1
|
Qu L, Wang F, Wang Y, Li Z. AJUBA promotes the proliferation, invasion and migration of NSCLC cells by activating the ERK/β-catenin pathway. Sci Rep 2025; 15:13123. [PMID: 40240814 PMCID: PMC12003803 DOI: 10.1038/s41598-025-98156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/09/2025] [Indexed: 04/18/2025] Open
Abstract
Accumulating evidence indicates that AJUBA acts as a potential target for new therapeutics to treat cancers. Nevertheless, the role of AJUBA in non-small cell lung cancer (NSCLC) remains unclear. In the current study, immunohistochemistry (IHC) showed that expression of AJUBA was upregulated in 67.55% of NSCLC tumor samples and was associated with tumor size, lymph node metastasis, advanced tumor stage, poor differentiation and poor prognosis. Loss-of-function assays of AJUBA produced by silencing RNA (siAJUBA) significantly inhibited the proliferation, invasion and migration of H1299 and A549 cell lines. Mechanistically, inhibition of extracellular signal-regulated kinases (ERKs) blocked the AJUBA-induced proliferation, invasion and migration of NSCLC cells, and decreased the expression of proteins related to the endothelial-mesenchymal transition (EMT). Silencing of AJUBA repressed tumor growth and led to a decrease in p-ERK, β-catenin and N-cadherin in vivo. In conclusion,, overexpression of AJUBA facilitates the proliferation and motility of NSCLC cells via the ERK and Wnt/β-catenin pathways. AJUBA may be useful as a prognostic marker which may provide a promising approach for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lianyue Qu
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Fan Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Yuxiang Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Zixuan Li
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China.
- Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China.
| |
Collapse
|
2
|
Schiappacassi M, Spizzo R, Polesel J, Musco L, Doliana R, Pellizzari L, Lupato V, Fanetti G, Vaccher E, Serraino D, Barzan L, Sulfaro S, Giacomarra V, Franchin G, Baldassarre G. Molecular profiling of head and neck squamous cell carcinomas in North-eastern Italy identifies possible tumour cell vulnerabilities. Transl Oncol 2025; 51:102221. [PMID: 39616986 DOI: 10.1016/j.tranon.2024.102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/24/2024] [Accepted: 11/23/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Head and Neck Squamous Cell Cancer (HNSCC) originates from the oral cavity, oropharynx, hypopharynx and larynx, and it ranks sixth among global cancers. Despite modest 5-year survival gains, the integration of molecular personalization lags behind and there is an urgent need to develop novel therapies and biomarkers. MATERIAL AND METHODS This study outlined the somatic mutational profile of 15 HNSCC-enriched genes in a case series from North-eastern Italy, the region with the highest national HNSCC incidence. We conducted a comparative analysis with prior case studies and assessed the prognostic implications of the mutations that we found in these genes. RESULTS Consistent with previous studies, oral cavity tumours showed a lower gene mutation frequency. We highlighted a significant enrichment of somatic AJUBA mutations in the hypopharyngeal region, linked to a poorer prognosis. Moreover, KMT2C mutations co-occurring with CDKN2A or NOTCH1 mutations were associated with a worse prognosis. At the same time, only 7 % of the cases exhibited mutations that are predictive biomarker in HNSCC according to compelling clinical evidence but that need further investigation in a clinical trial setting. CONCLUSION Our findings underlined novel differences in somatic gene mutations among the four anatomic sites. However, at present, the identified mutations cannot yet be considered predictive biomarkers either for the lack of supporting clinical findings or for the lack of approved targeted therapies in HNSCC. This underscores the imperative for continued investigation into the biology of HNSCC to unveil novel vulnerabilities that can be leveraged to enhance patient treatment strategies.
Collapse
Affiliation(s)
- Monica Schiappacassi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, Aviano (PN), 33081, Italy
| | - Riccardo Spizzo
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, Aviano (PN), 33081, Italy
| | - Jerry Polesel
- Epidemiology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, Aviano (PN), 33081, Italy
| | - Lorena Musco
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, Aviano (PN), 33081, Italy
| | - Roberto Doliana
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, Aviano (PN), 33081, Italy
| | - Luca Pellizzari
- Scientific Directorate, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, Aviano (PN), 33081, Italy
| | - Valentina Lupato
- Division of Otorhinolaryngology, Azienda Ospedaliera Santa Maria degli Angeli, via Montereale 24, 33170 Pordenone, Italy
| | - Giuseppe Fanetti
- Department of Radiotherapy, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, Aviano (PN), 33081, Italy
| | - Emanuela Vaccher
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, Aviano (PN), 33081, Italy
| | - Diego Serraino
- Epidemiology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, Aviano (PN), 33081, Italy
| | | | - Sandro Sulfaro
- Division of Surgical Pathology, Azienda Ospedaliera Santa Maria degli Angeli, via Montereale 24, 33170 Pordenone, Italy
| | - Vittorio Giacomarra
- Division of Otorhinolaryngology, Azienda Ospedaliera Santa Maria degli Angeli, via Montereale 24, 33170 Pordenone, Italy
| | - Giovanni Franchin
- Department of Radiotherapy, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, Aviano (PN), 33081, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, Aviano (PN), 33081, Italy.
| |
Collapse
|
3
|
Akhlaghipour I, Moghbeli M. Matrix metalloproteinases as the critical regulators of cisplatin response and tumor cell invasion. Eur J Pharmacol 2024; 982:176966. [PMID: 39216742 DOI: 10.1016/j.ejphar.2024.176966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Cisplatin (CDDP) as one of the most common first-line chemotherapy drugs plays a vital role in the treatment of a wide range of malignant tumors. Nevertheless, CDDP resistance is observed as a therapeutic challenge in a large number of cancer patients. Considering the CDDP side effects in normal tissues, predicting the CDDP response of cancer patients can significantly help to choose the appropriate therapeutic strategy. In this regard, investigating the molecular mechanisms involved in CDDP resistance can lead to the introduction of prognostic markers in cancer patients. Matrix metalloproteinases (MMPs) have critical roles in tissue remodeling and cell migration through extracellular matrix degradation. Therefore, defects in MMPs functions can be associated with tumor metastasis and chemo resistance. In the present review, we discussed the role of MMPs in CDDP response and tumor cell invasion. PubMed, Scopus, Google Scholar, and Web of Science were searched using "MMP", "cisplatin", and "cancer" keywords for data retrieval that was limited to Apr 20, 2024. It has been reported that MMPs can increase CDDP resistance in tumor cells as the effectors of PI3K/AKT, MAPK, and NF-κB signaling pathways or independently through the regulation of structural proteins, autophagy, and epithelial-to-mesenchymal transition (EMT) process. This review has an effective role in introducing MMPs as the prognostic markers and therapeutic targets in CDDP-resistant cancer patients.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Lange C, Brüggemann J, Thüner T, Jauckus J, Strowitzki T, Germeyer A. Changes in the expression of cancer- and metastasis-related genes and proteins after metformin treatment under different metabolic conditions in endometrial cancer cells. Heliyon 2023; 9:e16678. [PMID: 37313172 PMCID: PMC10258389 DOI: 10.1016/j.heliyon.2023.e16678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
Research question Hyperinsulinemia and elevated estrogen levels are known risk factors for endometrial cancer (EC) development and are associated with obesity, type 2 diabetes mellitus (T2DM), insulin resistance, among others. Metformin, an insulin-sensitizing drug, displays anti-tumor effects in cancer patients, including EC, but the mechanism of action is still not completely understood. In the present study, the effects of metformin on gene and protein expression were investigated in pre- and postmenopausal EC in vitro models in order to identify candidates that are potentially involved in the drug's anti-cancer mechanism. Design After treating the cells with metformin (0.1 and 1.0 mmol/L), changes in the expression of >160 cancer- and metastasis-related gene transcripts were evaluated with RNA arrays. A total of 19 genes and 7 proteins were selected for a follow-up expression analysis, including further treatment conditions, in order to evaluate the influence of hyperinsulinemia and hyperglycemia on metformin-induced effects. Results Changes in the expression of BCL2L11, CDH1, CDKN1A, COL1A1, PTEN, MMP9 and TIMP2 were analyzed on gene and protein level. The consequences resulting from the detected expression changes as well as the influence of varying environmental influences are discussed in detail. With the presented data, we contribute to a better understanding of the direct anti-cancer activity of metformin as well as its underlying mechanism of action in EC cells. Conclusions Although further research will be necessary to confirm the data, the influence of different environmental settings on metformin-induced effects could be highlighted with the presented data. Additionally, gene and protein regulation were not similar in the pre- and postmenopausal in vitro models.
