1
|
Mani T, Murtaza M, Begum RF, Gayathri H, Sumithra M. Mechanistic approach and therapeutic strategies in menstrual and non-menstrual migraine. Future Sci OA 2025; 11:2468109. [PMID: 40040266 PMCID: PMC11901366 DOI: 10.1080/20565623.2025.2468109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Migraine is a common condition that can cause intense headaches, often on one side of the head, along with symptoms like nausea and sensitivity to light and sound. These headaches can be triggered by various factors, including stress, changes in hormones, sleep disturbances, diet, and even gut health. Migraines are more frequent in women, particularly those under 45, and this may be linked to hormones. After age 45, this difference between men and women becomes less noticeable. Women tend to experience migraines that are more severe and last longer than men, with menstrual migraines affecting about 22% of women during nearly half of their menstrual cycles, and 7.6% of women with migraines. Treatments for migraines include medications, lifestyle changes, and alternative therapies, all of which aim to address the different ways migraines can affect people. This review explores these aspects in detail.
Collapse
Affiliation(s)
- Tanya Mani
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Munira Murtaza
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - H. Gayathri
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - M. Sumithra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
2
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Espada-Rubio S, Agúndez JAG. Oxidative Stress and Migraine. Mol Neurobiol 2024; 61:8344-8360. [PMID: 38499906 DOI: 10.1007/s12035-024-04114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
The pathogenesis of migraine is not completely understood, but inflammation and oxidative stress seem to be involved, according to data from an experimental model of the disease. This narrative review summarizes data from studies on oxidative stress markers in migraine patients, case-control association studies on the possible association of candidate genes related to oxidative stress with the risk for migraine, studies showing the presence of oxidative stress in experimental models of migraine, and studies on the efficacy of antioxidant drugs in migraine therapy. Many studies have addressed the value of concentrations of prooxidant and antioxidant substances or the activity of antioxidant enzymes in different tissues (mainly in serum/plasma or in blood cells) as possible biomarkers for migraine, being thiobarbituric acid (TBA) reactive substances (TBARS) such as malonyl dialdehyde acid (MDA) and 4-hydroxynonenal, and nitric oxide (this at least during migraine attacks in patients with migraine with aura (MWA) the most reliable. In addition, the possible usefulness of antioxidant treatment is not well established, although preliminary short-term studies suggest a beneficial action of some of them such as Coenzyme Q10 and riboflavin. Both topics require further prospective, multicenter studies with a long-term follow-up period involving a large number of migraine patients and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Ronda del Sur 10, 28500, Madrid, Spain.
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Ronda del Sur 10, 28500, Madrid, Spain
| | - Elena García-Martín
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - Silvina Espada-Rubio
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Ronda del Sur 10, 28500, Madrid, Spain
| | - José A G Agúndez
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| |
Collapse
|
3
|
Liu L, Li H, Wang Z, Yao X, Xiao W, Yu Y. Exploring the anti-migraine effects of Tianshu capsule: chemical profile, metabolic behavior, and therapeutic mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155766. [PMID: 38865935 DOI: 10.1016/j.phymed.2024.155766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Migraine is widely recognized as the third most prevalent medical condition globally. Tianshu capsule (TSC), derived from "Da Chuan Xiong Fang" of the Jin dynasty, is integral in the clinical treatment of migraine. However, the chemical properties and therapeutic mechanisms of TSC different portions remain unclear. PURPOSE This study was designed to investigate the effects of TSC different portions (including small molecular TSCP-SM and polysaccharides TSC-P) on migraine and explore the underlying mechanisms. STUDY DESIGN AND METHODS First of all, migraine rats were established by nitroglycerin injection and treated with TSC, TSC-P, and TSC-SM. ELISA, qPCR, and immunofluorescence were used to evaluate the pharmacological effects on migraine rats. Secondly, UPLC-Q/TOF-MS and GC--MS were employed to detect the components of TSC-SM. PMP-HPLC, NMR, FT-IR, UV-Vis, AFM, and SEM were used for the chemical profiling of polysaccharides. Thirdly, the metabolic behavior profile of TSC-P was characterized by oral administrated fluorescence-labeled TSC-P and detected by NIRF imaging. Finally, the anti-migraine mechanisms were explored by determining the composition of gut microbiota, analyzing colonic short-chain fatty acids (SCFAs), and examining serum tryptophan-related metabolites. RESULTS Both small molecules (45 volatiles and 114 small molecules) and polysaccharides (including Glc, Ara, Gal, and Gal A) have exhibited effectiveness in alleviating migraine, and this efficacy is associated with reduced CGRP and iNOS levels, along with increased β-EP expressions. Further mechanistic exploration revealed that small-molecules exhibited effectiveness in migraine treatment by exerting antioxidative actions, while polysaccharides demonstrated superior therapeutic effects in regulating 5-HT levels. By monitoring the metabolic behavior of polysaccharides with fluorescent labeling, it was observed that TSC-P exhibited poor absorption. Instead, TSC-P demonstrated its therapeutic effects by modulating the aberrations in gut microbiota (including Alloprevotella, Muribaculaceae_ge, and Ruminococcaceae_UCG-005), cecum short-chain fatty acids (such as isobutyric, isovaleric, and valeric acids), and serum tryptophan-related metabolites (including indole-3-acetamide, tryptophol, and indole-3-propionic acid). CONCLUSION This research provides innovative insights into chemical composition, metabolic behavior, and proposed anti-migraine mechanisms of TSC from a polarity-based perspective, and pioneering an exploration focused on the polysaccharide components within TSC for the first time.
Collapse
Affiliation(s)
- Lingxian Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy ; State Key Laboratory of Bioactive Molecules and Druggability Assessment; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China; and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Haibo Li
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture and Jiangsu Kanion Pharmaceutical Co. Ltd., Jiangsu, Lianyungang, 222001, China
| | - Zhenzhong Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture and Jiangsu Kanion Pharmaceutical Co. Ltd., Jiangsu, Lianyungang, 222001, China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy ; State Key Laboratory of Bioactive Molecules and Druggability Assessment; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China; and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| | - Wei Xiao
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture and Jiangsu Kanion Pharmaceutical Co. Ltd., Jiangsu, Lianyungang, 222001, China.
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy ; State Key Laboratory of Bioactive Molecules and Druggability Assessment; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China; and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Pairo Z, Parnow A, Sari Aslani P, Mohammadi P, Mirzaeei S, Mohr M. Exercise training reduces systemic inflammation and improves general health status in female migraineurs: a randomised controlled trail. Eur J Appl Physiol 2024; 124:1397-1408. [PMID: 38043087 DOI: 10.1007/s00421-023-05371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVES The objectives of this study were to assess the effect of 8 weeks of moderate-intensity aerobic training on permeability inflammatory indicators of matrix metalloproteinases (MMPs) and specific tissue inhibitors of MMPs in female migraineurs. METHODS Female migraineurs (n = 28, age 32 ± 6) were randomised into two groups: migraine with exercise training (EXE + Mig, n = 13) and migraine without exercise training (NON-EXE + Mig, n = 15). Matched healthy women were also recruited as a healthy control group (CON, n = 15). The EXE-Mig group performed 8 weeks of aerobic training. Pre and post intervention, serum matrix metalloproteinases (MMP-2 and 9) and specific tissue inhibitors of MMPs (TIMP-1 and 2) were measured. In addition, body composition indices and VO2max were determined. RESULTS Exercise training reduced serum MMP-9 in female migraineurs with between-group changes and a time x group interaction (p < 0.05). In addition, exercise training reduced the serum MMP-9/TIMP-1 ratio in female migraineurs with between-group changes and time x group interaction (p < 0.05). However, no training-induced effect was observed in serum TIMP-1, TIMP-2, MMP-2 contents (p > 0.05) and MMP-2/TIMP-2 ratio (p > 0.05). Finally, exercise training reduced body fat content, WHR and BMI, and improved VO2max (p < 0.01). CONCLUSIONS Our results demonstrated beneficial effects of aerobic exercise training on some circulatory inflammation factors (MMP9, MMP-9/TIMP-1) and some health indicators in female migraineurs, suggesting that such training can be employed as a non-pharmacological therapeutic method.
Collapse
Affiliation(s)
- Zahra Pairo
- Bio-Sciences Department, Physical Education and Sport Sciences Faculty, Razi University, University Street, Kermanshah, Iran
| | - Abdolhossein Parnow
- Bio-Sciences Department, Physical Education and Sport Sciences Faculty, Razi University, University Street, Kermanshah, Iran.
| | - Payam Sari Aslani
- Department of Neurology, University of Medical Sciences, Kermanshah, Iran
| | - Payam Mohammadi
- Department of Neurology, University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Department of Pharmaceutics, University of Medical Sciences, Kermanshah, Iran
| | - Magni Mohr
- Centre of Health Sciences, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Pleș H, Florian IA, Timis TL, Covache-Busuioc RA, Glavan LA, Dumitrascu DI, Popa AA, Bordeianu A, Ciurea AV. Migraine: Advances in the Pathogenesis and Treatment. Neurol Int 2023; 15:1052-1105. [PMID: 37755358 PMCID: PMC10535528 DOI: 10.3390/neurolint15030067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
This article presents a comprehensive review on migraine, a prevalent neurological disorder characterized by chronic headaches, by focusing on their pathogenesis and treatment advances. By examining molecular markers and leveraging imaging techniques, the research identifies key mechanisms and triggers in migraine pathology, thereby improving our understanding of its pathophysiology. Special emphasis is given to the role of calcitonin gene-related peptide (CGRP) in migraine development. CGRP not only contributes to symptoms but also represents a promising therapeutic target, with inhibitors showing effectiveness in migraine management. The article further explores traditional medical treatments, scrutinizing the mechanisms, benefits, and limitations of commonly prescribed medications. This provides a segue into an analysis of emerging therapeutic strategies and their potential to enhance migraine management. Finally, the paper delves into neuromodulation as an innovative treatment modality. Clinical studies indicating its effectiveness in migraine management are reviewed, and the advantages and limitations of this technique are discussed. In summary, the article aims to enhance the understanding of migraine pathogenesis and present novel therapeutic possibilities that could revolutionize patient care.
