1
|
Song P, Shen N, Wu Z, He S. Baicalein Inhibits Tumor Property of Hepatocellular Carcinoma Cells Through the Inactivation of the E2F Transcription Factor 1/Mediator Complex Subunit 7 Axis. Chem Biol Drug Des 2025; 105:e70063. [PMID: 39935236 DOI: 10.1111/cbdd.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy with poor prognosis. Baicalein, a natural compound, can regulate multiple cellular processes in various cancer types. In this study, we investigated the role of baicalein in regulating HCC and explored its potential mechanism. The expression of mediator complex subunit 7 (MED7) and E2F transcription factor 1 (E2F1) was analyzed by quantitative real-time polymerase chain reaction or Western blotting assay. Cell proliferation was assessed by cell colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration was analyzed by transwell assay and wound-healing assay. Cell invasion was analyzed by transwell assay. Angiogenic ability of HCC cells was assessed by tube formation assay. Dual-luciferase reporter assay and chromatin immunoprecipitation assay were performed to validate the association between E2F1 and MED7. The xenograft mouse model assay was conducted to determine the effects of baicalein and E2F1 overexpression on tumor formation. Immunohistochemistry assay was used to determine positive expression rates of proteins. Upregulation of MED7 and E2F1 expression was observed in both HCC tissues and cells. Knockdown of MED7 suppressed HCC cell proliferation, migration, invasion, and tube formation. Transcriptional activation of MED7 by E2F1 was demonstrated in HCC cells. Overexpression of MED7 mitigated the effects induced by E2F1 depletion in HCC cells. Additionally, baicalein treatment effectively inhibited the tumor property of HCC cells by decreasing E2F1 expression in both in vitro and in vivo models. Baicalein inhibited the tumor property of HCC cells through the inactivation of the E2F1/MED7 axis, highlighting its potential clinical application in the treatment of HCC.
Collapse
Affiliation(s)
- Pinghui Song
- Department of General Surgery, Shaanxi 215 Hospital of Nuclear Industry, Xianyang City, Shaanxi, China
| | - Naiying Shen
- Department of General Surgery, Shaanxi 215 Hospital of Nuclear Industry, Xianyang City, Shaanxi, China
| | - Zhongkun Wu
- Department of General Surgery, Shaanxi 215 Hospital of Nuclear Industry, Xianyang City, Shaanxi, China
| | - Sha He
- Department of Interventional, Shaanxi 215 Hospital of Nuclear Industry, Xianyang City, Shaanxi, China
| |
Collapse
|
2
|
Chuang KT, Chiou SS, Hsu SH. Recent Advances in Transcription Factors Biomarkers and Targeted Therapies Focusing on Epithelial-Mesenchymal Transition. Cancers (Basel) 2023; 15:3338. [PMID: 37444447 DOI: 10.3390/cancers15133338] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors involve many proteins in the process of transactivating or transcribing (none-) encoded DNA to initiate and regulate downstream signals, such as RNA polymerase. Their unique characteristic is that they possess specific domains that bind to specific DNA element sequences called enhancer or promoter sequences. Epithelial-mesenchymal transition (EMT) is involved in cancer progression. Many dysregulated transcription factors-such as Myc, SNAIs, Twists, and ZEBs-are key drivers of tumor metastasis through EMT regulation. This review summarizes currently available evidence related to the oncogenic role of classified transcription factors in EMT editing and epigenetic regulation, clarifying the roles of the classified conserved transcription factor family involved in the EMT and how these factors could be used as therapeutic targets in future investigations.
Collapse
Affiliation(s)
- Kai-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Bui AQ, Gunathilake M, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. Interaction between retinol intake and ISX rs5755368 polymorphism in colorectal cancer risk: a case-control study in a Korean population. Sci Rep 2023; 13:10187. [PMID: 37349365 PMCID: PMC10287678 DOI: 10.1038/s41598-023-36973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
This study aimed to examine whether the ISX rs5755368 genotypes are associated with the effect of dietary retinol consumption on CRC risk. We recruited 923 CRC patients and 1846 controls to identify the association between dietary retinol and CRC risk. Dietary retinol intake was assessed using a semiquantitative food frequency questionnaire. Genotype data were available for 1419 patients (600 cases and 819 controls) of the total study population. Genotyping was performed using an Illumina MEGA Expanded Array. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using unconditional logistic regression models. Retinol intake was inversely associated with CRC (OR = 0.49; 95% CI = 0.37-0.63). Participants with AA genotype showed lower CRC risk than subjects carrying the G allele (AG + GG) (OR = 0.76; 95% CI = 0.58-0.99). A 68% reduced risk of CRC was related to subjects who had the highest retinol intake and carrying AA genotype compared to the risk of participants consumed the lowest retinol intake and carrying the G allele (OR = 0.32; 95% CI = 0.20-0.53; P interaction = 0.026). Retinol intake could be a protective factor for CRC risk while this association could be strengthened among individuals carrying the homozygous AA genotype.