Collapse
|
5
|
Dharavath B, Butle A, Pal A, Desai S, Upadhyay P, Rane A, Khandelwal R, Manavalan S, Thorat R, Sonawane K, Vaish R, Gera P, Bal M, D'Cruz AK, Nair S, Dutt A. Role of miR-944/MMP10/AXL- axis in lymph node metastasis in tongue cancer. Commun Biol 2023; 6:57. [PMID: 36650344 PMCID: PMC9845355 DOI: 10.1038/s42003-023-04437-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Occult lymph-node metastasis is a crucial predictor of tongue cancer mortality, with an unmet need to understand the underlying mechanism. Our immunohistochemical and real-time PCR analysis of 208 tongue tumors show overexpression of Matrix Metalloproteinase, MMP10, in 86% of node-positive tongue tumors (n = 79; p < 0.00001). Additionally, global profiling for non-coding RNAs associated with node-positive tumors reveals that of the 11 significantly de-regulated miRNAs, miR-944 negatively regulates MMP10 by targeting its 3'-UTR. We demonstrate that proliferation, migration, and invasion of tongue cancer cells are suppressed by MMP10 knockdown or miR-944 overexpression. Further, we show that depletion of MMP10 prevents nodal metastases using an orthotopic tongue cancer mice model. In contrast, overexpression of MMP10 leads to opposite effects upregulating epithelial-mesenchymal-transition, mediated by a tyrosine kinase gene, AXL, to promote nodal and distant metastasis in vivo. Strikingly, AXL expression is essential and sufficient to mediate the functional consequence of MMP10 overexpression. Consistent with our findings, TCGA-HNSC data suggests overexpression of MMP10 or AXL positively correlates with poor survival of the patients. In conclusion, our results establish that the miR-944/MMP10/AXL- axis underlies lymph node metastases with potential therapeutic intervention and prediction of nodal metastases in tongue cancer patients.
Collapse
Affiliation(s)
- Bhasker Dharavath
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Ashwin Butle
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Ankita Pal
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sanket Desai
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Pawan Upadhyay
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Aishwarya Rane
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Risha Khandelwal
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sujith Manavalan
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Kavita Sonawane
- Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Parel, Mumbai, 400012, India
| | - Richa Vaish
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
- Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Parel, Mumbai, 400012, India
| | - Poonam Gera
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
- Tissue Biorepository, Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Munita Bal
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Parel, Mumbai, 400012, India
| | - Anil K D'Cruz
- Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Parel, Mumbai, 400012, India
- Apollo Cancer Center, Apollo Hospitals, CBD Belapur, Navi Mumbai, 400614, India
| | - Sudhir Nair
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
- Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Parel, Mumbai, 400012, India.
| | - Amit Dutt
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
6
|
Desai P, Awatiger MM, Mane DR. Evaluation of Immunoexpression of AJUBA Protein in Normal Oral Mucosa and Oral Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2023; 31:1-8. [PMID: 36222508 DOI: 10.1097/pai.0000000000001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/18/2022] [Indexed: 12/13/2022]
Abstract
AJUBA is multifunctional scaffold protein which belongs to Zyxin family of proteins. It is known to have dual role in cancer as a tumor promoter and tumor suppressor. AJUBA has a key role in systemic malignancies like esophageal squamous cell carcinoma, colorectal cancer, cervical, breast, prostate cancer, etc. But there is very sparse literature available regarding its expression profile in oral squamous cell carcinoma (OSCC) and moreover its expression has not been observed in normal oral mucosa (NOM). Thus, the aim of this research is to explore the expression profile of AJUBA by immunohistochemical method in NOM and OSCC. Furthermore, we also evaluated the association of AJUBA expression with clinicopathologic parameters. A total of 84 samples of formalin fixed paraffin embedded tissue blocks comprising of 42 cases each of NOM and OSCC were subjected to detect immunoexpression of AJUBA. We found enhanced intense immune-expression of AJUBA in OSCC cases than compared with NOM and found to be statistically significant. The parameters specific to histologic tumor grade and inflammatory response in OSCC also found to have statistically significant with AJUBA expression. Our study is first of its kind to reveal AJUBA expression in basal and suprabasal layer of NOM suggestive of its definitive role in differentiation and stratification process. We also observed its intense expression in peripheral cell of tumor islands of OSCC cases, which can suggest its possible role in tumor growth and progression.
Collapse
Affiliation(s)
- Priyanka Desai
- Department of Oral Pathology and Microbiology, KLE VK Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | | | | |
Collapse
|
7
|
Radiosensitivity in Non-Small-Cell Lung Cancer by MMP10 through the DNA Damage Repair Pathway. JOURNAL OF ONCOLOGY 2023; 2023:5636852. [PMID: 36908704 PMCID: PMC10005878 DOI: 10.1155/2023/5636852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
NSCLC (non-small-cell lung cancer) is an aggressive form of lung cancer and accompanies high morbidity and mortality. This study investigated the function and associated mechanism of MMP10 during radiotherapy of NSCLC. MMP10 expression in patients and their overall survival rate were assessed through GEPIA. Protein expression was tested by western blotting. Radioresistance was detected in vitro by apoptosis and clonogenic assay. The extent of DNA damage and repair was revealed by the comet test and γH2AX foci test. High MMP10 levels in specimens of lung adenocarcinoma were related to poor patient outcomes. Clonogenic and apoptosis assays revealed that MMP10 knockdown in A549 cells initiated radiosensitization. Furthermore, MMP10 siRNA increased damage to the DNA in NSCLC cells, while MMP10 was observed to participate in DNA damage repair post-ionizing radiation. Thus, after irradiation, MMP10 plays an essential role in NSCLC through the repair pathway of DNA damage; regulating MMP10 for NSCLC radiosensitivity might have potential treatment implications in radiotherapy of NSCLC.
Collapse
|
8
|
Zheng J, Chen X, Huang B, Li J. A novel immune-related radioresistant lncRNAs signature based model for risk stratification and prognosis prediction in esophageal squamous cell carcinoma. Front Genet 2022; 13:921902. [PMID: 36147506 PMCID: PMC9485730 DOI: 10.3389/fgene.2022.921902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022] Open
Abstract
Background and purpose: Radioresistance remains a major reason of radiotherapeutic failure in esophageal squamous cell carcinoma (ESCC). Our study is to screen the immune-related long non-coding RNA (ir-lncRNAs) of radiation-resistant ESCC (rr-ESCC) via Gene Expression Omnibus (GEO) database and to construct a prognostic risk model. Methods: Microarray data (GSE45670) related to radioresistance of ESCC was downloaded from GEO. Based on pathologic responses after chemoradiotherapy, patients were divided into a non-responder (17 samples) and responder group (11 samples), and the difference in expression profiles of ir-lncRNAs were compared therein. Ir-lncRNA pairs were constructed for the differentially expressed lncRNAs as prognostic variables, and the microarray dataset (GSE53625) was downloaded from GEO to verify the effect of ir-lncRNA pairs on the long-term survival of ESCC. After modelling, patients are divided into high- and low-risk groups according to prognostic risk scores, and the outcomes were compared within groups based on the COX proportional hazards model. The different expression of ir-lncRNAs were validated using ECA 109 and ECA 109R cell lines via RT-qPCR. Results: 26 ir-lncRNA genes were screened in the GSE45670 dataset with differential expression, and 180 ir-lncRNA pairs were constructed. After matching with ir-lncRNA pairs constructed by GSE53625, six ir-lncRNA pairs had a significant impact on the prognosis of ESCC from univariate analysis model, of which three ir-lncRNA pairs were significantly associated with prognosis in multivariate COX analysis. These three lncRNA pairs were used as prognostic indicators to construct a prognostic risk model, and the predicted risk scores were calculated. With a median value of 2.371, the patients were divided into two groups. The overall survival (OS) in the high-risk group was significantly worse than that in the low-risk group (p < 0.001). The 1-, 2-, and 3-year prediction performance of this risk-model was 0.666, 0.702, and 0.686, respectively. In the validation setting, three ir-lncRNAs were significantly up-regulated, while two ir-lncRNAs were obviouly down-regulated in the responder group. Conclusion: Ir-lncRNAs may be involved in the biological regulation of radioresistance in patients with ESCC; and the prognostic risk-model, established by three ir-lncRNAs pairs has important clinical value in predicting the prognosis of patients with rr-ESCC.