Collapse
Affiliation(s)
- Horia Pleș
- Department of Neurosurgery, Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Teodora-Larisa Timis
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Luca-Andrei Glavan
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Andrei Adrian Popa
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Andrei Bordeianu
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| |
Collapse
|
6
|
Antunes FTT, Campos MM, Carvalho VDPR, da Silva Junior CA, Magno LAV, de Souza AH, Gomez MV. Current Drug Development Overview: Targeting Voltage-Gated Calcium Channels for the Treatment of Pain. Int J Mol Sci 2023; 24:ijms24119223. [PMID: 37298174 DOI: 10.3390/ijms24119223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 06/12/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are targeted to treat pain conditions. Since the discovery of their relation to pain processing control, they are investigated to find new strategies for better pain control. This review provides an overview of naturally based and synthetic VGCC blockers, highlighting new evidence on the development of drugs focusing on the VGCC subtypes as well as mixed targets with pre-clinical and clinical analgesic effects.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maria Martha Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | | | | | - Luiz Alexandre Viana Magno
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | - Alessandra Hubner de Souza
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | | |
Collapse
|
7
|
Atalar AÇ, Özge A, Türk BG, Ekizoğlu E, Kurt Gök D, Baykan B, Ayta S, Erdoğan FF, Yeni SN, Taşdelen B, Velioğlu SK, Midi İ, Serap S, Ulufer Ç, Sarıca Darol E, Ağan K, Ayç S, Gazioğlu S, Vildan Okudan Z, Görkem Şirin N, Bebek N, Dericioğlu N, Güçlü Altun İ, Destina Yalçın A, Sürmeli R, Osman Erdinç O, Erdal A, İlhan Algın D, Kutlu G, Bek S, Erdal Y, Övünç Özön A, Reyhani A, Güldiken B, Baklan B, Oğuz Genç B, Aykutlu Altindağ E, Karahan G, Koç G, Mısırlı H, Öztura İ, Aslan-Kara K, Merve MÇ, Türkmen N, Bulut O, Ömer K, Kesim Çahin Ö, Ferik S, Mehmet TP, Topaloğlu P, Üstün Özek S, Düzgün Ü, Yayla V, Gömceli Y, Ünlüsoy Acar Z. Diagnosis of comorbid migraine without aura in patients with idiopathic/genetic epilepsy based on the gray zone approach to the International Classification of Headache Disorders 3 criteria. Front Neurol 2023; 13:1103541. [PMID: 36703639 PMCID: PMC9872152 DOI: 10.3389/fneur.2022.1103541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Background Migraine without aura (MwoA) is a very frequent and remarkable comorbidity in patients with idiopathic/genetic epilepsy (I/GE). Frequently in clinical practice, diagnosis of MwoA may be challenging despite the guidance of current diagnostic criteria of the International Classification of Headache Disorders 3 (ICHD-3). In this study, we aimed to disclose the diagnostic gaps in the diagnosis of comorbid MwoA, using a zone concept, in patients with I/GEs with headaches who were diagnosed by an experienced headache expert. Methods In this multicenter study including 809 consecutive patients with a diagnosis of I/GE with or without headache, 163 patients who were diagnosed by an experienced headache expert as having a comorbid MwoA were reevaluated. Eligible patients were divided into three subgroups, namely, full diagnosis, zone I, and zone II according to their status of fulfilling the ICHD-3 criteria. A Classification and Regression Tree (CART) analysis was performed to bring out the meaningful predictors when evaluating patients with I/GEs for MwoA comorbidity, using the variables that were significant in the univariate analysis. Results Longer headache duration (<4 h) followed by throbbing pain, higher visual analog scale (VAS) scores, increase of pain by physical activity, nausea/vomiting, and photophobia and/or phonophobia are the main distinguishing clinical characteristics of comorbid MwoA in patients with I/GE, for being classified in the full diagnosis group. Despite being not a part of the main ICHD-3 criteria, the presence of associated symptoms mainly osmophobia and also vertigo/dizziness had the distinguishing capability of being classified into zone subgroups. The most common epilepsy syndromes fulfilling full diagnosis criteria (n = 62) in the CART analysis were 48.39% Juvenile myoclonic epilepsy followed by 25.81% epilepsy with generalized tonic-clonic seizures alone. Conclusion Longer headache duration, throbbing pain, increase of pain by physical activity, photophobia and/or phonophobia, presence of vertigo/dizziness, osmophobia, and higher VAS scores are the main supportive associated factors when applying the ICHD-3 criteria for the comorbid MwoA diagnosis in patients with I/GEs. Evaluating these characteristics could be helpful to close the diagnostic gaps in everyday clinical practice and fasten the diagnostic process of comorbid MwoA in patients with I/GEs.
Collapse
Affiliation(s)
- Arife Çimen Atalar
- Department of Neurology, Istanbul Education and Research Hospital, University of Health Sciences, Istanbul, Türkiye,*Correspondence: Arife Çimen Atalar ✉
| | - Aynur Özge
- Department of Neurology, Algology and Clinical Neurophysiology, Mersin University School of Medicine, Mersin, Türkiye
| | - Bengi Gül Türk
- Department of Neurology and Clinical Neurophysiology, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Esme Ekizoğlu
- Department of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Duygu Kurt Gök
- Department of Neurology and Clinical Neurophysiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Betül Baykan
- Department of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Semih Ayta
- Child Neurology Unit, Department of Pediatrics, Haseki Training and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| | - Füsun Ferda Erdoğan
- Department of Neurology and Clinical Neurophysiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Seher Naz Yeni
- Department of Neurology and Clinical Neurophysiology, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Bahar Taşdelen
- Department of Biostatistics and Medical Informatics, Mersin University School of Medicine, Mersin University, Mersin, Türkiye
| | | | - Sibel K. Velioğlu
- Clinical Neurophysiology Unit, Department of Neurology, School of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang Y, Wang Y, Yue G, Zhao Y. Energy metabolism disturbance in migraine: From a mitochondrial point of view. Front Physiol 2023; 14:1133528. [PMID: 37123270 PMCID: PMC10133718 DOI: 10.3389/fphys.2023.1133528] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Migraine is a serious central nervous system disease with a high incidence rate. Its pathogenesis is very complex, which brings great difficulties for clinical treatment. Recently, many studies have revealed that mitochondrial dysfunction may play a key role in migraine, which affects the hyperosmotic of Ca2+, the excessive production of free radicals, the decrease of mitochondrial membrane potential, the imbalance of mPTP opening and closing, and the decrease of oxidative phosphorylation level, which leads to neuronal energy exhaustion and apoptosis, and finally lessens the pain threshold and migraine attack. This article mainly introduces cortical spreading depression, a pathogenesis of migraine, and then damages the related function of mitochondria, which leads to migraine. Oxidative phosphorylation and the tricarboxylic acid cycle are the main ways to provide energy for the body. 95 percent of the energy needed for cell survival is provided by the mitochondrial respiratory chain. At the same time, hypoxia can lead to cell death and migraine. The pathological opening of the mitochondrial permeability transition pore can promote the interaction between pro-apoptotic protein and mitochondrial, destroy the structure of mPTP, and further lead to cell death. The increase of mPTP permeability can promote the accumulation of reactive oxygen species, which leads to a series of changes in the expression of proteins related to energy metabolism. Both Nitric oxide and Calcitonin gene-related peptide are closely related to the attack of migraine. Recent studies have shown that changes in their contents can also affect the energy metabolism of the body, so this paper reviews the above mechanisms and discusses the mechanism of brain energy metabolism of migraine, to provide new strategies for the prevention and treatment of migraine and promote the development of individualized and accurate treatment of migraine.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yonglie Zhao,
| |
Collapse
|
9
|
Raga-Martínez I, Povedano-Montero FJ, Hernández-Gallego J, López-Muñoz F. Decrease Retinal Thickness in Patients with Chronic Migraine Evaluated by Optical Coherence Tomography. Diagnostics (Basel) 2022; 13:diagnostics13010005. [PMID: 36611297 PMCID: PMC9818823 DOI: 10.3390/diagnostics13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The purpose of this study is to determine the possible alterations that may occur in the thickness of the retinal nerve fibre layer (RNFL), ganglion cell layer (GCL), and macular thickness in patients with chronic migraines compared with healthy controls. Hence, we examined some of the possibilities that are offered by optical coherence tomography (OCT) in order to study different neurological diseases and to study its application, in this case, how it may be applied to patients with chronic migraines. This was an observational cross-sectional study in adults aged 18-65 years. The study group consisted of 90 patients (90 eyes) with chronic migraines who met the inclusion criteria, and 90 healthy controls (90 eyes) matched for age and sex. Retinal thickness was measured by spectral domain OCT (SD-OCT). The thickness of the superior quadrant of the peripapillary RNFL, as well as the mean thickness in the macula, RNFL macular, and GCL was significantly thinner in chronic migraine patients than in healthy controls (p ≤ 0.05). Chronic migraines are associated with a decrease in retinal thickness which is detectable by an OCT diagnostic technique. The quantification of the axonal damage could be used as a biomarker to help in the diagnosis and monitoring of this pathology. Further studies will be needed to confirm these findings.