Collapse
Affiliation(s)
- Anh Quynh Bui
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | - Madhawa Gunathilake
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, 10408, Gyeonggi-do, South Korea
| | - Jeonghee Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, 10408, Gyeonggi-do, South Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | - Hee Jin Chang
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, 10408, Gyeonggi-do, South Korea.
| |
Collapse
|
4
|
Chuang K, Wang S, Hsu S, Wang L. Impact of bromodomain-containing protein 4 (BRD4) and intestine-specific homeobox (ISX) expression on the prognosis of patients with hepatocellular carcinoma' for better clarity. Cancer Med 2021; 10:5545-5556. [PMID: 34173348 PMCID: PMC8366091 DOI: 10.1002/cam4.4094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic regulation is important for cancer tumor metastasis and progression, including lung and liver cancer. However, the mechanism of epigenetic regulation in liver cancer leaves much to be discussed. According to a previous study, p300/CBP-associated factor (PCAF) mediated epithelial-mesenchymal transition (EMT) and promotes cancer metastasis by recruiting intestine-specific homeobox (ISX) and bromodomain-containing protein 4 (BRD4) in lung cancer. To figure out whether the three genes are also expressed in patients with hepatocellular carcinoma (HCC) or not, and their correlation with patients' outcome, BRD4, PCAF, and ISX messenger RNA (mRNA) expression levels in 377 patients with HCC were investigated using quantitative polymerase chain reaction and confocal fluorescence imaging. The correlation of the gene expression (PCAF, ISX, and BRD4) in liver cancer is also being investigated. Here, we show that the mRNA expression of PCAF, BRD4, and ISX in 377 paired specimens from patients with HCC, and the adjacent normal tissues exhibited a tumor-specific expression pattern, highly correlated with disease pathogenesis, patient survival time, progression stage, and poor prognosis. The results show that ISX and BRD4 can potentially be a target for improving the survival rate.
Collapse
Affiliation(s)
- Kai‐Ting Chuang
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Shen‐Nien Wang
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Division of General and Digestive SurgeryDepartment of SurgeryKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of SurgeryCollege of MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
- School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Shih‐Hsien Hsu
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiung Medical UniversityKaohsiungTaiwan
| | - Li‐Ting Wang
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Center of Applied GenomicsKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
5
|
Phosphorylation of intestine-specific homeobox by ERK1 modulates oncogenic activity and sorafenib resistance. Cancer Lett 2021; 520:160-171. [PMID: 34265398 DOI: 10.1016/j.canlet.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
Nuclear translocation regulated by phosphorylation is a key step in providing activated mitogen-activated protein kinases (MAPKs) access to their nuclear targets; however, the mechanisms linking MAPK-induced nuclear translocation and target gene expression mediating oncologic activity remain obscure. Here, we show that the MAPK extracellular signal-regulated kinase (ERK) 1, but not ERK2, phosphorylated intestine-specific homeobox (ISX), leading to its nuclear translocation and downstream oncogenic signaling. Mechanistically, ERK1 phosphorylated serine 183 of ISX, facilitating its nuclear translocation and downstream target gene expression. In contrast, dominant-negative ERK1 expression in hepatoma cells inhibited the nuclear translocation of ISX and the expression of downstream genes involved in cell proliferation, malignant transformation, and epithelial-mesenchymal transition in vitro and in vivo. An activating mutation in ISX (S183D) exhibited a constitutive nuclear localization and resistance to sorafenib. Additionally, in 576 paired clinical hepatocellular carcinoma (HCC) samples and adjacent normal tissues, ERK1 and ISX were co-expressed in a tumor-specific manner at mRNA and protein levels, while their mRNA levels showed significant correlation with survival duration, tumor size, number, and stage. These results highlight the significance of ERK1/ISX signaling in HCC progression and its potential as a prognostic and therapeutic target in HCC.