Collapse
Affiliation(s)
- Jianqing Zheng
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaohui Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Bifen Huang
- Department of Obstetrics and Gynecology, Quanzhou Medical College People’s Hospital Affiliated, Fuzhou, Fujian, China
| | - Jiancheng Li
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- *Correspondence: Jiancheng Li,
| |
Collapse
|
9
|
Song N, Liu J, Zhang K, Yang J, Cui K, Miao Z, Zhao F, Meng H, Chen L, Chen C, Li Y, Shao M, Su W, Wang H. The LIM Protein AJUBA is a Potential Oncogenic Target and Prognostic Marker in Human Cancer via Pan-Cancer Analysis. Front Cell Dev Biol 2022; 10:921897. [PMID: 35898403 PMCID: PMC9309301 DOI: 10.3389/fcell.2022.921897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose: The LIM (Lin-11, Isl1, MEC-3) domain protein AJUBA is involved in multiple biological functions, and its aberrant expression is related to the occurrence and progression of various cancers. However, there are no analytical studies on AJUBA in pan-cancer. Methods: We performed a comprehensive pan-cancer analysis and explored the potential oncogenic roles of AJUBA, including gene expression, genetic mutation, protein phosphorylation, clinical diagnostic biomarker, prognosis, and AJUBA-related immune infiltration based on The Cancer Genome Atlas and Genotype-Tissue Expression databases. Results: The results revealed that the expression of AJUBA highly correlated with poor clinical outcomes in patients with different types of cancer. Meanwhile, AJUBA expression was positively correlated with cancer-associated fibroblasts in many human cancers, such as breast invasive carcinoma, colon adenocarcinoma, brain lower-grade glioma, lung adenocarcinoma (LUAD), and ovarian serous cystadenocarcinoma (OV). Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that AJUBA is mainly involved in protein serine/threonine kinase activity, cell–cell junction, covalent chromatin modification, and Hippo signaling pathway. Conclusion: The pan-cancer study reveals the oncogenic roles of AJUBA and provides a comprehensive understanding of the molecular biological genetic information of AJUBA in various tumors.
Collapse
Affiliation(s)
- Na Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ke Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Kai Cui
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhuang Miao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Feiyue Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongjing Meng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lu Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chong Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yushan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Minglong Shao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Haijun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- *Correspondence: Haijun Wang,
| |
Collapse
|
10
|
Dommann N, Gavini J, Sánchez-Taltavull D, Baier FA, Birrer F, Loforese G, Candinas D, Stroka D. LIM protein Ajuba promotes liver cell proliferation through its involvement in DNA replication and DNA damage control. FEBS Lett 2022; 596:1746-1764. [PMID: 35535434 DOI: 10.1002/1873-3468.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
The LIM-domain protein Ajuba is associated with cell proliferation, a fundamental process of tissue regeneration and cancer. We report that in the liver, Ajuba expression is increased during regeneration and in tumor cells and tissues. Knockout of Ajuba using CRISPR/Cas9 is embryonic lethal in mice. shRNA targeting of Ajuba reduces cell proliferation, delays cell entry into S-phase, reduces cell survival and tumor growth in vivo, and increases expression of the DNA damage marker γH2AX. Ajuba binding partners include proteins involved in DNA replication and damage, such as SKP2, MCM2, MCM7 and RPA70. Taken together, our data support that Ajuba promotes liver cell proliferation associated with development, regeneration, and tumor growth and is involved in DNA replication and damage repair.
Collapse
Affiliation(s)
- Noëlle Dommann
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Jacopo Gavini
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Daniel Sánchez-Taltavull
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Felix Alexander Baier
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Fabienne Birrer
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Giulio Loforese
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| |
Collapse
|
11
|
Ajuba Overexpression Promotes Breast Cancer Chemoresistance and Glucose Uptake through TAZ-GLUT3/Survivin Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3321409. [PMID: 35178446 PMCID: PMC8844350 DOI: 10.1155/2022/3321409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022]
Abstract
The LIM protein Ajuba has been implicated in the development of human cancers. To date, its expression pattern and biological significance in breast cancers (BC) have not been fully investigated. In the current study, we examined Ajuba protein levels in 93 invasive ductal carcinoma specimens by immunohistochemistry. The Ajuba expression level was elevated in breast cancer tissue compared with normal tissue. Ajuba overexpression is correlated with advanced tumor-node-metastasis (TNM) stage, positive node status, and adverse patient outcomes. The Ajuba protein level was also higher in BC cell lines compared to normal breast epithelial cell line MCF-10A. Ectopically expressed Ajuba in MCF-7 cells stimulated in vitro and in vivo cell growth, invasion, cell cycle progression, and decreased paclitaxel-induced apoptosis. RNA-sequencing (RNA-seq) followed by gene set enrichment analysis (GSEA) analysis showed that Ajuba overexpression regulated the Hippo signaling pathway. Ajuba overexpression also increased glucose uptake and increased expression of TAZ, GLUT3, and Survivin. TAZ knockdown abolished the role of Ajuba on GLUT3 and Survivin induction. The ChIP assay showed that TEAD4, a major TAZ binding transcription factor, could bind to the GLUT3 and Survivin promoter regions. In conclusion, our data demonstrated that elevated Ajuba expression is correlated with poor BC prognosis and regulated malignant behavior through TAZ-GLUT3/Survivin signaling in BC cells.
Collapse
|
12
|
Bioinformatics Characterization of Candidate Genes Associated with Gene Network and miRNA Regulation in Esophageal Squamous Cell Carcinoma Patients. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study aimed to identify potential therapeutic targets for esophageal squamous cell carcinoma (ESCC). The gene expression profile GSE161533 contained 84 samples, in that 28 tumor tissues and 28 normal tissues encoded as ESCC patients were retrieved from the Gene Expression Omnibus database. The obtained data were validated and screened for differentially expressed genes (DEGs) between normal and tumor tissues with the GEO2R tool. Next, the protein–protein network (PPI) was constructed using the (STRING 2.0) and reconstructed with Cytoscape 3.8.2, and the top ten hub genes (HGsT10) were predicted using the Maximal Clique Centrality (MCC) algorithm of the CytoHubba plugin. The identified hub genes were mapped in GSE161533, and their expression was determined and compared with The Cancer Genome Atlas (TCGA.) ESCC patient’s samples. The overall survival rate for HGsT10 wild and mutated types was analyzed with the Gene Expression Profiling Interactive Analysis2 (GEPIA2) server and UCSC Xena database. The functional and pathway enrichment analysis was performed using the WebGestalt database with the reference gene from lumina human ref 8.v3.0 version. The promoter methylation for the HGsT10 was identified using the UALCAN server. Additionally, the miRNA-HGsT10 regulatory network was constructed to identify the top ten hub miRNAs (miRT10). Finally, we identified the top ten novel driving genes from the DEGs of GSE161533 ESCC patient’s sample using a multi-omics approach. It may provide new insights into the diagnosis and treatment for the ESCC affected patients early in the future.
Collapse
|
13
|
Zhang J, Guo Y, Ma Y, Wang L, Li W, Zhang M, Zhao J, Hu Y, Yu H, Hu G. miR-433-3p Targets AJUBA to Inhibit Malignant Progression of Glioma. Neuroimmunomodulation 2022; 29:44-54. [PMID: 34518486 DOI: 10.1159/000518084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Glioma is the most aggressive and malignant type of tumors among primary intracranial tumors. miR-433-3p has been verified to be correlated with the formation and progression of many types of cancers. METHODS In this study, the effects of miR-433-3p and AJUBA on the proliferation, migration, and invasion of glioma and the molecular mechanisms were investigated. We analyzed bioinformatics databases and conducted cell biology experiments to determine that compared with adjacent tissue and normal cells, the expression level of miR-433-3p in glioma tissue and cells was lower, while the expression level of AJUBA was higher. Overexpressing miR-433-3p could significantly inhibit the proliferation, migration, and invasion of glioma cells and promote cell apoptosis. RESULTS In addition, after overexpressing miR-433-3p and AJUBA, it was found that overexpressing AJUBA could attenuate the inhibitory effect of overexpressing miR-433-3p on the proliferation, migration, and invasion of glioma cells, which suggested that miR-433-3p regulated the biological function of glioma by downregulating AJUBA expression. CONCLUSION These results proved that miR-433-3p could target to inhibit the expression of AJUBA, thus inhibiting the biological function and malignant progression of glioma.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Yihang Guo
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Yanrong Ma
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Lipeng Wang
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Weiyuan Li
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Manyu Zhang
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Jiaming Zhao
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Yueming Hu
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Hongmei Yu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Guozhi Hu
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| |
Collapse
|
14
|
Gallerani G, Rossi T, Valgiusti M, Angeli D, Fici P, De Fanti S, Bandini E, Cocchi C, Frassineti GL, Bonafè M, Fabbri F. CNA Profiling of Single CTCs in Locally Advanced Esophageal Cancer Patients during Therapy Highlights Unexplored Molecular Pathways. Cancers (Basel) 2021; 13:6369. [PMID: 34944989 PMCID: PMC8699413 DOI: 10.3390/cancers13246369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Here, we monitored the evolution of CTCs spread in 11 patients affected by locally advanced EC who were undergoing therapy. METHODS In this perspective study, we designed multiple blood biopsies from individual patients: before and after neoadjuvant chemo-radio therapy and after surgery. We developed a multi-target array, named Grab-all assay, to estimate CTCs for their epithelial (EpCAM/E-Cadherin/Cytokeratins) and mesenchymal/stem (N-Cadherin/CD44v6/ABCG2) phenotypes. Identified CTCs were isolated as single cells by DEPArray, subjected to whole genome amplification, and copy number aberration (CNA) profiles were determined. Through bioinformatic analysis, we assessed the genomic imbalance of single CTCs, investigated specific focal copy number changes previously reported in EC and aberrant pathways using enrichment analysis. RESULTS Longitudinal monitoring allowed the identification of CTCs in at least one time-point per patient. Through single cell CNA analysis, we revealed that CTCs showed significantly dynamic genomic imbalance during treatment. Individual CTCs from relapsed patients displayed a higher degree of genomic imbalance relative to disease-free patients' groups. Genomic aberrations previously reported in EC occurred mostly in post-neoadjuvant therapy CTCs. In-depth analysis showed that networks enrichment in all time-point CTCs were inherent to innate immune system. Transcription/gene regulation, post-transcriptional and epigenetic modifications were uniquely affected in CTCs of relapsed patients. CONCLUSIONS Our data add clues to the comprehension of the role of CTCs in EC aggressiveness: chromosomal aberrations on genes related to innate immune system behave as relevant to the onset of CTC-status, whilst pathways of transcription/gene regulation, post-transcriptional and epigenetic modifications seem linked to patients' outcome.