Collapse
Affiliation(s)
- Isidoro Raga-Martínez
- Faculty of Health Sciences, University Camilo José Cela, 28692 Madrid, Spain
- Centro Óptico Raga, 23700 Linares, Spain
| | - Francisco J. Povedano-Montero
- Hospital Doce de Octubre Research Institute (i+12), 28041 Madrid, Spain
- Faculty of Optics and Optometry, Complutense University, 28040 Madrid, Spain
- Centro Óptico Montero, 28032 Madrid, Spain
| | - Jesús Hernández-Gallego
- Neurology Service, Hospital Universitario Doce de Octubre, 28041 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health Sciences, University Camilo José Cela, 28692 Madrid, Spain
- Hospital Doce de Octubre Research Institute (i+12), 28041 Madrid, Spain
- Correspondence: ; Tel.: +34-91-815-3131
| |
Collapse
|
10
|
Antunes FTT, De Souza AH, Figueira J, Binda NS, Carvalho VPR, Vieira LB, Gomez MV. Targeting N-type calcium channels in young-onset of some neurological diseases. Front Cell Dev Biol 2022; 10:1090765. [PMID: 36601540 PMCID: PMC9806183 DOI: 10.3389/fcell.2022.1090765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Calcium (Ca 2+) is an important second messenger in charge of many critical processes in the central nervous system (CNS), including membrane excitability, neurotransmission, learning, memory, cell proliferation, and apoptosis. In this way, the voltage-gated calcium channels (VGCCs) act as a key supply for Ca2+ entry into the cytoplasm and organelles. Importantly, the dysregulation of these channels has been reported in many neurological diseases of young-onset, with associated genetic factors, such as migraine, multiple sclerosis, and Huntington's disease. Notably, the literature has pointed to the role of N-type Ca2+ channels (NTCCs) in controlling a variety of processes, including pain, inflammation, and excitotoxicity. Moreover, several Ca2+ channel blockers that are used for therapeutic purposes have been shown to act on the N-type channels. Therefore, this review provides an overview of the NTCCs in neurological disorders focusing mainly on Huntington's disease, multiple sclerosis, and migraine. It will discuss possible strategies to generate novel therapeutic strategies.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alessandra Hubner De Souza
- Post-Graduate Program of Health Sciences, Faculdade de Ciências Médicas de, Belo Horizonte, Minas Gerais, Brazil,*Correspondence: Alessandra Hubner De Souza, ; Marcus Vinícius Gomez,
| | - Juliana Figueira
- Pharmacology Department, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Nancy Scardua Binda
- Pharmacology Department, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Luciene Bruno Vieira
- Pharmacology Departament, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcus Vinícius Gomez
- Graduate Program in Health Sciences, Faculty Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil,*Correspondence: Alessandra Hubner De Souza, ; Marcus Vinícius Gomez,
| |
Collapse
|
11
|
Domínguez-Balmaseda D, Del-Blanco-Muñiz JÁ, González-de-la-Flor A, García-Pérez-de-Sevilla G. Associations between Fatty Acid Intake and Tension-Type Headache: A Cross-Sectional Study. J Clin Med 2022; 11:jcm11237139. [PMID: 36498721 PMCID: PMC9736193 DOI: 10.3390/jcm11237139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Patients with tension-type headache (TTH) are characterized by recurrent pain that can become disabling. Identifying the dietary triggers of headaches has led to defining dietary strategies to prevent this disease. In fact, excessive dietary intake of Omega-6 (ω-6) fatty acids, or an ω-6: ω3 ≥ 5 ratio, typical of Western diets, has been associated with a higher prevalence of headaches. The objectives of the present study were to compare dietary fatty acid intake between participants with and without chronic TTH and to investigate the association between dietary fatty acid intake, pain characteristics, and quality of life in patients with chronic TTH. METHODS An observational study was conducted, comparing healthy participants (n = 24) and participants diagnosed with chronic TTH for more than six months (n = 24). The variables analyzed were dietary fatty acid intake variables, the Headache Impact Test (HIT-6), and the characteristics of the headache episodes (intensity, frequency, and duration). RESULTS The TTH group reported a significantly higher intake of saturated fatty acids (SFAs) but similar intakes of monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), and ω-6: ω-3 ratio when compared to controls. Furthermore, in the TTH group, the Ω-6 fatty acid intake was associated with more intense headache episodes. In addition, the TTH group reported a significant impact of headaches on their activities of daily living according to the HIT-6. CONCLUSIONS Higher intakes of SFAs and Ω-6 fatty acids were associated with more severe headache episodes in patients with TTH. Therefore, the characteristics of the diet, in particular the dietary fatty acid intake, should be considered when treating these patients.
Collapse
Affiliation(s)
- Diego Domínguez-Balmaseda
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Correspondence:
| | - José Ángel Del-Blanco-Muñiz
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Angel González-de-la-Flor
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | | |
Collapse
|
12
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
13
|
Xu C, Song L, Yang Y, Liu Y, Pei D, Liu J, Guo J, Liu N, Li X, Liu Y, Li X, Yao L, Kang Z. Clinical M2 Macrophage-Related Genes Can Serve as a Reliable Predictor of Lung Adenocarcinoma. Front Oncol 2022; 12:919899. [PMID: 35936688 PMCID: PMC9352953 DOI: 10.3389/fonc.2022.919899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundNumerous studies have found that infiltrating M2 macrophages play an important role in the tumor progression of lung adenocarcinoma (LUAD). However, the roles of M2 macrophage infiltration and M2 macrophage-related genes in immunotherapy and clinical outcomes remain obscure.MethodsSample information was extracted from TCGA and GEO databases. The TIME landscape was revealed using the CIBERSORT algorithm. Weighted gene co-expression network analysis (WGCNA) was used to find M2 macrophage-related gene modules. Through univariate Cox regression, lasso regression analysis, and multivariate Cox regression, the genes strongly associated with the prognosis of LUAD were screened out. Risk score (RS) was calculated, and all samples were divided into high-risk group (HRG) and low-risk group (LRG) according to the median RS. External validation of RS was performed using GSE68571 data information. Prognostic nomogram based on risk signatures and other clinical information were constructed and validated with calibration curves. Potential associations of tumor mutational burden (TMB) and risk signatures were analyzed. Finally, the potential association of risk signatures with chemotherapy efficacy was investigated using the pRRophetic algorithm.ResultsBased on 504 samples extracted from TCGA database, 183 core genes were identified using WGCNA. Through a series of screening, two M2 macrophage-related genes (GRIA1 and CLEC3B) strongly correlated with LUAD prognosis were finally selected. RS was calculated, and prognostic risk nomogram including gender, age, T, N, M stage, clinical stage, and RS were constructed. The calibration curve shows that our constructed model has good performance. HRG patients were suitable for new ICI immunotherapy, while LRG was more suitable for CTLA4-immunosuppressive therapy alone. The half-maximal inhibitory concentrations (IC50) of the four chemotherapeutic drugs (metformin, cisplatin, paclitaxel, and gemcitabine) showed significant differences in HRG/LRG.ConclusionsIn conclusion, a comprehensive analysis of the role of M2 macrophages in tumor progression will help predict prognosis and facilitate the advancement of therapeutic techniques.
Collapse
Affiliation(s)
- Chaojie Xu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lishan Song
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yubin Yang
- Peking University First Hospital, Peking University, Beijing, China
| | - Yi Liu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dongchen Pei
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jiabang Liu
- Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jianhua Guo
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Nan Liu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoyong Li
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuchen Liu
- Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- *Correspondence: Zhengjun Kang,
- Lin Yao,
- Xuesong Li,
- Yuchen Liu,
- Xiaoyong Li,
| | - Xuesong Li
- College of Pharmacy, Shantou University School of Medicine, Shantou, China
| | - Lin Yao
- College of Pharmacy, Shantou University School of Medicine, Shantou, China
| | - Zhengjun Kang
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Safety evaluation of oral calcitonin-gene-related peptide receptor antagonists in patients with acute migraine: a systematic review and meta-analysis. Eur J Clin Pharmacol 2022; 78:1365-1376. [PMID: 35729340 DOI: 10.1007/s00228-022-03347-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/29/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Calcitonin gene-related peptide (CGRP) receptor antagonists have been suggested as novel treatments for acute migraine. This study aimed to use meta-analysis to compare the safety and tolerability of five existing oral CGRP receptor antagonists (BI44370TA, MK-3207, rimegepant, telcagepant, and ubrogepant) with that of a placebo or triptans against acute migraine. METHODS Five prominent databases were searched to identify randomized controlled trials on this topic. The primary safety outcomes of interest were any adverse events (AEs) and treatment-related adverse events (TRAEs), and secondary outcomes were individual events, namely diarrhea, dizziness, dry mouth, fatigue, nausea, paresthesia, somnolence, upper abdominal pain, and vomiting. RESULTS Fifteen studies met the eligibility criteria and were examined in detail. Although, compared to placebo, oral CGRP receptor antagonists significantly increased the incidence of any AEs (risk ratio [RR] = 1.15; 95% confidence interval [CI] = 1.07-1.23), there was no difference in the incidence of TRAEs (RR = 1.18; 95% CI = 1.00-1.38). Moreover, CGRP receptor antagonists were safer than triptans with respect to primary safety outcomes, such as any AEs (RR = 0.78; 95% CI = 0.63-0.98) and TRAEs (RR = 0.68; 95% CI = 0.58-0.79). CONCLUSION Despite oral CGRP receptor antagonists posing a significantly higher risk of AEs when compared to placebo, CGRP receptor antagonists have a favorable safety profile compared to triptans. Our findings inform strategies to enhance safety and tolerability in the treatment of acute migraine.