Collapse
|
6
|
Wang LT, Liu KY, Jeng WY, Chiang CM, Chai CY, Chiou SS, Huang MS, Yokoyama KK, Wang SN, Huang SK, Hsu SH. PCAF-mediated acetylation of ISX recruits BRD4 to promote epithelial-mesenchymal transition. EMBO Rep 2020; 21:e48795. [PMID: 31908141 PMCID: PMC7001155 DOI: 10.15252/embr.201948795] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022] Open
Abstract
Epigenetic regulation is important for cancer progression; however, the underlying mechanisms, particularly those involving protein acetylation, remain to be fully understood. Here, we show that p300/CBP‐associated factor (PCAF)‐dependent acetylation of the transcription factor intestine‐specific homeobox (ISX) regulates epithelial–mesenchymal transition (EMT) and promotes cancer metastasis. Mechanistically, PCAF acetylation of ISX at lysine 69 promotes the interaction with acetylated bromodomain‐containing protein 4 (BRD4) at lysine 332 in tumor cells, and the translocation of the resulting complex into the nucleus. There, it binds to promoters of EMT genes, where acetylation of histone 3 at lysines 9, 14, and 18 initiates chromatin remodeling and subsequent transcriptional activation. Ectopic ISX expression enhances EMT marker expression, including TWIST1, Snail1, and VEGF, induces cancer metastasis, but suppresses E‐cadherin expression. In lung cancer, ectopic expression of PCAF–ISX–BRD4 axis components correlates with clinical metastatic features and poor prognosis. These results suggest that the PCAF–ISX–BRD4 axis mediates EMT signaling and regulates tumor initiation and metastasis.
Collapse
Affiliation(s)
- Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kwei-Yan Liu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Yih Jeng
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Ming Chiang
- Department of Biochemistry, and Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chee-Yin Chai
- Department of Pathology, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyh-Shin Chiou
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyang Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center of Stem Cell Research, Kaohsing Medical University, Kaohsing, Taiwan.,Graduate Institute, The University of Tokyo, Tokyo, Japan
| | - Shen-Nien Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan.,Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Characterization of Novel Murine and Human PDAC Cell Models: Identifying the Role of Intestine Specific Homeobox Gene ISX in Hypoxia and Disease Progression. Transl Oncol 2019; 12:1056-1071. [PMID: 31174057 PMCID: PMC6556561 DOI: 10.1016/j.tranon.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 11/23/2022] Open
Abstract
Therapy failure and metastasis-associated mortality are stumbling blocks in the management of PDAC in patients. Failure of therapy is associated to intense hypoxic conditions of tumors. To develop effective therapies, a complete understanding of hypoxia-associated changes in genetic landscape of tumors during disease progression is needed. Because artificially immortalized cell lines do not rightly represent the disease progression, studying genetics of tumors in spontaneous models is warranted. In the current study, we generated a spectrum of spontaneous human (UM-PDC1; UM-PDC2) and murine (HI-PanL, HI-PancI, HI-PanM) models representing localized, invasive, and metastatic PDAC from a patient and transgenic mice (K-rasG12D/Pdxcre/Ink4a/p16-/). These spontaneous models grow vigorously under hypoxia and exhibit activated K-ras signaling, progressive loss of PTEN, and tumorigenicity in vivo. Whereas UM-PDC1 form localized tumors, the UM-PDC2 metastasize to lungs in mice. In an order of progression, these models exhibit genomic instability marked by gross chromosomal rearrangements, centrosome-number variations, Aurora-kinase/H2AX colocalization, loss of primary cilia, and α-tubulin acetylation. The RNA sequencing of hypoxic models followed by qRT-PCR validation and gene-set enrichment identified Intestine-Specific Homeobox factor (ISX)–driven molecular pathway as an indicator PDAC aggressivness. TCGA-PAAD clinical data analysis showed high ISX expression correlation to poor survival of PDAC patients, particularly women. The functional studies showed ISX as a regulator of i) invasiveness and migratory potential and ii) VEGF, MMP2, and NFκB activation in PDAC cells. We suggest that ISX is a potential druggable target and newly developed spontaneous cell models are valuable tools for studying mechanism and testing therapies for PDAC.