Collapse
Affiliation(s)
- Giulia Gallerani
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (T.R.); (P.F.); (E.B.); (C.C.); (F.F.)
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (T.R.); (P.F.); (E.B.); (C.C.); (F.F.)
| | - Martina Valgiusti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.V.); (G.L.F.)
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Pietro Fici
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (T.R.); (P.F.); (E.B.); (C.C.); (F.F.)
| | - Sara De Fanti
- Interdepartmental Centre “Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)”, University of Bologna, 40126 Bologna, Italy;
| | - Erika Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (T.R.); (P.F.); (E.B.); (C.C.); (F.F.)
| | - Claudia Cocchi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (T.R.); (P.F.); (E.B.); (C.C.); (F.F.)
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.V.); (G.L.F.)
| | - Massimiliano Bonafè
- Department of Experimental and Diagnostic Medicine, University of Bologna, 40126 Bologna, Italy;
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (T.R.); (P.F.); (E.B.); (C.C.); (F.F.)
| |
Collapse
|
15
|
Identification of Key Genes Related to the Prognosis of Esophageal Squamous Cell Carcinoma Based on Chip Re-Annotation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Esophageal cancer (EC) is one of the deadliest cancers worldwide. However, reliable biomarkers for early diagnosis, or those for the prognosis of therapy, remain unfulfilled goals for its subtype esophageal squamous cell carcinoma (ESCC). The purpose of this study was to identify reliable biomarkers for the diagnosis and prognosis of ESCC by gene chip re-annotation technique and downstream bioinformatics analysis. In our research, the GSE53624 dataset was downloaded from the GEO database. Then, we reannotated the gene expression probe and obtained the gene expression matrix. Differential expressed genes (DEGs) were found by R packages and they were subjected to Gene Ontology enrichment analysis and protein–protein interaction (PPI) network construction. As a result, a total of 28,885 mRNA probes were reannotated, among which 210 down-regulated and 80 up-regulated DEGs were screened out. By combining these genes set in clinical prognosis information and Western blot analysis, we found four genes with diagnostic and prognostic significance, including MMP13, SPP1, MMP10, and COL1A1. Furthermore, markers of infiltrating immune cells exhibited different DEG-related immune infiltration patterns.
Collapse
|
16
|
Kong D, Long D, Liu B, Pei D, Cao N, Zhang G, Xia Z, Luo M. Downregulation of long non-coding RNA LOC101928477 correlates with tumor progression by regulating the epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Thorac Cancer 2021; 12:1303-1311. [PMID: 33713583 PMCID: PMC8088935 DOI: 10.1111/1759-7714.13858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the deadliest malignancies. There is a growing body of evidence showing that long non‐coding RNAs (lncRNAs) play critical roles in ESCC oncogenesis. The present study aimed to explore the role of LOC101928477, a newly discovered lncRNA, in the development and metastasis of ESCC. Methods In this study, real‐time PCR, western blotting, cell counting kit‐8 (CCK‐8), flow cytometry, colony formation, wound healing, transwell migration/invasion assay, immunofluorescence, and immunohistochemistry were used. We also applied an in situ xenograft mouse model and a lung metastasis mouse model to verify our findings. Results We determined that LOC101928477 expression was inhibited in ESCC tissue and ESCC cell lines when compared with controls. Moreover, forced expression of LOC101928477 effectively inhibited ESCC cell proliferation, colony formation, migration, and invasion via suppression of epithelial‐mesenchymal transition (EMT). Furthermore, LOC101928477 overexpression inhibited in situ tumor growth and lung metastasis in a mouse model. Conclusions Together, our results suggested that LOC101928477 could be a novel suppressor gene involved in ESCC progression.
Collapse
Affiliation(s)
- Demiao Kong
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dali Long
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bo Liu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dengke Pei
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Na Cao
- Department of Logistics, Guizhou Provincial People's Hospital, Guizhou, Guiyang, China
| | - Guihua Zhang
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Meng Luo
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
17
|
Le Y, He Y, Bai M, Wang Y, Wu J, Yu L. Knockout of Ajuba Attenuates the Growth and Migration of Hepatocellular Carcinoma Cells. Cytogenet Genome Res 2021; 160:650-658. [PMID: 33640888 DOI: 10.1159/000512264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Yichen Le
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yi He
- School of Life Sciences, Fudan University, Shanghai, China
| | - Meirong Bai
- School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Ying Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaxue Wu
- School of Life Sciences, Fudan University, Shanghai, China,
| | - Long Yu
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Schleicher K, Schramek D. AJUBA: A regulator of epidermal homeostasis and cancer. Exp Dermatol 2021; 30:546-559. [PMID: 33372298 DOI: 10.1111/exd.14272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
The epidermis, outermost layer of the skin, is constantly renewing itself through proliferative and differentiation processes. These processes are vital to maintain proper epidermal integrity during skin development and homeostasis and for preventing skin diseases and cancers. The biological mechanisms that permit this balancing act are vast, where individual pathway regulators are known, but the exact regulatory control and cross-talk between simultaneously turning one biological pathway on and an opposing one off remain elusive. This review explores the diverse roles the scaffolding protein AJUBA plays during epidermal homeostasis and cancer. Initially identified for its role in promoting meiotic progression in oocytes through Grb2 and MAP kinase activity, AJUBA also maintains cytoskeletal tension permitting epidermal tissue development and responds to retinoic acid committing cells to initiate development of surface epidermal layer. AJUBA regulates proliferation of skin stem cells through Hippo and Wnt signalling and encourages mitotic commitment through Aurora-A, Aurora-B and CDK1. In addition, AJUBA also induces epidermal differentiation to maintain appropriate epidermal thickness and barrier function by activating Notch signalling and stabilizing catenins and actin during cellular remodelling. AJUBA also plays an imperative context-dependent tumor-promoting and tumor-suppressive role within epithelial cancers. AJUBA's abundant roles within the epidermis signify its importance as a molecular switchboard, vetting multiple signalling pathways to control epidermal biology.
Collapse
Affiliation(s)
- Krista Schleicher
- Molecular, Structural and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Faculty of Medicine, Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Schramek
- Molecular, Structural and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Faculty of Medicine, Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Stucky A, Gao L, Sun L, Li SC, Chen X, Park TH, Cai J, Kabeer MH, Zhang X, Sinha UK, Zhong JF. Evidence for AJUBA-catenin-CDH4-linked differentiation resistance of mesenchymal stem cells implies tumorigenesis and progression of head and neck squamous cell carcinoma: a single-cell transcriptome approach. BLOOD AND GENOMICS 2021; 5:29-39. [PMID: 34368804 PMCID: PMC8346230 DOI: 10.46701/bg.2021012021106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing number of reports indicate that mesenchymal stem cells (MSCs) play an essential role in promoting tumorigenesis and progression of head and neck squamous cell carcinoma (HNSCC). However, the molecular mechanisms underlying this process remain unclear. Using the MSC model system, this study analyzes the molecular pathway by which differentiation resistant MSCs promote HNSCC. MSCs were cultured in osteogenic differentiation media and harvested on days 12 and 19. Cells were stained for cell differentiation analysis using Alizarin Red. The osteogenesis-resistant MSCs (OR-MSCs) and MSC-differentiation-derived osteoblasts (D-OSTBs) were identified and subjected to the single-cell transcriptome analysis. Gene-specific analyses of these two sub-populations were performed for the patterns of differential expression. A total of 1 780 differentially expressed genes were determined to distinguish OR-MSCs significantly from D-OSTB. Notably, AJUBA, β-catenin, and CDH4 expression levels were upregulated considerably within the OR-MSCs compared to D-OSTBs. To confirm their clinical relevance, a survey of a clinical cohort revealed a high correlation among the expression levels of AJUBA, β-catenin and CDH4. The results shed new light that OR-MSCs participate in the development of HNSCC via a pathway mediated by AJUBA, β-catenin, CDH4, and CTNNB1, thereby implying that MSC-based therapy is a promising therapeutic approach in the management of HNSCC.