Collapse
|
15
|
Glucose-Related Traits and Risk of Migraine—A Potential Mechanism and Treatment Consideration. Genes (Basel) 2022; 13:genes13050730. [PMID: 35627115 PMCID: PMC9141901 DOI: 10.3390/genes13050730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Migraine and glucose-related (glycaemic) traits (fasting glucose, fasting insulin, and type 2 diabetes) are common and complex comorbid disorders that cause major economic and social burdens on patients and their families. Studies on the relationship between migraine and glucose-related traits have yielded inconsistent results. The purpose of this review is to synthesise and discuss the information from the available literature on the relationship between fasting glucose, fasting insulin, and type 2 diabetes (T2D) with migraine. Publications on migraine and fasting glucose, migraine and fasting insulin, and migraine and T2D were identified from a PubMed and Google Scholar database search and reviewed for this article. Multiple publications have suggested that the comorbidity of migraine and glucose-related traits may have a similar complex pathogenic mechanism, including impaired glucose homeostasis, insulin resistance, reduced cerebrovascular reactivity, abnormal brain metabolism, shared genetic factors, neurotransmitters, and sex hormones. Furthermore, several studies have found a bi-directional link between migraine with insulin resistance and T2D. There is strong evidence for a biological association between migraine headache and glucose-related traits, and burgeoning evidence for shared genetic influences. Therefore, genetic research into these comorbid traits has the potential to identify new biomarkers and therapeutic targets and provide biological insight into their relationships. We encourage healthcare professionals to consider the co-occurrence of migraine with glucose-related traits in the evaluation and treatment of their patients.
Collapse
|
16
|
Southey BR, Rodriguez-Zas SL. Alternative Splicing of Neuropeptide Prohormone and Receptor Genes Associated with Pain Sensitivity Was Detected with Zero-Inflated Models. Biomedicines 2022; 10:biomedicines10040877. [PMID: 35453627 PMCID: PMC9031102 DOI: 10.3390/biomedicines10040877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Migraine is often accompanied by exacerbated sensitivity to stimuli and pain associated with alternative splicing of genes in signaling pathways. Complementary analyses of alternative splicing of neuropeptide prohormone and receptor genes involved in cell–cell communication in the trigeminal ganglia and nucleus accumbens regions of mice presenting nitroglycerin-elicited hypersensitivity and control mice were conducted. De novo sequence assembly detected 540 isoforms from 168 neuropeptide prohormone and receptor genes. A zero-inflated negative binomial model that accommodates for potential excess of zero isoform counts enabled the detection of 27, 202, and 12 differentially expressed isoforms associated with hypersensitivity, regions, and the interaction between hypersensitivity and regions, respectively. Skipped exons and alternative 3′ splice sites were the most frequent splicing events detected in the genes studied. Significant differential splicing associated with hypersensitivity was identified in CALCA and VGF neuropeptide prohormone genes and ADCYAP1R1, CRHR2, and IGF1R neuropeptide receptor genes. The prevalent region effect on differential isoform levels (202 isoforms) and alternative splicing (82 events) were consistent with the distinct splicing known to differentiate central nervous structures. Our findings highlight the changes in alternative splicing in neuropeptide prohormone and receptor genes associated with hypersensitivity to pain and the necessity to target isoform profiles for enhanced understanding and treatment of associated disorders such as migraine.
Collapse
Affiliation(s)
- Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Correspondence:
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Risk of migraine contributed by genetic polymorphisms of ANKDD1B gene: a case-control study based on Chinese Han population. Neurol Sci 2021; 43:2735-2743. [PMID: 34669083 DOI: 10.1007/s10072-021-05645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Early studies have indicated that the risk of migraine is contributed by both genetic and environmental factors. We aimed to evaluate the association between the risk of migraine and genetic polymorphisms in the ANKDD1B gene in a large sample of Chinese Han populations. A total of 882 patients with MO and 1,784 age-matched controls were recruited. A list of 12 tag SNPs located within the ANKDD1B gene region was genotyped. Distributions of SNP genotypes and alleles between patients and controls were examined to investigate the associations between the risk of migraine and genetic polymorphisms. The GTEx database was used to examine the effects of the significant SNPs on gene expressions. A stop-gain SNP, rs34358, was discovered to be significantly related with the risk of migraine (χ2 = 25.02, P = 5.66 × 10-7). The A allele of this SNP was significantly associated with a decreased risk of migraine (OR [95% CI] = 0.73 [0.65-0.83]). A dose-dependent pattern was identified in the genotypic analyses. The OR with 95% confidence interval for genotype AA versus GG was 0.55 [0.42-0.72], while for AG versus GG it was 0.74 [0.62-0.88]. Further bioinformatics analysis showed multiple significant signals (20 out of 47) for the association between SNP rs34358 and gene expression levels of ANKDD1B. In conclusion, we have provided population-based evidence for the association between genetic polymorphisms of the ANKDD1B gene and the risk of migraine. A protein-truncating variant was significantly associated with a decreased risk of migraine in the samples recruited from the Chinese Han population.
Collapse
|
18
|
Almalki AH, Naguib IA, Alshehri FS, Alghamdi BS, Alsaab HO, Althobaiti YS, Alshehri S, Abdallah FF. Application of Three Ecological Assessment Tools in Examining Chromatographic Methods for the Green Analysis of a Mixture of Dopamine, Serotonin, Glutamate and GABA: A Comparative Study. Molecules 2021; 26:5436. [PMID: 34576907 PMCID: PMC8467375 DOI: 10.3390/molecules26185436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
The assessment of greenness of analytical protocols is of great importance now to preserve the environment. Some studies have analyzed either only the neurotransmitters, dopamine, serotonin, glutamate, and gamma-aminobutyric acid (GABA), together or with other neurotransmitters and biomarkers. However, these methods have not been investigated for their greenness and were not compared with each other to find the optimum one. Therefore, this study aims to compare seven published chromatographic methods that analyzed the four neurotransmitters and their mixtures using the National Environmental Method Index, Analytical Eco-Scale Assessment (ESA), and Green Analytical Procedure Index (GAPI). As these methods cover both qualitative and quantitative aspects, they offer better transparency. Overall, GAPI showed maximum greenness throughout the analysis. Method 6 was proven to be the method of choice for analyzing the mixture, owing to its greenness, according to NEMI, ESA, and GAPI. Additionally, method 6 has a wide scope of application (13 components can be analyzed), high sensitivity (low LOQ values), and fast analysis (low retention times, especially for glutamate and GABA).
Collapse
Affiliation(s)
- Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.O.A.); (Y.S.A.)
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Badrah S. Alghamdi
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Hashem O. Alsaab
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.O.A.); (Y.S.A.)
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Yusuf S. Althobaiti
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.O.A.); (Y.S.A.)
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sameer Alshehri
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Fatma F. Abdallah
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| |
Collapse
|
19
|
Yazğan Y, Nazıroğlu M. Involvement of TRPM2 in the Neurobiology of Experimental Migraine: Focus on Oxidative Stress and Apoptosis. Mol Neurobiol 2021; 58:5581-5601. [PMID: 34370177 DOI: 10.1007/s12035-021-02503-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
Excessive Ca2+ influx and mitochondrial oxidative stress (OS) of trigeminal ganglia (TG) have essential roles in the etiology of migraine headache and aura. The stimulation of TRPM2 channel via the generation of OS and ADP-ribose (ADPR) induces pain, inflammatory, and oxidative neurotoxicity, although its inhibition reduces the intensity of pain and neurotoxicity in several neurons. However, the cellular and molecular effects of TRPM2 in the TG of migraine model (glyceryl trinitrate, GTN) on the induction of pain, OS, apoptosis, and inflammation remain elusive. GTN-mediated increases of pain intensity, apoptosis, death, cytosolic reactive oxygen species (ROS), mitochondrial ROS, caspase -3, caspase -9, cytosolic Ca2+ levels, and cytokine generations (TNF-α, IL-1β, and IL-6) in the TG of TRPM2 wild-type mouse were further increased by the TRPM2 activation, although they were modulated by the treatments of GSH, PARP-1 inhibitors (PJ34 and DPQ), and TRPM2 blockers (ACA and 2APB). However, the effects of GTN were not observed in the TG of TRPM2 knockout mice. The current data indicate that the maintaining activation of TRPM2 is not only important for the quenching OS, inflammation, and neurotoxicity in the TG neurons of mice with experimental migraine but also equally critical to the modulation of GTN-induced pain.
Collapse
Affiliation(s)
- Yener Yazğan
- Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey. .,Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey. .,Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture and Industry Ltd, Isparta, Turkey. .,Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, TR-32260, Isparta, Turkey.
| |
Collapse
|
20
|
Abstract
Background Disability from migraine has a profound impact on the world's economy. Research has been ongoing to identify biomarkers to aid in diagnosis and treatment. Objective The aim of this study was to highlight the purported diagnostic and therapeutic migraine biomarkers and their role in precision medicine. Methods A comprehensive literature search was conducted using PubMed, Google Scholar, and clinicaltrials.gov using keywords: "migraine" OR "headache" combined with "biomarkers" OR "marker." Other keywords included "serum," "cerebral spinal fluid," "inflammatory," and "neuroimaging." Results After a review of 88 papers, we find the literature supports numerous biomarkers in the diagnosis of migraine. Therapeutic biomarkers, while not as extensively published, highlight calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide-38 (PACAP-38) as biomarkers with the most substantiated clinical relevance. Genetic markers mainly focusing on gene mutations with resultant biochemical alterations continue to be studied and show promise. Conclusion Although there are several proposed biomarkers for migraine, continued research is needed to substantiate their role in clinical practice.
