findings from wound healing as well as transwell assay determined that 5-acetamido-1-(methoxybenzyl) isatin could suppress migration and chemotaxis in HepG2 liver cancer cells. 5-Acetamido-1-(methoxybenzyl) isatin also inhibited angiogenesis of the human umbilical vein endothelial cell line HUVEC, determined via a cell tube formation study. A clone formation study indicated that 5-acetamido-1-(methoxybenzyl) isatin can inhibit tumor cell proliferation and population dependence in a concentration-dependent manner. Thus, our findings support that 5-acetamido-1-(methoxybenzyl) isatin could be used as a potential antitumor candidate in future investigations.
Collapse
Affiliation(s)
- Qian Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Ying Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Yufan Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Shanshan Cui
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Jing Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Fengxi Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Yuan Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Hervé Galons
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
- UCTBS, INSERM U1022, Université Paris Descartes 4 Avenue de l'Observatoire 75006 France
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
21
|
Hsieh JY, Shih WT, Kuo YH, Liu GY, Hung HC. Functional Roles of Metabolic Intermediates in Regulating the Human Mitochondrial NAD(P) +-Dependent Malic Enzyme. Sci Rep 2019; 9:9081. [PMID: 31235710 PMCID: PMC6591397 DOI: 10.1038/s41598-019-45282-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/30/2019] [Indexed: 02/08/2023] Open
Abstract
Human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME) has a dimer of dimers quaternary structure with two independent allosteric sites in each monomer. Here, we reveal the different effects of nucleotide ligands on the quaternary structure regulation and functional role of the human m-NAD(P)-ME exosite. In this study, size distribution analysis was utilized to investigate the monomer-dimer-tetramer equilibrium of m-NAD(P)-ME in the presence of different ligands, and the monomer-dimer (Kd,12) and dimer-tetramer (Kd,24) dissociation constants were determined with these ligands. With NAD+, the enzyme formed more tetramers, and its Kd,24 (0.06 µM) was 6-fold lower than the apoenzyme Kd,24 (0.34 µM). When ATP was present, the enzyme displayed more dimers, and its Kd,24 (2.74 µM) was 8-fold higher than the apoenzyme. Similar to the apoenzyme, the ADP-bound enzyme was present as a tetramer with a small amount of dimers and monomers. These results indicate that NAD+ promotes association of the dimeric enzyme into tetramers, whereas ATP stimulates dissociation of the tetrameric enzyme into dimers, and ADP has little effect on the tetrameric stability of the enzyme. A series of exosite mutants were created using site-directed mutagenesis. Size distribution analysis and kinetic studies of these mutants with NAD+ or ATP indicated that Arg197, Asn482 and Arg556 are essential for the ATP binding and ATP-induced dissociation of human m-NAD(P)-ME. In summary, the present results demonstrate that nucleotides perform discrete functions regulating the quaternary structure and catalysis of m-NAD(P)-ME. Such regulation by the binding of different nucleotides may be critically associated with the physiological concentrations of these ligands.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Ting Shih
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsuan Kuo
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Biochemistry, Microbiology & Immunology, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan. .,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan. .,iEGG & Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
22
|
Demarest TG, Babbar M, Okur MN, Dan X, Croteau DL, Fakouri NB, Mattson MP, Bohr VA. NAD+Metabolism in Aging and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055905] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging is a major risk factor for many types of cancer, and the molecular mechanisms implicated in aging, progeria syndromes, and cancer pathogenesis display considerable similarities. Maintaining redox homeostasis, efficient signal transduction, and mitochondrial metabolism is essential for genome integrity and for preventing progression to cellular senescence or tumorigenesis. NAD+is a central signaling molecule involved in these and other cellular processes implicated in age-related diseases and cancer. Growing evidence implicates NAD+decline as a major feature of accelerated aging progeria syndromes and normal aging. Administration of NAD+precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) offer promising therapeutic strategies to improve health, progeria comorbidities, and cancer therapies. This review summarizes insights from the study of aging and progeria syndromes and discusses the implications and therapeutic potential of the underlying molecular mechanisms involved in aging and how they may contribute to tumorigenesis.
Collapse
Affiliation(s)
- Tyler G. Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Mustafa N. Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Xiuli Dan
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Deborah L. Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Nima B. Fakouri
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
23
|
Sarfraz I, Rasul A, Hussain G, Hussain SM, Ahmad M, Nageen B, Jabeen F, Selamoglu Z, Ali M. Malic enzyme 2 as a potential therapeutic drug target for cancer. IUBMB Life 2018; 70:1076-1083. [PMID: 30160039 DOI: 10.1002/iub.1930] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/03/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
Reprogrammed metabolic profile is a biochemical fingerprint of cancerous cells, which represents one of the "hallmarks of cancer." The aberrant expression pattern of enzymatic machineries orchestrates metabolic activities into a platform that ultimately promotes cellular growth, survival, and proliferation. The NADP(+)-dependent mitochondrial malic enzyme 2 (ME2) has been widely appreciated due to its function as a provider of pyruvate and reducing power to the cell for biosynthesis of fatty acids and nucleotides along with maintenance of redox balance. Multiple lines of evidences have indicated that ME2 is a bonafide therapeutic target and novel biomarker which plays critical role during tumorigenesis. The objective of this review is to provide an update on the cancer-specific role of ME2 in order to explore its potential for therapeutic opportunities. Furthermore, we have discussed the potential of genetic and pharmacological inhibitors of ME2 in the light of previous research work for therapeutic advancements in cancer treatment. It is contemplated that additional investigations should focus on the use of ME2 inhibitors in combinational therapies as rational combinations of metabolic inhibitors and chemotherapy may have the ability to cure cancer. © 2018 IUBMB Life, 70(11):1076-1083, 2018.
Collapse
Affiliation(s)
- Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Faculty of Physical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zeliha Selamoglu
- Nigde Omer Halisdemir University, Faculty of Medicine, Department of Medical Biology, Nigde, Turkey
| | - Muhammad Ali
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|