Collapse
Affiliation(s)
- Andres Stucky
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li Gao
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lan Sun
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shengwen Calvin Li
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children's Research Institute, Children's Hospital of Orange County (CHOC), Orange, CA 92868, USA
- Department of Neurology, University of California - Irvine School of Medicine, Orange, CA 92868, USA
| | - Xuelian Chen
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tiffany H. Park
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jin Cai
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, Children's Hospital of Orange County, Orange, CA 92868, USA
- Department of Surgery, University of California - Irvine School of Medicine, Orange, CA 92868, USA
| | - Xi Zhang
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Uttam K. Sinha
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jiang F. Zhong
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
20
|
Huang X, Li J, Li M, Huang J, Jiang X, Fu H, Wu J, Bao M, Wang S, Zhang M, Gao G. Polyphenol-Enriched Extracts from Trapa acornis Husks Inhibit Her2-Positive SK-BR-3 Breast Cancer Cell Proliferation and In Vivo Tumor Angiogenesis. Nutr Cancer 2020; 73:1145-1156. [PMID: 32672134 DOI: 10.1080/01635581.2020.1792951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The study aimed to investigate the antitumor effects of Trapa acornis husks (TAH) extract on SK-BR-3 cells of Her2-positive breast cancer. The bioactive compounds of TAH extracts were analyzed qualitatively and quantitatively by Ultra-Performance Liquid Chromatography/Mass Spectrometry (UPLC-MS)/high-performance liquid chromatographic system (HPLC). The effects of TAH extracts on cell proliferation, cell cycle, and apoptosis of SK-BR-3 cells were determined by CCK-8 and flow cytometry. Besides, the In Vivo antitumor effect of TAH extracts was detected. UPLC-MS/HPLC showed that the main bioactive compounds of TAH were gallic acid and galloylglucose derivatives. TAH extracts significantly inhibited the proliferation of SK-BR-3 cells in a dose- and time-dependent manner (P < 0.01). With the increase of TAH extracts concentration, cells in G2/M stage were increased and cell apoptosis was significantly increased. Immunohistochemical analysis showed that TAH extracts can significantly reduce the positive expression rate of Ki67 and Factor VIII index in tumor tissues. The mRNA expression levels of VEGF, MMP2, MMP9, and uPA were reduced after TAH extracts intervention (P < 0.01). TAH extracts also decreased the protein expression of p-Her2, p-ERK1/2, VEGF, MMP2, MMP9, and uPA (P < 0.01). In conclusion, polyphenol-enriched extracts from TAH might inhibit breast cancer cell proliferation and In Vivo tumor angiogenesis.
Collapse
Affiliation(s)
- Xuan Huang
- Key Laboratory of Natural Medicine and Health Food R & D Technology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Jun Li
- Jiaxing Vocational Technical College, Jiaxing, Zhejiang, PR China
| | - Mingjuan Li
- Key Laboratory of Natural Medicine and Health Food R & D Technology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Jia Huang
- Key Laboratory of Natural Medicine and Health Food R & D Technology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Xiaohong Jiang
- Key Laboratory of Natural Medicine and Health Food R & D Technology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Hongfei Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, PR China
| | - Jiming Wu
- Key Laboratory of Natural Medicine and Health Food R & D Technology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Mingyang Bao
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Shuzhen Wang
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Muyuan Zhang
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Guangchun Gao
- Key Laboratory of Natural Medicine and Health Food R & D Technology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| |
Collapse
|
21
|
Dommann N, Sánchez-Taltavull D, Eggs L, Birrer F, Brodie T, Salm L, Baier FA, Medová M, Humbert M, Tschan MP, Beldi G, Candinas D, Stroka D. The LIM Protein Ajuba Augments Tumor Metastasis in Colon Cancer. Cancers (Basel) 2020; 12:cancers12071913. [PMID: 32679899 PMCID: PMC7409172 DOI: 10.3390/cancers12071913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer, along with its high potential for recurrence and metastasis, is a major health burden. Uncovering proteins and pathways required for tumor cell growth is necessary for the development of novel targeted therapies. Ajuba is a member of the LIM domain family of proteins whose expression is positively associated with numerous cancers. Our data shows that Ajuba is highly expressed in human colon cancer tissue and cell lines. Publicly available data from The Cancer Genome Atlas shows a negative correlation between survival and Ajuba expression in patients with colon cancer. To investigate its function, we transduced SW480 human colon cancer cells, with lentiviral constructs to knockdown or overexpress Ajuba protein. The transcriptome of the modified cell lines was analyzed by RNA sequencing. Among the pathways enriched in the differentially expressed genes, were cell proliferation, migration and differentiation. We confirmed our sequencing data with biological assays; cells depleted of Ajuba were less proliferative, more sensitive to irradiation, migrated less and were less efficient in colony formation. In addition, loss of Ajuba expression decreased the tumor burden in a murine model of colorectal metastasis to the liver. Taken together, our data supports that Ajuba promotes colon cancer growth, migration and metastasis and therefore is a potential candidate for targeted therapy.
Collapse
Affiliation(s)
- Noëlle Dommann
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Daniel Sánchez-Taltavull
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Linda Eggs
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Fabienne Birrer
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Tess Brodie
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Lilian Salm
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Felix Alexander Baier
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Michaela Medová
- Department of Biomedical Research, Radiation Oncology, University of Bern, Bern University Hospital, 3008 Bern, Switzerland;
| | - Magali Humbert
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (M.H.); (M.P.T.)
| | - Mario P. Tschan
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (M.H.); (M.P.T.)
| | - Guido Beldi
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Daniel Candinas
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Deborah Stroka
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
- Correspondence: ; Tel.: +41-31-632-27-48
| |
Collapse
|
22
|
Zhang Y, Liao Y, Chen C, Sun W, Sun X, Liu Y, Xu E, Lai M, Zhang H. p38-regulated FOXC1 stability is required for colorectal cancer metastasis. J Pathol 2019; 250:217-230. [PMID: 31650548 DOI: 10.1002/path.5362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022]
Abstract
Aberrant expression of forkhead box C1 (FOXC1) promotes tumor metastasis in multiple human malignant tumors. However, the upstream modulating mode and downstream molecular mechanism of FOXC1 in metastasis of colorectal cancer (CRC) remain unclear. Herein we describe a systematic analysis of FOXC1 expression and prognosis in CRC performed on our clinical data and public databases, which indicated that FOXC1 upregulation in CRC samples was significantly associated with poor prognosis. FOXC1 knockdown inhibited migration and invasion, whereas FOXC1 overexpression caused the opposite phenotype in vitro and in vivo. Furthermore, MMP10, SOX4 and SOX13 were verified as the target genes of FOXC1 for promoting CRC metastasis. MMP10 was demonstrated as the direct target and mediator of FOXC1. Interestingly, Ser241 and Ser272 of FOXC1 were identified as the key sites to interact with p38 and phosphorylation, which were critically required for maintaining the stability of FOXC1 protein. Moreover, FOXC1 was dephosphorylated by protein phosphatase 2A and phosphorylated by p38, which maintained FOXC1 protein stability through inhibiting ubiquitination. Expression of p38 was correlated with FOXC1 and MMP10 expression, indirectly indicating that FOXC1 was regulated by p38 MAPK. Therefore, FOXC1 is strongly suggested as a pro-metastatic gene in CRC by transcriptionally activating MMP10, SOX4 and SOX13; p38 interacts with and phosphorylates the Ser241 and ser272 sites of FOXC1 to maintain its stability by inhibiting ubiquitination and degradation. In conclusion, the protein stability of FOXC1 mediated by p38 contributes to the metastatic effect in CRC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Yan Liao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| | - Chaoyi Chen
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Wenjie Sun
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Xiaohui Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Zhejiang, PR China
| | - Yuan Liu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Enping Xu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| | - Honghe Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| |
Collapse
|
23
|
Ajuba: An emerging signal transducer in oncogenesis. Pharmacol Res 2019; 151:104546. [PMID: 31740385 DOI: 10.1016/j.phrs.2019.104546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
The LIM protein Ajuba contains an unstructured proline/glycine-rich preLIM region in the N terminus and conserved tandem LIM motifs in the C terminus. Additionally, Ajuba contains both nuclear export sequences (NES) and nuclear localization sequences (NLS), which enable Ajuba shuttle between the cytoplasm and the nucleus. Thus, Ajuba can act as a versatile scaffold participating in assembly of variety of protein complexes to execute multiple cellular functions including cell adhesion, motility, mitosis, survival, gene expression, microRNA processing and mechanical force sensing. Numerous studies have demonstrated that Ajuba plays important roles in oncogenesis and progression by regulating major signalling pathways such as Wnt, RAS/ERK, JAK/STAT and Hippo, and by acting as a co-regulator of key transcription factors such as Snail, Sp1 and nuclear hormone receptors. Clinically, Ajuba is highly expressed in various types of tumors and can be a marker for prognosis and diagnosis. In this review, we aim to summarize the up-to-date literatures on the signaling pathways mediated by Ajuba and its associated protein complexes in oncogenesis, and to discuss Ajuba as a potential target for new therapeutics to treat cancers.