Collapse
Affiliation(s)
- Brian M Yan
- Sidney Kimmel Medical College, Thomas Jefferson University, USA
| | | | - Ayesha Ahmad
- Department of Neurology, Thomas Jefferson University, USA
| | | |
Collapse
|
21
|
Alves-Ferreira M, Quintas M, Sequeiros J, Sousa A, Pereira-Monteiro J, Alonso I, Neto JL, Lemos C. A genetic interaction of NRXN2 with GABRE, SYT1 and CASK in migraine patients: a case-control study. J Headache Pain 2021; 22:57. [PMID: 34126933 PMCID: PMC8201896 DOI: 10.1186/s10194-021-01266-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Migraine is a multifactorial disorder that is more frequent (two to four times) in women than in men. In recent years, our research group has focused on the role of neurotransmitter release and its regulation. Neurexin (NRXN2) is one of the components of the synaptic vesicle machinery, responsible for connecting intracellular fusion proteins and synaptic vesicles. Our aim was to continue exploring the role and interaction of proteins involved in the control and promotion of neurotransmission in migraine susceptibility. METHODS A case-control study was performed comprising 183 migraineurs (148 females and 35 males) and 265 migraine-free controls (202 females and 63 males). Tagging single nucleotide polymorphisms of NRXN2 were genotyped to assess the association between NRXN2 and migraine susceptibility. The χ2 test was used to compare allele frequencies in cases and controls and odds ratios were estimated with 95% confidence intervals. Haplotype frequencies were compared between groups. Gene-gene interactions were analysed using the Multifactor Dimensionality Reduction v2.0. RESULTS We found a statistically significant interaction model (p = 0.009) in the female group between the genotypes CG of rs477138 (NRXN2) and CT of rs1158605 (GABRE). This interaction was validated by logistic regression, showing a significant risk effect [OR = 4.78 (95%CI: 1.76-12.97)] after a Bonferroni correction. Our data also supports a statistically significant interaction model (p = 0.011) in the female group between the GG of rs477138 in NRXN2 and, the rs2244325's GG genotype and rs2998250's CC genotype of CASK. This interaction was also validated by logistic regression, with a protective effect [OR = 0.08 (95%CI: 0.01-0.75)]. A weak interaction model was found between NRXN2-SYT1. We have not found any statistically significant allelic or haplotypic associations between NRXN2 and migraine susceptibility. CONCLUSIONS This study unravels, for the first time, the gene-gene interactions between NRXN2, GABRE - a GABAA-receptor - and CASK, importantly it shows the synergetic effect between those genes and its relation with migraine susceptibility. These gene interactions, which may be a part of a larger network, can potentially help us in better understanding migraine aetiology and in development of new therapeutic approaches.
Collapse
Affiliation(s)
- Miguel Alves-Ferreira
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Marlene Quintas
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alda Sousa
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José Pereira-Monteiro
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - João Luís Neto
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
22
|
Cutrer FM, Moyer AM, Atkinson EJ, Wang L, Tian S, Wu Y, Garza I, Robertson CE, Huebert CA, Moore BE, Klein CJ. Genetic variants related to successful migraine prophylaxis with verapamil. Mol Genet Genomic Med 2021; 9:e1680. [PMID: 33829662 PMCID: PMC8222836 DOI: 10.1002/mgg3.1680] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Currently, there is no biologically based rationale for drug selection in migraine prophylactic treatment. METHODS To investigate the genetic variation underlying treatment response to verapamil prophylaxis, we selected 225 patients from a longitudinally established, deeply phenotyped migraine database (N = 5983), and collected uninterrupted quantitated verapamil treatment response data and DNA for these 225 cases. We recorded the number of headache days in the four weeks preceding treatment with verapamil and for four weeks, following completion of a treatment period with verapamil lasting at least five weeks. Whole-exome sequencing (WES) was applied to a discovery cohort consisting of 21 definitive responders and 14 definitive non-responders, and the identified single nucleotide polymorphisms (SNPs) showing significant association were genotyped in a separate confirmation cohort (185 verapamil treated patients). Statistical analysis of the WES data from the discovery cohort identified 524 SNPs associated with verapamil responsiveness (p < 0.01); among them, 39 SNPs were validated in the confirmatory cohort (n = 185) which included the full range of response to verapamil from highly responsive to not responsive. RESULTS Fourteen SNPs were confirmed by both percentage and arithmetic statistical approaches. Pathway and protein network analysis implicated myo-inositol biosynthetic and phospholipase-C second messenger pathways in verapamil responsiveness, emphasizing the earlier pathogenic understanding of migraine. No association was found between genetic variation in verapamil metabolic enzymes and treatment response. CONCLUSION Our findings demonstrate that genetic analysis in well-characterized subpopulations can yield important pharmacogenetic information pertaining to the mechanism of anti-migraine prophylactic medications.
Collapse
Affiliation(s)
| | - Ann M. Moyer
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Department of Clinical GenomicsMayo ClinicRochesterMNUSA
| | - Elizabeth J. Atkinson
- Health Sciences ResearchBiomedical Statistics and InformaticsMayo ClinicRochesterMNUSA
| | - Liguo Wang
- Health Sciences ResearchBiomedical Statistics and InformaticsMayo ClinicRochesterMNUSA
| | - Shulan Tian
- Health Sciences ResearchBiomedical Statistics and InformaticsMayo ClinicRochesterMNUSA
| | - Yanhong Wu
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| | - Ivan Garza
- Department of NeurologyMayo ClinicRochesterMNUSA
| | | | | | - Brenda E. Moore
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| | - Christopher J. Klein
- Department of NeurologyMayo ClinicRochesterMNUSA
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Department of Clinical GenomicsMayo ClinicRochesterMNUSA
| |
Collapse
|
23
|
Urinary Proteomics Reveals Promising Biomarkers in Menstrually Related and Post-Menopause Migraine. J Clin Med 2021; 10:jcm10091854. [PMID: 33923220 PMCID: PMC8123166 DOI: 10.3390/jcm10091854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Migraine is an invalidating neuro-vascular disorder largely spread in the world population. Currently, its pathophysiology is not yet completely understood. The purpose of this study was to investigate the urinary proteome of women suffering from menstrually related migraine (MM) and post-menopause migraine (PM) in comparison with non-headache women as controls, to search potential biomarkers of these migraine sub-types. Urine samples were analyzed by mono-dimensional gel electrophoresis (SDS-PAGE) and two-dimensional gel electrophoresis (2DE) coupled to liquid chromatography-mass spectrometry (LC-MS/MS). Twenty-one urinary proteins were found significantly dysregulated in MM and PM (p < 0.05). The STRING Analysis database revealed interaction between 15 proteins, which were mainly involved in the immune and inflammatory response. Seven of the most considerable proteins were further quantified by western blot: protein S100A8 (S10A8), up-regulated in MM, uromodulin (UROM), alpha-1-microglobulin (AMBP), gelsolin (GELS), prostaglandin-H2 D-isomerase (PTGDS), over-expressed in PM, apolipoprotein A-I (APOA1), and transthyretin (TTHY), respectively down- and up-regulated in both migraineur groups vs controls. These candidate biomarkers might be involved in the neurophysiological network of MM and PM, thus helping to better understand the pathophysiology of these migraine forms. If validated in large-scale studies, this protein cluster could become a distinctive target for clinical applications in migraine diagnosis and treatment.
Collapse
|
24
|
Kowalska M, Prendecki M, Piekut T, Kozubski W, Dorszewska J. Migraine: Calcium Channels and Glia. Int J Mol Sci 2021; 22:2688. [PMID: 33799975 PMCID: PMC7962070 DOI: 10.3390/ijms22052688] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine is a common neurological disease that affects about 11% of the adult population. The disease is divided into two main clinical subtypes: migraine with aura and migraine without aura. According to the neurovascular theory of migraine, the activation of the trigeminovascular system (TGVS) and the release of numerous neuropeptides, including calcitonin gene-related peptide (CGRP) are involved in headache pathogenesis. TGVS can be activated by cortical spreading depression (CSD), a phenomenon responsible for the aura. The mechanism of CSD, stemming in part from aberrant interactions between neurons and glia have been studied in models of familial hemiplegic migraine (FHM), a rare monogenic form of migraine with aura. The present review focuses on those interactions, especially as seen in FHM type 1, a variant of the disease caused by a mutation in CACNA1A, which encodes the α1A subunit of the P/Q-type voltage-gated calcium channel.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Michał Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland;
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| |
Collapse
|
25
|
Brifault C, Romero H, Van-Enoo A, Pizzo D, Azmoon P, Kwon H, Nasamran C, Gonias SL, Campana WM. Deletion of the Gene Encoding the NMDA Receptor GluN1 Subunit in Schwann Cells Causes Ultrastructural Changes in Remak Bundles and Hypersensitivity in Pain Processing. J Neurosci 2020; 40:9121-9136. [PMID: 33051351 PMCID: PMC7672997 DOI: 10.1523/jneurosci.0663-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022] Open
Abstract
Abnormalities in interactions between sensory neurons and Schwann cells (SCs) may result in heightened pain processing and chronic pain states. We previously reported that SCs express the NMDA receptor (NMDA-R), which activates cell signaling in response to glutamate and specific protein ligands, such as tissue-type plasminogen activator. Herein, we genetically targeted grin1 encoding the essential GluN1 NMDA-R subunit, conditionally in SCs, to create a novel mouse model in which SCs are NMDA-R-deficient (GluN1- mice). These mice demonstrated increased sensitivity to light touch, pinprick, and thermal hyperalgesia in the absence of injury, without associated changes in motor function. Ultrastructural analysis of adult sciatic nerve in GluN1- mice revealed increases in the density of Aδ fibers and Remak bundles and a decrease in the density of Aβ fibers, without altered g-ratios. Abnormalities in adult Remak bundle ultrastructure were also present including aberrant C-fiber ensheathment, distances between axons, and increased poly-axonal pockets. Developmental and post radial sorting defects contributed to altered nerve fiber densities in adult. Uninjured sciatic nerves in GluN1- mice did not demonstrate an increase in neuroinflammatory infiltrates. Transcriptome profiling of dorsal root ganglia (DRGs) revealed 138 differentially regulated genes in GluN1- mice. One third of the regulated genes are known to be involved in pain processing, including sprr1a, npy, fgf3, atf3, and cckbr, which were significantly increased. The intraepidermal nerve fiber density (IENFD) was significantly decreased in the skin of GluN1- mice. Collectively, these findings demonstrate that SC NMDA-R is essential for normal PNS development and for preventing development of pain states.SIGNIFICANCE STATEMENT Chronic unremitting pain is a prevalent medical condition; however, the molecular mechanisms that underlie heightened pain processing remain incompletely understood. Emerging data suggest that abnormalities in Schwann cells (SCs) may cause neuropathic pain. We established a novel mouse model for small fiber neuropathy (SFN) in which grin1, the gene that encodes the NMDA receptor (NMDA-R) GluN1 subunit, is deleted in SCs. These mice demonstrate hypersensitivity in pain processing in the absence of nerve injury. Changes in the density of intraepidermal small fibers, the ultrastructure of Remak bundles, and the transcriptome of dorsal root ganglia (DRGs) provide possible explanations for the increase in pain processing. Our results support the hypothesis that abnormalities in communication between sensory nerve fibers and SCs may result in pain states.