Collapse
|
8
|
Homeobox Genes and Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11050621. [PMID: 31058850 PMCID: PMC6562709 DOI: 10.3390/cancers11050621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of cancer, and is the third leading cause of cancer-related deaths each year. It involves a multi-step progression and is strongly associated with chronic inflammation induced by the intake of environmental toxins and/or viral infections (i.e., hepatitis B and C viruses). Although several genetic dysregulations are considered to be involved in disease progression, the detailed regulatory mechanisms are not well defined. Homeobox genes that encode transcription factors with homeodomains control cell growth, differentiation, and morphogenesis in embryonic development. Recently, more aberrant expressions of Homeobox genes were found in a wide variety of human cancer, including HCC. In this review, we summarize the currently available evidence related to the role of Homeobox genes in the development of HCC. The objective is to determine the roles of this conserved transcription factor family and its potential use as a therapeutic target in future investigations.
Collapse
|
9
|
TFDP3 confers chemoresistance in minimal residual disease within childhood T-cell acute lymphoblastic leukemia. Oncotarget 2018; 8:1405-1415. [PMID: 27902457 PMCID: PMC5352064 DOI: 10.18632/oncotarget.13630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/08/2016] [Indexed: 01/16/2023] Open
Abstract
Acquired drug resistance in childhood T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem. In this study, a novel gene therapy target for childhood T-ALL to overcome chemoresistance was discovered: TFDP3 increased in the minimal residual disease (MRD) positive childhood T-ALL patients. Then, we established a preclinical model of resistance to induction therapy to examine the functional relevance of TFDP3 to chemoresistance in MRD derived from Jurkat/E6-1. Jurkat xenografts in NOD/SCID mice were exposed to a four drug combination (VXLD) of vincristine (VCR), dexamethasone (DEX), L-asparaginase (L-asp) and daunorubicin (DNR). During the 4-week VXLD treatment, the level of TFDP3 increased 4-fold. High expression of TFDP3 was identified in the re-emerging lines (Jurkat/MRD) with increased chemoresistance, which is correlated with partially promoter demethylation of TFDP3. Downregulation of TFDP3 by RNA interference reversed chemoresistance in Jurkat/MRD accompanied by reinstated E2F1 activity that coincided with increased levels of p53, p73, and associated proapoptotic target genes. Importantly, TFDP3 silencing in vivo induced apparent benefit to overcome chemoresistance in combination with VXLD treatment. Collectively, TFDP3 confers chemoresistance in MRD within childhood T-ALL, indicating that TFDP3 is a potential gene therapy target for residual cancer.
Collapse
|
10
|
Hsu SH, Wang LT, Chai CY, Wu CC, Hsi E, Chiou SS, Wang SN. Aryl hydrocarbon receptor promotes hepatocellular carcinoma tumorigenesis by targeting intestine-specific homeobox expression. Mol Carcinog 2017; 56:2167-2177. [PMID: 28398627 DOI: 10.1002/mc.22658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/22/2017] [Accepted: 04/08/2017] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor (AHR), a major chemical sensor, is thought to play a role in various biological contexts, including cell cycle regulation and tumorigenesis. However, its regulatory mechanisms remain unclear. We propose herein a novel mechanism through which AHR promotes tumorigenesis by targeting expression of the oncogene intestine-specific homeobox (ISX) in hepatocellular carcinoma (HCC). Compared to paired tumor-adjacent tissues and non-HCC tumors, HCCs exhibited an increased and hierarchical pattern of AHR expression. Patients exhibiting high AHR expression had a significantly shorter survival duration, compared to those with low and medium expression. Functionally, AHR was found to target the newly discovered proto-oncogene, ISX, resulting in the increased expression of this gene and its downstream targets, CCND1 and E2F1. Ablation of AHR or ISX in hepatoma cells suppressed cell growth, whereas overexpression promoted cell proliferation and led to enhanced tumorigenic activity in vitro and in vivo. These results provide evidence to support a critical role for the AHR/ISX axis in HCC tumorigenesis and suggest its potential utility as a new therapeutic and prognostic target for HCC.