Collapse
|
24
|
Li J, Yang C, Yang J, Zou L. Down-regulation of CCL17 in cancer-associated fibroblasts inhibits cell migration and invasion of breast cancer through ERK1/2 pathway. Cancer Manag Res 2019; 11:7439-7453. [PMID: 31496803 PMCID: PMC6689663 DOI: 10.2147/cmar.s211651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/17/2019] [Indexed: 02/05/2023] Open
Abstract
Objective Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are involved in cancer development and progression, including breast cancer (BC). Up-regulation of CCL17 was observed in BC and predicted a decrease in overall survival, suggesting an important role of CCL17 in BC development. Nonetheless, little is known about the role of CCL17 in the interaction between CAFs and BC. Materials and methods Real-time quantitative PCR, Western blot, and enzyme-linked immunosorbent assay were performed to examine C-C motif chemokine ligand 17 (CCL17) and C-C motif chemokine receptor 4 (CCR4) levels in BC tissues and CAFs. Cell proliferation, migration, and invasion of CAFs co-cultured with or without BC cell lines were measured by Cell Counting Kit-8 and Transwell analysis. Expression of CCL17, CCR4, dual specificity phosphatase 6 (DUSP6), matrix metallopeptidase 13 (MMP13), extracellular signal-regulated kinase (ERK) 1/2, and phosphor-ERK1/2 (p-ERK1/2) in BC cell lines co-cultured with or without CAFs was measured by Western blotting. Results We found that BC tissues and CAFs demonstrated higher levels of CCL17 compared with adjacent-normal breast tissues and adjacent-normal fibroblasts (NFs), respectively. CCL17 expression is correlated with lymph nodes, TNM stage and tumor size of BC patients. CCL17 knockdown significantly inhibited CCL17 release, CCR4 expression, and the cell proliferation of CAFs, while CCL17 overexpression demonstrated an inverse effect in NFs. Co-culture with CAFs induced the increases in cell proliferation, migration, invasion, and the expression of CCL17, CCR4, MMP13, and p-ERK1/2 in MCF-7 and MDA-MB-231 cells were markedly reversed by CCL17 knockdown in CAFs. Meanwhile, co-culture with NFs induced the malignant phenotype of MCF-7 cells was markedly enhanced by CCL17 overexpression in NFs. Moreover, DUSP6, a negative regulator of ERK1/2, was dose-dependent decrease in response to recombinant CCL17 and inhibited cell migration, invasion, MMP13 expression, and ERK1/2 activation in MCF-7 cells. Conclusion The findings of this study suggest that CCL17 may function as a novel biomarker as well as potential therapeutic target against BC and CAF-secreted CCL17 promotes BC cell migration and invasion through the DUSP6-dependent ERK1/2 pathway.
Collapse
Affiliation(s)
- Junjie Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,Department of Breast Surgery, Sichuan Cancer Hospital, Chengdu 610041, People's Republic of China
| | - Chunli Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jingshi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liqun Zou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
25
|
Dual-strand tumor suppressor miR-193b-3p and -5p inhibit malignant phenotypes of lung cancer by suppressing their common targets. Biosci Rep 2019; 39:BSR20190634. [PMID: 31262974 PMCID: PMC6630026 DOI: 10.1042/bsr20190634] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
Emerging studies suggest that microRNAs (miRNAs) play multiple roles in cancer malignancy, including proliferation and acquisition of metastatic potential. Differentially expressed miRNAs responsible for the malignancy of lung cancer were searched by miRNA microarray using a previously established brain metastatic lung cancer model. Twenty-five miRNAs were down-regulated in brain metastatic lung cancer cells. Among those, miR-193b-3p and -5p were chosen for further studies. Their function in metastatic potential and proliferation was examined using Transwell invasion, wound healing, and colony forming assays. The underlying mechanism of tumor-suppressor miR-193b-3p and -5p was explored using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), Western blot, Argonaute 2-RNA immunoprecipitation (Ago2-RIP), and reporter assays. Both strands of miR-193b were down-regulated in brain metastatic lung cancer cells and in tissues from lung cancer patients. Overexpression of miR-193b-3p and -5p inhibited invasive and migratory activities and diminished clonogenic ability. Conversely, inhibition of miR-193b-3p or -5p increased the metastatic potential and colony forming ability. Cyclin D1 (CCND1), Ajuba LIM Protein (AJUBA), and heart development protein with EGF like domains 1 (HEG1) were identified as common target genes of miR-193b-3p and -5p. A reporter assay and an Ago2-RIP experiment showed that both miRNAs directly bind to the 3′ untranslated region (3′UTR) of the target mRNA. Knockdown of target gene reduced the proliferative and metastatic potential of primary and metastatic lung cancer cells. Our results demonstrate miR-193b is a dual-strand tumor suppressor and a novel therapeutic target for lung cancer.
Collapse
|
26
|
Li H, Fu L, Liu B, Lin X, Dong Q, Wang E. Ajuba overexpression regulates mitochondrial potential and glucose uptake through YAP/Bcl-xL/GLUT1 in human gastric cancer. Gene 2019; 693:16-24. [DOI: 10.1016/j.gene.2019.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/28/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
|
27
|
Zhang Q, Lou L, Cai X, Hao Z, Nie S, Liu Y, Su L, Wu W, Shen H, Li Y. Clinical significance of AJUBA, YAP1, and MMP14 expression in esophageal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:6018-6024. [PMID: 31949690 PMCID: PMC6963081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/25/2018] [Indexed: 06/10/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is generally known to be a highly fatal cancer, and thus novel molecular targets are needed to improve its diagnosis and treatment. AJUBA has been shown to regulate cell cycle, adhesion, proliferation, apoptosis, and migration in many malignant tumors. However, the clinical significance of AJUBA in ESCC tumor metastasis remains unclear. In this study, we explored the role of AJUBA, Yes-associated protein 1 (YAP1), and matrix metalloproteinase 14 (MMP14) in the clinical presentation and survival of ESCC. Immunohistochemical staining showed higher expression of these proteins in cancer tissues than in paired adjacent tissues, and this upregulation was differently related to lymph node metastasis and TNM stage. AJUBA expression was positively correlated with that of YAP1. High expression of MMP14 was associated with reduced survival. In general, our findings reveal that AJUBA, YAP1, and MMP14 might function as oncoproteins and contribute to novel targeted therapy in ESCC.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Lei Lou
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Xiaoli Cai
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Zengfang Hao
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Saisai Nie
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Ying Liu
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Lingrui Su
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Wenxin Wu
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical UniversityShijiazhuang, PR China
| | - Yuehong Li
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| |
Collapse
|
28
|
Liu M, Jiang K, Lin G, Liu P, Yan Y, Ye T, Yao G, Barr MP, Liang D, Wang Y, Gong P, Meng S, Piao H. Ajuba inhibits hepatocellular carcinoma cell growth via targeting of β-catenin and YAP signaling and is regulated by E3 ligase Hakai through neddylation. J Exp Clin Cancer Res 2018; 37:165. [PMID: 30041665 PMCID: PMC6057013 DOI: 10.1186/s13046-018-0806-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aberrant activation of β-catenin and Yes-associated protein (YAP) signaling pathways has been associated with hepatocellular carcinoma (HCC) progression. The LIM domain protein Ajuba regulates β-catenin and YAP signaling and is implicated in tumorigenesis. However, roles and mechanism of Ajuba expression in HCC cells remain unclear. The E3 ligase Hakai has been shown to interact with other Ajuba family members and whether Hakai interacts and regulates Ajuba is unknown. METHODS HCC cell lines stably depleted of Ajuba or Hakai were established using lentiviruses expressing shRNAs against Ajuba or Hakai. The effects of Ajuba on HCC cells were determined by a number of cell-based analyses including anchorage-independent growth, three dimension cultures and trans-well invasion assay. In vivo tumor growth was determined in a xenograft model and Ajuba expression in tumor sections was examined by immunohistochemistry. Co-immunoprecipitation, confocal microscopy and immunoblot assay were used to examine the expression and interaction between Ajuba and Hakai. RESULTS Depletion of Ajuba in HCC cells significantly enhanced anchorage-independent growth, invasion, the formation of spheroids and tumor growth in a xenograft model, suggesting a tumor suppressor function for Ajuba in HCC. Mechanistically, Ajuba depletion triggered E-cadherin loss and β-catenin translocation with increased Cyclin D1 levels. In addition, depletion of Ajuba upregulated the levels of YAP and its target gene CYR61. Furthermore, siRNA-mediated knockdown of either β-catenin or YAP attenuated the pro-tumor effects by Ajuba depletion on HCC cells. Notably, Ajuba stability in HCC cells was regulated by Hakai, an E3 ligase for E-cadherin. Hakai interacted with Ajuba via its HYB domain and induced Ajuba neddylation, which was antagonized by the neddylation inhibitor, MLN4924, but not MG132. We further show that overexpression of Hakai in HCC cells markedly increased anchorage-independent growth, spheroid-formation ability and tumor growth in xenografts whereas Hakai depletion resulted in these opposite effects, indicating an oncogenic role for Hakai in HCC. Hakai also induced β-catenin translocation with increased levels of Cyclin D1. CONCLUSIONS Our data suggest a role for Ajuba and Hakai in HCC, and uncover the mechanism underlying the regulation of Ajuba stability.