Collapse
Affiliation(s)
- Coralie Brifault
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
- Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Haylie Romero
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
- Program in Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Alicia Van-Enoo
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
- Program in Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Don Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - HyoJun Kwon
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
| | - Chanond Nasamran
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Wendy M Campana
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
- Program in Neurosciences, University of California, San Diego, La Jolla, California 92093
- San Diego Veterans Administration Health Care System, San Diego, California 92161
| |
Collapse
|
26
|
Abstract
Migraine is a common, chronic disorder that often manifests in childhood. This article discusses the prevalence, diagnosis, and clinical management of uncommon subtypes of migraine with aura, including hemiplegic migraine, retinal migraine, and abdominal migraine.
Collapse
Affiliation(s)
- Vincent M Vacca
- Vincent M. Vacca, Jr., is a retired nurse in West Palm Beach, Fla. Sarah Beth Thomas is a professional development manager at Brigham and Women's Hospital in Boston, Mass
| | | |
Collapse
|
27
|
Quintas M, Neto JL, Sequeiros J, Sousa A, Pereira-Monteiro J, Lemos C, Alonso I. Going Deep into Synaptic Vesicle Machinery Genes and Migraine Susceptibility - A Case-Control Association Study. Headache 2020; 60:2152-2165. [PMID: 32979221 DOI: 10.1111/head.13957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE A number of observations, including among our study population, have implicated variants in the syntaxin-1A, a component of the synaptic vesicles, in migraine susceptibility. Therefore, we hypothesize that variants in other components of the vesicle machinery are involved in migraine. BACKGROUND Migraine is a common and complex neurologic disorder that affects approximately 15-18% of the general population. The exact cause of migraine is unknown; however, genetic studies have made possible substantial progress toward the identification of underlying molecular pathways. Neurotransmitters have been for long considered to have a key role in migraine pathophysiology; so we investigated common variants in genes involved in the synaptic vesicle machinery and their impact in migraine susceptibility. METHODS We performed a case-control study comprising 188 unrelated patients with headache and 286 healthy controls in a population from the north of Portugal. Benefiting from the presence of linkage disequilibrium, we selected and genotyped 119 tagging single-nucleotide polymorphisms in 18 genes. RESULTS We found significant associations between single-nucleotide variants and migraine in 7 genes, SYN1, SYN2, SNAP25, VAMP2, STXBP1, STXBP5, and UNC13A, either conferring an increased risk or protection of migraine. Due to SYN1 X-chromosomal location, we performed the statistical analysis separated by gender and, in the female group, the C allele of rs5906435 increased the risk for migraine susceptibility (P = .021; OR = 1.69; 95% CI: 1.21-2.34). In contrast, the TT genotype of the same variant emerged as a potential protective factor (P = .003; OR = 0.45; 95% CI: 0.27-0.74). The SYN2 analysis supported the rs3773364's G allele (P = .014) as a risk factor for migraine, and although not statistically significant after correction, the AG genotype (P = .006; OR = 1.86; 95% CI: 1.20-2.90) reinforced the allelic findings. Additionally, we found the SNAP25-rs363039's CT genotype (P = .001; OR = 2.14; 95% CI: 1.36-3.34), the STXBP5-rs1765028's T allele (P = .041; OR = 1.46; 95% CI: 1.13-1.90), and the UNC13B-rs7851161's TT genotype (P = .001; OR = 2.14; 95% CI: 1.36-3.34) as statistically significant risk factors for migraine liability. VAMP2-rs1150's G allele revealed a risk association to migraine, not statistically significant after correction (P = .068). Additionally, we found haplotypes in SYN1, SYN2, STXBP1, and UNC13B to be associated with migraine. CONCLUSIONS Overall, this study provides a new insight into migraine liability, identifying possible starting points for functional studies.
Collapse
Affiliation(s)
- Marlene Quintas
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - João Luís Neto
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alda Sousa
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José Pereira-Monteiro
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Kowalska M, Prendecki M, Kapelusiak-Pielok M, Grzelak T, Łagan-Jędrzejczyk U, Wiszniewska M, Kozubski W, Dorszewska J. Analysis of Genetic Variants in SCN1A, SCN2A, KCNK18, TRPA1 and STX1A as a Possible Marker of Migraine. Curr Genomics 2020; 21:224-236. [PMID: 33071616 PMCID: PMC7521035 DOI: 10.2174/1389202921666200415181222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background
Migraine is a polygenetic disease, considered as a channelopathy. The dysregulation of ion functioning due to genetic changes may activate the trigeminovascular system and induce migraine attack both migraine with aura (MA) and without aura (MO). Objectives
The aim of the study was to analyze the following variants of genes encoding ion channels and associated protein: c.3199G>A SCN1A, c.56G>A SCN2A, c.28A>G and c.328T>C KCNK18, c.3053A>G TRPA1, c.31-1811C>T STX1A in migraine patients. Patients and Methods
The study included 170 migraine patients and 173 controls. HRMA and Sanger sequencing were used for genotyping. Meta-analysis was performed for c.28A>G, c.328T>C KCNK18, and c.31-1811C>T STX1A. Results
AA genotype of c.56G>A SCN2A was found only in migraine patients. Patients with c.328T>C KCNK18 mutation had an increased risk of developing migraine before the age of 18. Moreover, individuals with AA/TC haplotype of KCNK18 had higher attack frequency than those with AA/TT (p<0.05). T allele of c.31-1811C>T STX1A was more frequent in MA patients than MO (p<0.05). The c.3053A>G TRPA1 polymorphism was more common in patients with migraine onset before the age of 15 (p<0.05), while c.31-1811C>T STX1A and c.3199G>A SCN1A before the age of 10 (p<0.01). Meta-analysis showed a significant association of c.31-1811C>T STX1A polymorphism with migraine overall (OR=1.22, p=0.0086), MA, and MO. No association was found for c.28A>G KCNK18, c.328T>C KCNK18, and migraine overall. Conclusion Changes in genes encoding ion channels or proteins regulating their functioning may increase the risk of migraines and correlate with clinical features of disease, e.g. age of onset and attack frequency.
Collapse
Affiliation(s)
- Marta Kowalska
- 1Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 2Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 3Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland; 4Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, Pila, Poland; 5Department of Neurology, Specialistic Hospital in Pila, Pila, Poland
| | - Michał Prendecki
- 1Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 2Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 3Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland; 4Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, Pila, Poland; 5Department of Neurology, Specialistic Hospital in Pila, Pila, Poland
| | - Magdalena Kapelusiak-Pielok
- 1Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 2Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 3Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland; 4Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, Pila, Poland; 5Department of Neurology, Specialistic Hospital in Pila, Pila, Poland
| | - Teresa Grzelak
- 1Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 2Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 3Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland; 4Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, Pila, Poland; 5Department of Neurology, Specialistic Hospital in Pila, Pila, Poland
| | - Urszula Łagan-Jędrzejczyk
- 1Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 2Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 3Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland; 4Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, Pila, Poland; 5Department of Neurology, Specialistic Hospital in Pila, Pila, Poland
| | - Małgorzata Wiszniewska
- 1Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 2Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 3Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland; 4Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, Pila, Poland; 5Department of Neurology, Specialistic Hospital in Pila, Pila, Poland
| | - Wojciech Kozubski
- 1Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 2Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 3Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland; 4Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, Pila, Poland; 5Department of Neurology, Specialistic Hospital in Pila, Pila, Poland
| | - Jolanta Dorszewska
- 1Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 2Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland; 3Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland; 4Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, Pila, Poland; 5Department of Neurology, Specialistic Hospital in Pila, Pila, Poland
| |
Collapse
|
29
|
Bellei E, Rustichelli C, Bergamini S, Monari E, Baraldi C, Lo Castro F, Tomasi A, Ferrari A. Proteomic serum profile in menstrual-related and post menopause migraine. J Pharm Biomed Anal 2020; 184:113165. [PMID: 32113117 DOI: 10.1016/j.jpba.2020.113165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022]
Abstract
The aim of this pilot study was to analyze the serum proteomic profile of women suffering from menstrual-related migraine (MM group, n = 15) and migraine in post-menopause (PM group, n = 15) in comparison with non-headache control females (C group, n = 15). Serum samples were subjected to two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS) analysis for protein identification. Based on 2D-gel maps and PDQuest 2-D software, 13 differentially expressed spots, corresponding to 12 unique proteins identified by Liquid Chromatography-Electrospray Ionization-Quadrupole-Time of Flight/tandem mass spectrometry (LC-ESI-QToF-MS/MS), were detected in the MM and PM groups vs C group. Five inflammatory and regulatory of vascular integrity proteins (prothrombin, serum amyloid P-component, Ig kappa chain C region, apolipoprotein A-I, serum amyloid A-4 protein) were found deregulated in both MM and PM groups compared to C group; MM group showed the upregulation of other inflammatory protein fragments (inter-alpha-trypsin inhibitor heavy chain H4 and complement C4-A) compared to C group; PM group, in comparison with C group, displayed a noteworthy upregulation of transthyretin and other deregulated proteins (tetranectin, alpha-1-antitrypsin, haptoglobin, apolipoprotein A-IV) playing a role in anti-inflammatory and reparative processes. In conclusion, proteomic analysis was able to reveal differences in protein expression between migraine sufferers and non-headache women; as in other neurological diseases characterized by neuroinflammation, the serum proteome of migraine women presents an abundance of proteins indicative of cellular damage, oxidative stress and inflammation. This relevant inflammatory status, if confirmed in larger series, could represent a target for menstrual-related migraine treatment.