Collapse
Affiliation(s)
- Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Faculty of Medicine, Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Cheng Wu
- Department of Business Management, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Edward Hsi
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shyh-Shin Chiou
- Faculty of Medicine, Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shen-Nien Wang
- Division of Hepatobiliary Surgery, Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Wang LT, Chiou SS, Chai CY, Hsi E, Yokoyama KK, Wang SN, Huang SK, Hsu SH. Intestine-Specific Homeobox Gene ISX Integrates IL6 Signaling, Tryptophan Catabolism, and Immune Suppression. Cancer Res 2017. [PMID: 28625979 DOI: 10.1158/0008-5472.can-17-0090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The intestine-specific homeobox transcription factor intestine-specific homeobox (ISX) is an IL6-inducible proto-oncogene implicated in the development of hepatocellular carcinoma, but its mechanistic contributions to this process are undefined. In this study, we provide evidence that ISX mediates a positive feedback loop integrating inflammation, tryptophan catabolism, and immune suppression. We found that ISX-mediated IL6-induced expression of the tryptophan catabolic enzymes Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase in hepatocellular carcinoma cells, resulting in an ISX-dependent increase in the tryptophan catabolite kynurenine and its receptor aryl hydrocarbon receptor (AHR). Activation of this kynurenine/AHR signaling axis acted through a positive feedback mechanism to increase ISX expression and enhance cellular proliferation and tumorigenic potential. RNAi-mediated attenuation of ISX or AHR reversed these effects. In an IDO1-dependent manner, ectopic expression of ISX induced expression of genes encoding the critical immune modulators CD86 (B7-2) and programmed death ligand-1 (PD-L1), through which ISX conferred a significant suppressive effect on the CD8+ T-cell response. In hepatocellular carcinoma specimens, expression of IDO1, kynurenine, AHR, and PD-L1 correlated negatively with survival. Overall, our results identified a feed-forward mechanism of immune suppression in hepatocellular carcinoma organized by ISX, which involves kynurenine-AHR signaling and PD-L1, offering insights into immune escape by hepatocellular carcinoma, which may improve its therapeutic management. Cancer Res; 77(15); 4065-77. ©2017 AACR.
Collapse
Affiliation(s)
- Li-Ting Wang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyh-Shin Chiou
- Department of Pediatrics, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Edward Hsi
- Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shen-Nien Wang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Surgery, Pingtung Hospital, Ministry of Health and Welfare, Yuan, Taiwan.,Department of Surgery, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan.,Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Yang H, Zhang X, Cai XY, Wen DY, Ye ZH, Liang L, Zhang L, Wang HL, Chen G, Feng ZB. From big data to diagnosis and prognosis: gene expression signatures in liver hepatocellular carcinoma. PeerJ 2017; 5:e3089. [PMID: 28316892 PMCID: PMC5354077 DOI: 10.7717/peerj.3089] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/12/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma accounts for the overwhelming majority of primary liver cancers and its belated diagnosis and poor prognosis call for novel biomarkers to be discovered, which, in the era of big data, innovative bioinformatics and computational techniques can prove to be highly helpful in. METHODS Big data aggregated from The Cancer Genome Atlas and Natural Language Processing were integrated to generate differentially expressed genes. Relevant signaling pathways of differentially expressed genes went through Gene Ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes and Panther pathway enrichment analysis and protein-protein interaction network. The pathway ranked high in the enrichment analysis was further investigated, and selected genes with top priority were evaluated and assessed in terms of their diagnostic and prognostic values. RESULTS A list of 389 genes was generated by overlapping genes from The Cancer Genome Atlas and Natural Language Processing. Three pathways demonstrated top priorities, and the one with specific associations with cancers, 'pathways in cancer,' was analyzed with its four highlighted genes, namely, BIRC5, E2F1, CCNE1, and CDKN2A, which were validated using Oncomine. The detection pool composed of the four genes presented satisfactory diagnostic power with an outstanding integrated AUC of 0.990 (95% CI [0.982-0.998], P < 0.001, sensitivity: 96.0%, specificity: 96.5%). BIRC5 (P = 0.021) and CCNE1 (P = 0.027) were associated with poor prognosis, while CDKN2A (P = 0.066) and E2F1 (P = 0.088) demonstrated no statistically significant differences. DISCUSSION The study illustrates liver hepatocellular carcinoma gene signatures, related pathways and networks from the perspective of big data, featuring the cancer-specific pathway with priority, 'pathways in cancer.' The detection pool of the four highlighted genes, namely BIRC5, E2F1, CCNE1 and CDKN2A, should be further investigated given its high evidence level of diagnosis, whereas the prognostic powers of BIRC5 and CCNE1 are equally attractive and worthy of attention.