Collapse
Affiliation(s)
- Min Liu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Ke Jiang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
- Department of neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| | - Guibin Lin
- Huizhou No. 3 People’s Hospital, Affiliated Hospital of Guangzhou Medical University, No. 1 Xuebei Street, Qiaodong Road, Huizhou, 615000 China
| | - Peng Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116021 China
| | - Yumei Yan
- The First Department of Ultrasound, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116021 China
| | - Tian Ye
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Gang Yao
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Martin P. Barr
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James’s Hospital & Trinity College, Dublin, Ireland
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Peng Gong
- Department of general surgery, Shenzhen University General Hospital, No. 1098 Xueyuan Road, Shenzhen, 518055 China
- Carson International Cancer Research Centre, Shenzhen University School of Medicine, No.3688 Nanhai Road, Shenzhen, 518060 China
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Haozhe Piao
- Department of neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| |
Collapse
|
29
|
Li Y, Li J, Luo M, Zhou C, Shi X, Yang W, Lu Z, Chen Z, Sun N, He J. Novel long noncoding RNA NMR promotes tumor progression via NSUN2 and BPTF in esophageal squamous cell carcinoma. Cancer Lett 2018; 430:57-66. [PMID: 29763634 DOI: 10.1016/j.canlet.2018.05.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/05/2018] [Accepted: 05/10/2018] [Indexed: 01/20/2023]
Abstract
Long noncoding RNAs (lncRNA) have been implicated in cancer but most of them remain largely unstudied. Here, we identified a novel NSUN2 methylated lncRNA (NMR), which was significantly upregulated in esophageal squamous cell carcinoma (ESCC), functioned as a key regulator of ESCC tumor metastasis and drug resistance. Upregulation of NMR correlated with tumor metastasis and indicated poor overall survival in ESCC patients. Functionally, NMR could promote tumor cell migration and invasion, inhibit cisplatin-induced apoptosis and increase drug resistance in ESCC cells. Mechanistically, transcription of NMR could be upregulated by NF-κB activation after IL-1β and TNF-α treatment. NMR was methylated by NSUN2 and might competitively inhibit methylation of potential mRNAs. NMR could directly bind to chromatin regulator BPTF, and potentially promote MMP3 and MMP10 expression by ERK1/2 pathway through recruiting BPTF to chromatin. Taken together, NMR functions as an oncogenic gene and may serve as new biomarker and therapeutic target in ESCC.
Collapse
Affiliation(s)
- Yuan Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiagen Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mei Luo
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chengcheng Zhou
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuejiao Shi
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenhui Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Tumor Hospital of Shanxi Province, Taiyuan, Shanxi, 030013, China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaoli Chen
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
30
|
Huang X, Zhu H, Gao Z, Li J, Zhuang J, Dong Y, Shen B, Li M, Zhou H, Guo H, Huang R, Yan J. Wnt7a activates canonical Wnt signaling, promotes bladder cancer cell invasion, and is suppressed by miR-370-3p. J Biol Chem 2018; 293:6693-6706. [PMID: 29549123 DOI: 10.1074/jbc.ra118.001689] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
Once urinary bladder cancer (UBC) develops into muscle-invasive bladder cancer, its mortality rate increases dramatically. However, the molecular mechanisms of UBC invasion and metastasis remain largely unknown. Herein, using 5637 UBC cells, we generated two sublines with low (5637 NMI) and high (5637 HMI) invasive capabilities. Mass spectrum analyses revealed that the Wnt family protein Wnt7a is more highly expressed in 5637 HMI cells than in 5637 NMI cells. We also found that increased Wnt7a expression is associated with UBC metastasis and predicted worse clinical outcome in UBC patients. Wnt7a depletion in 5637 HMI and T24 cells reduced UBC cell invasion and decreased levels of active β-catenin and its downstream target genes involved in the epithelial-to-mesenchymal transition (EMT) and extracellular matrix (ECM) degradation. Consistently, treating 5637 NMI and J82 cells with recombinant Wnt7a induced cell invasion, EMT, and expression of ECM degradation-associated genes. Moreover, TOP/FOPflash luciferase assays indicated that Wnt7a activated canonical β-catenin signaling in UBC cells, and increased Wnt7a expression was associated with nuclear β-catenin in UBC samples. Wnt7a ablation suppressed matrix metalloproteinase 10 (MMP10) expression, and Wnt7a overexpression increased MMP10 promoter activity through two TCF/LEF promoter sites, confirming that Wnt7a-mediated MMP10 activation is mediated by the canonical Wnt/β-catenin pathway. Of note, the microRNA miR-370-3p directly repressed Wnt7a expression and thereby suppressed UBC cell invasion, which was partially restored by Wnt7a overexpression. Our results have identified an miR-370-3p/Wnt7a axis that controls UBC invasion through canonical Wnt/β-catenin signaling, which may offer prognostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Xiaojing Huang
- From the MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu 210061
| | - Hongwen Zhu
- the Shanghai Institute of Materia Medica and
| | - Zemin Gao
- From the MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu 210061
| | - Junzun Li
- From the MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu 210061
| | - Junlong Zhuang
- the Department of Urology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008
| | - Yu Dong
- the Shanghai Institute of Materia Medica and.,the Shanghai University, Shanghai 200444
| | - Bing Shen
- the Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Meiqian Li
- From the MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu 210061
| | - Hu Zhou
- the Shanghai Institute of Materia Medica and
| | - Hongqian Guo
- the Department of Urology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008,
| | - Ruimin Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203,
| | - Jun Yan
- From the MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu 210061, .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203
| |
Collapse
|
31
|
Comprehensive genomic analysis of Oesophageal Squamous Cell Carcinoma reveals clinical relevance. Sci Rep 2017; 7:15324. [PMID: 29127303 PMCID: PMC5681595 DOI: 10.1038/s41598-017-14909-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/18/2017] [Indexed: 12/27/2022] Open
Abstract
Oesophageal carcinoma is the fourth leading cause of cancer-related death in China, and more than 90% of these tumours are oesophageal squamous cell carcinoma (ESCC). Although several ESCC genomic sequencing studies have identified mutated somatic genes, the number of samples in each study was relatively small, and the molecular basis of ESCC has not been fully elucidated. Here, we performed an integrated analysis of 490 tumours by combining the genomic data from 7 previous ESCC projects. We identified 18 significantly mutated genes (SMGs). PTEN, DCDC1 and CUL3 were first reported as SMGs in ESCC. Notably, the AJUBA mutations and mutational signature4 were significantly correlated with a poorer survival in patients with ESCC. Hierarchical clustering analysis of the copy number alteration (CNA) of cancer gene census (CGC) genes in ESCC patients revealed three subtypes, and subtype3 exhibited more CNAs and marked for worse prognosis compared with subtype2. Moreover, database annotation suggested that two significantly differential CNA genes (PIK3CA and FBXW7) between subtype3 and subtype2 may serve as therapeutic drug targets. This study has extended our knowledge of the genetic basis of ESCC and shed some light into the clinical relevance, which would help improve the therapy and prognosis of ESCC patients.
Collapse
|
32
|
Bi L, Ma F, Tian R, Zhou Y, Lan W, Song Q, Cheng X. AJUBA increases the cisplatin resistance through hippo pathway in cervical cancer. Gene 2017; 644:148-154. [PMID: 29126926 DOI: 10.1016/j.gene.2017.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
Though LIM-domain protein AJUBA was identified as a putative oncogene, the function and underlying mechanisms of AJUBA in cervical cancer remain largely unknown. Firstly, AJUBA expression was detected via real-time quantitative PCR in patients' samples. Furthermore, Hela and Siha cells were transfected with AJUBA-overexpressing plasmids, and then exposed to cisplatin, the apoptosis was measured by cytometry assay. In addition, the expression of YAP and TAZ was disclosed through western blot assay. Our results revealed that AJUBA expression was significantly higher in the cervical cancer patients resistant to cisplatin treatment compared with cervical cancer patients sensitive to cisplatin treatment. In addition, overall survival time was significantly shorter in the cervical cancer patients with high AJUBA expression compare with those with low AJUBA expression using kaplan-meier analysis. Hela and Siha cells transfected with AJUBA-expressing plasmids exposed to cisplatin treatment had higher survival rate compared with the cells transfected with empty vector control. Mechanistic studies revealed the AJUBA upregulated the downstream targets YAP and TAZ. These results suggest that high AJUBA level enhances cervical cancer cells drug resistance to cisplatin, also associates with decreased patient survival times.