Collapse
Affiliation(s)
- Elisa Bellei
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi, 103, 41125 Modena, Italy.
| | - Stefania Bergamini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy
| | - Emanuela Monari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy
| | - Carlo Baraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41124 Modena, Italy
| | - Flavia Lo Castro
- School of Pharmacology and Clinical Toxicology, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41124 Modena, Italy
| | - Aldo Tomasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy
| | - Anna Ferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41124 Modena, Italy
| |
Collapse
|
30
|
Casili G, Lanza M, Filippone A, Campolo M, Paterniti I, Cuzzocrea S, Esposito E. Dimethyl fumarate alleviates the nitroglycerin (NTG)-induced migraine in mice. J Neuroinflammation 2020; 17:59. [PMID: 32066464 PMCID: PMC7469611 DOI: 10.1186/s12974-020-01736-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Oxidative stress and inflammatory pathways are involved in migraine and endogenous antioxidant defense system has a role in the prevention of hyperalgesia in migraine. In this study, we aimed to evaluate the role of the most pharmacologically effective molecules among the fumaric acid esters (FAEs), dimethyl fumarate, nuclear factor E2-related factor 2/antioxidant response element (Nrf-2/ARE) pathway-mediated, in regulating the hypersensitivity in a mouse model of nitroglycerine (NTG)-induced migraine. Methods Mice were orally administered with DMF at the doses of 10, 30, and 100 mg/kg, 5 min after NTG intraperitoneal injections. We performed histological and molecular analysis on the whole brain and behavioral tests after 4 h by NTG-migraine induction. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-кB) subunit p65, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα), inducible nitrite oxide synthase (iNOS), cyclooxygenase 2 (COX-2), Nrf-2, manganese superoxide dismutase (Mn-SOD), and heme-oxygenase-1 (HO-1) were detected by Western blot. Tail flick, hot plate, orofacial formalin, and photophobia tests were used to evaluate migraine-like pain and migraine-related light sensitivity. Moreover, we evaluate Nrf-2-dependent mechanism by the in vitro stimulation of cells extracted by trigeminal ganglia with diethylenetriamine/nitric oxide (DETA/NO), a nitric oxide (NO) donor. The cells were pre-treated with DMF and an antagonist of Nrf-2, trigonelline (TR) 2 h before DETA/NO stimulation. Results DMF treatment notably reduced histological damage as showed by cresyl violet staining; also, regulating both NF-κB and Nrf-2 pathway, DMF treatment decreased the severity of inflammation and increased the protective antioxidant action. Moreover, the headache was significantly reduced. The protective effect of DMF treatment, via Nrf-2, was confirmed in in vitro studies, through inhibition of Nrf-2 by trigonelline. Cytotoxicity, iNOS, and MnSOD expression were evaluated. Conclusion These results provided the evidence that DMF, by Nrf-2 modulation, has a protective effect on central sensitization induced by NTG, suggesting a new insight into the potential application of DMF as novel candidates in drug development for migraine.
Collapse
Affiliation(s)
- Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D 'Alcontres, 31, 98166, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D 'Alcontres, 31, 98166, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D 'Alcontres, 31, 98166, Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D 'Alcontres, 31, 98166, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D 'Alcontres, 31, 98166, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D 'Alcontres, 31, 98166, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University, Room M 36-1402 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D 'Alcontres, 31, 98166, Messina, Italy.
| |
Collapse
|
31
|
Ersoy S, Benli AR. Continue or stop applying wet cupping therapy (al-hijamah) in migraine headache:A randomized controlled trial. Complement Ther Clin Pract 2020; 38:101065. [DOI: 10.1016/j.ctcp.2019.101065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022]
|
32
|
Network-based identification of genetic factors in ageing, lifestyle and type 2 diabetes that influence to the progression of Alzheimer's disease. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
33
|
Rainero I, Vacca A, Govone F, Gai A, Pinessi L, Rubino E. Migraine: Genetic Variants and Clinical Phenotypes. Curr Med Chem 2019; 26:6207-6221. [DOI: 10.2174/0929867325666180719120215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Abstract
Migraine is a common, chronic neurovascular disorder caused by a complex interaction
between genetic and environmental risk factors. In the last two decades, molecular genetics
of migraine have been intensively investigated. In a few cases, migraine is transmitted as a
monogenic disorder, and the disease phenotype cosegregates with mutations in different genes
like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine,
candidate genes as well as genome-wide association studies have shown that a large number of
genetic variants may increase the risk of developing migraine. At present, few studies investigated
the genotype-phenotype correlation in patients with migraine. The purpose of this review
was to discuss recent studies investigating the relationship between different genetic variants
and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in
migraineurs is complicated by several confounding factors and, to date, only polymorphisms
of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional
genomic studies and network analyses are needed to clarify the complex pathways underlying
migraine and its clinical phenotypes.
Collapse
Affiliation(s)
- Innocenzo Rainero
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Alessandro Vacca
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Flora Govone
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Annalisa Gai
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Lorenzo Pinessi
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Elisa Rubino
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| |
Collapse
|
34
|
Current Evidence on Potential Uses of MicroRNA Biomarkers for Migraine: From Diagnosis to Treatment. Mol Diagn Ther 2019; 23:681-694. [DOI: 10.1007/s40291-019-00428-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Mirza KB, Golden CT, Nikolic K, Toumazou C. Closed-Loop Implantable Therapeutic Neuromodulation Systems Based on Neurochemical Monitoring. Front Neurosci 2019; 13:808. [PMID: 31481864 PMCID: PMC6710388 DOI: 10.3389/fnins.2019.00808] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/19/2019] [Indexed: 12/29/2022] Open
Abstract
Closed-loop or intelligent neuromodulation allows adjustable, personalized neuromodulation which usually incorporates the recording of a biomarker, followed by implementation of an algorithm which decides the timing (when?) and strength (how much?) of stimulation. Closed-loop neuromodulation has been shown to have greater benefits compared to open-loop neuromodulation, particularly for therapeutic applications such as pharmacoresistant epilepsy, movement disorders and potentially for psychological disorders such as depression or drug addiction. However, an important aspect of the technique is selection of an appropriate, preferably neural biomarker. Neurochemical sensing can provide high resolution biomarker monitoring for various neurological disorders as well as offer deeper insight into neurological mechanisms. The chemicals of interest being measured, could be ions such as potassium (K+), sodium (Na+), calcium (Ca2+), chloride (Cl−), hydrogen (H+) or neurotransmitters such as dopamine, serotonin and glutamate. This review focusses on the different building blocks necessary for a neurochemical, closed-loop neuromodulation system including biomarkers, sensors and data processing algorithms. Furthermore, it also highlights the merits and drawbacks of using this biomarker modality.
Collapse
Affiliation(s)
- Khalid B Mirza
- Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Caroline T Golden
- Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Konstantin Nikolic
- Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Christofer Toumazou
- Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Quantitative assessment of the association between GRIA1 polymorphisms and migraine risk. Biosci Rep 2018; 38:BSR20181347. [PMID: 30446525 PMCID: PMC6294621 DOI: 10.1042/bsr20181347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
Purpose: The association between GRIA1 rs548294 G>A and rs2195450 C>T polymorphisms and migraine risk has been reported in several case–control studies. However, the results of studies are inconsistent. Thus, we conducted a meta-analysis to more precisely estimate the association of the two polymorphisms with migraine risk. Methods: Eligible studies were retrieved and screened from the online databases (EMBASE, PubMed, Web of Science, Wanfang, and Chinese National Knowledge Infrastructure). The pooled odds ratio (OR) with corresponding 95.0% confidence intervals (CIs) was assessed using random- or fixed-effects model. Results: A total of 1233 cases and 1374 controls from four eligible studies were included. The pooled analysis showed that GRIA1 rs548294 G>A polymorphism was not significantly associated with migraine risk. GRIA1 rs2195450 C>T polymorphism was significantly associated with migraine risk under heterozygous model (CT vs. CC, OR = 1.23, 95%CI = 1.02–1.48, PZ = 0.03). Further subgroup analysis based on ethnicity showed a significant association of GRIA1 rs2195450 C>T polymorphism with migraine risk in Asian population, but not in Caucasian population. Conclusions: Our results indicates that GRIA1 rs2195450 C>T polymorphism is significantly associated with migraine risk. However, the number of studies included in the meta-analysis was small. Thus, more high quality case–control studies with a large sample size are still required to confirm these findings.