Collapse
Affiliation(s)
- Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xin Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao-yong Cai
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West Branch), Nanning, Guangxi, China
| | - Dong-yue Wen
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhi-hua Ye
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liang Liang
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West Branch), Nanning, Guangxi, China
| | - Lu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Han-lin Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen-bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
13
|
Derivate Isocorydine (d-ICD) Suppresses Migration and Invasion of Hepatocellular Carcinoma Cell by Downregulating ITGA1 Expression. Int J Mol Sci 2017; 18:ijms18030514. [PMID: 28264467 PMCID: PMC5372530 DOI: 10.3390/ijms18030514] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 01/07/2023] Open
Abstract
In our previous studies, we found that isocorydine (ICD) could be a potential antitumor agent in hepatocellular carcinoma (HCC). Derivate isocorydine (d-ICD), a more effective antitumor agent, has been demonstrated to inhibit proliferation and drug resistance in HCC. In order to investigate the potential role of d-ICD on HCC cell migration and its possible mechanism, wound healing assay, trans-well invasion assay, western blot analysis, and qRT-PCR were performed to study the migration and invasion ability of HCC cells as well as relevant molecular alteration following d-ICD treatment. Results indicated that the migration and invasion ability of HCC cells were suppressed when cultured with d-ICD. Meanwhile, the expression level of ITGA1 was markedly reduced. Furthermore, we found that ITGA1 promotes HCC cell migration and invasion in vitro, and that ITGA1 can partly reverse the effect of d-ICD-induced migration and invasion suppression in HCC cells. In addition, dual luciferase reporter assay and chromatin immunoprecipitation assay were used to study the expression regulation of ITGA1, and found that E2F1 directly upregulates ITGA1 expression and d-ICD inhibits E2F1 expression. Taken together, these results reveal that d-ICD inhibits HCC cell migration and invasion may partly by downregulating E2F1/ITGA1 expression.
Collapse
|
14
|
Wang LT, Chiou SS, Chai CY, Hsi E, Wang SN, Huang SK, Hsu SH. Aryl hydrocarbon receptor regulates histone deacetylase 8 expression to repress tumor suppressive activity in hepatocellular carcinoma. Oncotarget 2017; 8:7489-7501. [PMID: 27283490 PMCID: PMC5352337 DOI: 10.18632/oncotarget.9841] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
Histone deacetylase 8 (HDAC8), a unique member of class I histone deacetylases, shows remarkable correlation with advanced disease stage and multiple malignant tumors However, little is known about the contribution of HDAC8 to the tumorigenesis of hepatocellular carcinoma (HCC). The present study investigated the expression of HDAC8 regulated by the aryl hydrocarbon receptor (AHR) in HCC cell lines and tissues, and the roles of HDAC8 overexpression in cell proliferation, including potentially underlying mechanisms. We assessed the correlation between the clinic-pathological parameters and the expression of AHR and HDAC8. Further, we analyzed the AHR siRNA transfection and HDAC8 inhibitors to explore the functions of HDAC8 in HCC progression in vitro and in vivo. In a panel of 289 HCC patients, HDAC8 was shown to be highly correlated with AHR expression at both mRNA and protein levels. HCC patients with high AHR expression showed a shorter survival time than that with low AHR expression. We then found that the expression of both AHR and HDAC8 was significantly upregulated in both HCC cell lines and tumor tissues compared to human normal hepatocytes and matched non-tumor tissues. Furthermore, HDAC8 inhibition remarkably inhibited hepatoma cell proliferation and transformation activity via upregulation of RB1 in vitro and in vivo. Our data revealed an important role of the AHR-HDAC8 axis in promoting HCC tumorigenesis, thus identifying HDAC8 as a potential therapeutic target for HCC treatment.
Collapse
MESH Headings
- Aged
- Animals
- Antineoplastic Agents/pharmacology
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Binding Sites
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation/drug effects
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Kaplan-Meier Estimate
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Prognosis
- Promoter Regions, Genetic
- RNA Interference
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Retinoblastoma Binding Proteins/genetics
- Retinoblastoma Binding Proteins/metabolism
- Signal Transduction
- Time Factors
- Transfection
- Tumor Burden
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Edward Hsi
- Department of Genome Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shen-Nien Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Hepatobiliary Surgery, Department of Surgery, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Surgery, faculty of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Shau-Ku Huang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan 115, Taiwan
- Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|