Collapse
Affiliation(s)
- Lihong Bi
- Department of Gynecology, PKUCare Luzhong Hospital, Zibo, Shandong, China
| | - Feng Ma
- Department of Oncology, PKUCare Luzhong Hospital, Zibo, Shandong, China.
| | - Rui Tian
- Department of Gynecology, PKUCare Luzhong Hospital, Zibo, Shandong, China
| | - Yanli Zhou
- Department of Pharmacy, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Weiguang Lan
- Department of Oncology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Quanmao Song
- Department of Oncology, PKUCare Luzhong Hospital, Zibo, Shandong, China
| | - Xiankui Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
33
|
Dai F, Mei L, Meng S, Ma Z, Guo W, Zhou J, Zhang J. The global expression profiling in esophageal squamous cell carcinoma. Genomics 2017; 109:241-250. [PMID: 28442363 DOI: 10.1016/j.ygeno.2017.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/30/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the dominant subtype of esophageal cancer worldwide. This study aimed to explore the aberrant global expression profiling and construct regulatory network in ESCC for understanding tumorigenesis of ESCC. The expression pattern of long non-coding RNA (lncRNA), microRNA (miRNA) and mRNA was measured by RNA-sequencing in ESCC. Differentially expressed lncRNAs/miRNAs/mRNAs (DELs/DEMs/DEMIs) were identified in ESCC. DEMIs-DEMs network was constructed; hsa-miR-424-5p and hsa-miR-450b-5p were the hub miRNAs in the network, which negatively regulated 19 and 17 DEMs. DEMs targeted by DEMIs were significantly enriched in MAPK signaling pathway, pathways in cancer and focal adhesion signaling pathway. The expression of candidate DEMs and DEMIs in ESCC were validated through quantitative real-time polymerase chain reaction and microarray expression profiling analyses, and the results were generally consistent with our bioinformatics analysis. Our results might provide useful information for exploring the tumorigenesis mechanism and potentially therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Fuqiang Dai
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, China
| | - Longyong Mei
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, China
| | - Shenglan Meng
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, China
| | - Zheng Ma
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, China.
| | - Wei Guo
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, China
| | - Jinghai Zhou
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, China
| | - Jingge Zhang
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, China
| |
Collapse
|
34
|
Wang C, Li Z, Shao F, Yang X, Feng X, Shi S, Gao Y, He J. High expression of Collagen Triple Helix Repeat Containing 1 (CTHRC1) facilitates progression of oesophageal squamous cell carcinoma through MAPK/MEK/ERK/FRA-1 activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017. [PMID: 28645305 PMCID: PMC5481965 DOI: 10.1186/s13046-017-0555-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background Oesophageal cancer is one of the most common malignancies worldwide,and oesophageal squamous cell carcinoma (ESCC) is the predominant histological type both globally and in China. Collagen triple helix repeat containing 1 (CTHRC1) has been found to be upregulated in ESCC. However, its role in tumourigenesis and progression of ESCC remains unclear. Methods Using our previous ESCC mRNA profiling data, we screened upregulated genes to identify those required for proliferation. Immunohistochemistry was performed to determine the level of CTHRC1 protein expression in 204 ESCC patients. Correlations between CTHRC1 expression and clinicopathological characteristics were assessed. In addition, pyrosequencing and 5-aza-dC treatment were performed to evaluate methylation status of CTHRC1 promoter. In vitro and in vivo analyses were also conducted to determine the role of CTHRC1 in ESCC cell proliferation, migration and invasion, and RNA sequencing and molecular experiments were performed to study the underlying mechanisms. Results Based on mRNA profiling data, CTHRC1 was identified as one of the most significantly upregulated genes in ESCC tissues (n = 119, fold change = 20.5, P = 2.12E-66). RNA interference screening also showed that CTHRC1 was required for cell proliferation. Immunohistochemistry confirmed markedly high CTHRC1 protein expression in tumour tissues, and high CTHRC1 expression was positively correlated with advanced T stage (P = 0.043), lymph node metastasis (P = 0.023), TNM stage (P = 0.024) and poor overall survival (P = 0.020). Promoter hypomethylation at cg07757887 may contribute to increased CTHRC1 expression in ESCC cells and tumours. Forced overexpression of CTHRC1 significantly enhanced cell proliferation, migration and invasion, whereas depletion of CTHRC1 suppressed these cellular functions in three ESCC cell lines and xenografts. CTHRC1 was found to activate FRA-1 (Fos-related antigen 1, also known as FOSL1) through the MAPK/MEK/ERK cascade, which led to upregulation of cyclin D1 and thus promoted cell proliferation. FRA-1 also induced snail1-mediated MMP14 (matrix metallopeptidase 14, also known as MT1-MMP) expression to facilitate ESCC cell invasion, migration, and metastasis. Conclusions Our data suggest that CTHRC1 may act as an oncogenic driver in progression and metastasis of ESCC, and may serve as a potential biomarker for prognosis and personalized therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0555-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunni Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zitong Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xueying Yang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Susheng Shi
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
35
|
Jia L, Gui B, Zheng D, Decker KF, Tinay I, Tan M, Wang X, Kibel AS. Androgen receptor-regulated miRNA-193a-3p targets AJUBA to promote prostate cancer cell migration. Prostate 2017; 77:1000-1011. [PMID: 28422308 DOI: 10.1002/pros.23356] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/22/2017] [Indexed: 12/14/2022]
Abstract
Background Dysregulation of microRNA (miRNA) expression is implicated in cancer development and progression by modulating oncogenes or tumor suppressors at the post-transcriptional level. Methods To investigate the role of miRNAs in prostate cancer (PCa) progression, we performed small RNA-sequencing (RNA-seq) analysis in androgen-dependent LNCaP cells and LNCaP-derived castration-resistant prostate cancer (CRPC) C4-2B cells. For functional validation, we specifically investigated miR-193a-3p, which is highly upregulated in C4-2B cells and modulated by the androgen receptor (AR). We elucidated the role of miR-193a-3p and its downstream target gene in PCa cell migration using biochemical approaches. Results We identified a subset of differentially expressed miRNAs in C4-2B cells compared to LNCaP cells. Computational analysis shows that the targets of upregulated miRNAs are significantly associated with downregulated protein-coding mRNAs in C4-2B cells. Gene Ontology analysis further reveals that these downregulated mRNAs are significantly enriched in cell-cell adhesion functions. Downregulation of these miRNA-targeted genes may change PCa cell motility resulting in the acquisition of metastatic potential. We then focus on miR-193a-3p and demonstrate overexpression of miR-193a-3p increases cell migration through downregulating its target AJUBA. AJUBA is a LIM domain protein and contributes to the formation and stability of cadherin-mediated cell-cell adhesion. Loss of AJUBA enhances PCa migration and downregulation of AJUBA expression is observed in metastatic PCa tumors. Conclusions Our results suggest a novel AR/miR-193a-3p/AJUBA pathway implicated in PCa progression. MiR-193a-3p is a potential therapeutic target for metastatic PCa.
Collapse
Affiliation(s)
- Li Jia
- Division of Urology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bin Gui
- Division of Urology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dali Zheng
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Keith F Decker
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ilker Tinay
- Division of Urology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mingyue Tan
- Division of Urology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Adam S Kibel
- Division of Urology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Zhang J, Zhang D, Sun L. Knockdown of Ubiquitin-Specific Protease 14 (USP14) Inhibits the Proliferation and Tumorigenesis in Esophageal Squamous Cell Carcinoma Cells. Oncol Res 2016; 25:249-257. [PMID: 27629392 PMCID: PMC7840815 DOI: 10.3727/096504016x693164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin-specific protease 14 (USP14), one of three proteasome-associated deubiquitinating enzymes (DUBs), plays an essential role in the development of human carcinoma. However, to the best of our knowledge, the role of USP14 in esophageal squamous cell carcinoma (ESCC) is unknown. In the current study, we investigated the expression and role of USP14 in ESCC. Our results showed that the level of USP14 was significantly increased in ESCC tissues and cell lines. Downregulation of USP14 significantly inhibited ESCC cell proliferation and ESCC tumor growth in nude mice. Downregulation of USP14 also suppressed the migration/invasion in ESCC cells. Mechanically, downregulation of USP14 decreased the protein expression levels of β-catenin, cyclin D1, and c-Myc in ESCC cells. In conclusion, our study shows that USP14 plays an important role in the progression and metastasis of ESCC. Therefore, these data suggest that USP14 may be a potentially useful therapeutic strategy for the treatment of ESCC.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | | | | |
Collapse
|