Collapse
|
37
|
Kowalska M, Kapelusiak-Pielok M, Grzelak T, Wypasek E, Kozubski W, Dorszewska J. The New *G29A and G1222A of HCRTR1, 5-HTTLPR of SLC6A4 Polymorphisms and Hypocretin-1, Serotonin Concentrations in Migraine Patients. Front Mol Neurosci 2018; 11:191. [PMID: 29922128 PMCID: PMC5996111 DOI: 10.3389/fnmol.2018.00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
Abstract
Migraine is one of the most common primary headache disorders that affects 11% of the adult population. The disease is divided into two main clinical subtypes: migraine with aura (MA) and migraine without aura (MO). Both serotonergic and hypocretinergic systems are involved in the migraine pathomechanism. Polymorphisms in the serotonin transporter gene (SLC6A4) and the hypocretin receptor 1 gene (HCRTR1) may be risk factors for migraine development due to their ability to affect serotonin and hypocretin-1 (HCRT-1) concentrations. The aim of the study was to analyze, for the first time in the Polish population, the 5-HT transporter linked polymorphic region (5-HTTLPR) in SLC6A4, G1222A (rs2271933) and the never before studied *G29A (rs41263963) polymorphisms in the HCRTR1 gene, as well as the 5-HT and hypocretin-1 plasma concentrations in migraine patients (MA, MO) and control subjects. The study included 123 patients that were diagnosed with migraine and 123 control subjects. Methods such as PCR, HRMA and sequencing were used for genotyping, while 5-HT was determined by HPLC/EC and hypocretin-1 by ELISA. No significant differences were observed in 5-HTTLPR frequencies. The A allele of HCRTR1 G1222A occurred more often in MO, while the GA genotype of HCRTR1 *G29A was more frequent among MA when compared to control group (p < 0.05). The mean age of migraine onset in individuals with HCRTR1 *G29A was 18 years old for patients with MA and 26 years old for MO patients. The localization and type of HCRTR1 polymorphisms (G1222A-missense variant in exon 7, *G29A-3'UTR variant) may predispose patients to the clinical subtype of migraine: MO or MA, respectively. In control subjects, the short allele of 5-HTTLPR tended to decrease the 5-HT concentration, while the A allele of HCRTR1 G1222A decreased both 5-HT and hypocretin-1 levels. Serotonin concentrations differed in terms of clinical features of migraine. The relation between genotypes of 5-HTTLPR, HCRTR1 G1222A, and 5-HT concentrations may bedisturbed in migraine. It seems that HCRTR1 *G29A is more strongly associated with regulating the 5-HT in patients with MA than MO, and therefore may contribute to the early age of onset for migraine.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Teresa Grzelak
- Department of Biology of Civilization-Linked Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Wypasek
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland.,The John Paul II Hospital, Krakow, Poland.,Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
38
|
Bulboacă AE, Bolboacă SD, Stănescu IC, Sfrângeu CA, Porfire A, Tefas L, Bulboacă AC. The effect of intravenous administration of liposomal curcumin in addition to sumatriptan treatment in an experimental migraine model in rats. Int J Nanomedicine 2018; 13:3093-3103. [PMID: 29872296 PMCID: PMC5975613 DOI: 10.2147/ijn.s162087] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Curcumin has antioxidative properties that could be useful in various diseases due to its ability to act on multiple targets of various cellular pathways. We aimed to assess the efficacy of liposomal curcumin compared with curcumin solution, when in addition to sumatriptan (ST) treatment, in an experimental migraine model induced with nitroglycerin (NTG) in rats. METHODS Seven groups of 9 rats each were investigated: control group without migraine (1 mL saline solution intraperitoneal injection [ip]), control group with induced migraine, NTG+ST group (ST), NTG+ST+curcumin1 (CC1) group - 1 mg/100 g body weight (bw), NTG+ST+CC2 - 2 mg/100 g bw, NTG+ST+liposomal curcumin1 (lCC1) group - 1 mg/100 g bw, and NTG+ST+lCC2 (lCC2) group - 2 mg/100 g bw. NTG and ST were administered as 1 mL ip NTG | 1 mg/100 g bw and 1 mL ip ST | 1 mg/100 g bw, respectively. Plasma total oxidative stress (TOS), malondialdehyde (MDA), nitric oxide (NOx), thiol levels, as well as total antioxidative capacity (TAC) were assessed. The nociception process was assessed by counting the number of flinches and shakes after the formalin test. RESULTS The plasma TOS, MDA, and NOx levels, as oxidative stress parameters, were significantly decreased in the curcumin-treated groups, especially where curcumin was in liposomal form. The thiol and TAC were also improved by the curcumin treatment, with the best results obtained for the liposomal curcumin. The closest number of flinches and shakes to the control group was obtained for the group treated with liposomal curcumin at a dose of 2 mg/100 g bw. CONCLUSION Liposomal curcumin in a dose of 2 mg/100 g bw when in addition to ST treatment could be an optimum therapeutic strategy for migraine attacks and could represent a base for future clinical research and application.
Collapse
Affiliation(s)
- Adriana E Bulboacă
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Sorana D Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioana C Stănescu
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Carmen A Sfrângeu
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu-Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Lucia Tefas
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu-Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Angelo C Bulboacă
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
39
|
Deng Y, Huang J, Zhang H, Zhu X, Gong Q. Association of expression of DRD2 rs1800497 polymorphism with migraine risk in Han Chinese individuals. J Pain Res 2018; 11:763-769. [PMID: 29695928 PMCID: PMC5905461 DOI: 10.2147/jpr.s151350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Previous studies suggested that single-nucleotide polymorphisms in dopamine receptor D2 (DRD2) are the susceptibility loci for migraine. This study was aimed at evaluating the contribution of DRD2 rs1800497 and its expression to migraine risk in Han Chinese subjects. Methods In total, 250 patients with migraine and 250 age- and sex-matched control subjects were included in this study. TaqMan allelic discrimination assay was used for DRD2 rs1800497 genotyping. Plasma DRD2 concentration was determined using enzyme-linked immunosorbent assay. Results Significant associations were observed for the rs1800497 genotype (c2=6.37, p=0.041) and allele (c2=4.69, p=0.03; odds ratio [OR]=1.33, 95% CI=1.03-1.72, power=58%) frequencies between the migraine and control groups. Sex analysis indicated a positive association for rs1800497 between female patients with migraine and control individuals (genotype: c2=7.84, p=0.019; allele: c2=6.60, p=0.010; OR=1.61, 95% CI=1.12-2.30, power=73.4%). Furthermore, a significant association was observed only in female patients with migraine without aura (MO) (genotype: c2=6.88, p=0.032; allele: c2=5.65, p=0.017; OR=1.59, 95% CI=1.08-2.36, power=65.1%). The mean plasma DRD2 levels in the control group (mean±SD: 24.20±2.78) were significantly lower than those in the migraine with aura (MA) (30.86±3.69, p<0.0001) and MO groups (31.88±4.99, p<0.0001). Additionally, there was a sex-based difference in DRD2 expression in the MA (male vs female: 29.46±3.59 vs 32.27±3.27, p<0.01) and MO groups (male vs female: 29.18±3.50 vs 34.58±4.84, p<0.0001). Moreover, plasma DRD2 levels in patients were significantly different among the three genotypes (CC vs CT vs TT: 24.76±3.76 vs 30.93±3.85 vs 37.06±3.95, p<0.0001). Similar results were observed both in the MA (CC vs CT vs TT: 25.09±3.84 vs 28.57±2.84 vs 33.37±1.58, p<0.0001) and MO groups (CC vs CT vs TT: 24.65±3.79 vs 31.65±3.86 vs 38.29±3.74, p<0.0001). Conclusion Our case-control study suggested that the DRD2 polymorphism rs1800497 was significantly associated with the risk of migraine in Han Chinese females. Additionally, the plasma DRD2 level was high in patients with migraine. Females with migraine had considerably higher DRD2 levels than males with migraine. DRD2 expression may be regulated by DRD2 rs1800497 genotype in patients with migraine.
Collapse
Affiliation(s)
- Yingfeng Deng
- Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Jianping Huang
- Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Huijun Zhang
- Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Xueqin Zhu
- Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Qin Gong
- Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
40
|
Terrazzino S, Cargnin S, Viana M, Sances G, Tassorelli C. Brain-Derived Neurotrophic Factor Val66Met Gene Polymorphism Impacts on Migraine Susceptibility: A Meta-analysis of Case-Control Studies. Front Neurol 2017; 8:159. [PMID: 28507530 PMCID: PMC5410590 DOI: 10.3389/fneur.2017.00159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/04/2017] [Indexed: 01/03/2023] Open
Abstract
Inconclusive results have been reported in studies investigating the association between the brain-derived neurotrophic factor (BDNF) rs6265 polymorphism and migraine. In the present study, we conducted a systematic review and meta-analysis on the published data in order to quantitatively estimate the relationship between rs6265 and migraine susceptibility. A comprehensive search was performed through PubMed, Web of Knowledge, and Cochrane databases up to October 2016. The pooled odds ratio (OR) with the corresponding 95% confidence interval (CI) was calculated to estimate the strength of the association with rs6265 under an additive, dominant, or recessive model of inheritance. A total of five studies including 1,442 cases and 1,880 controls were identified for the meta-analysis. The pooled data showed an increased risk of migraine for the allelic (OR: 1.17, 95% CI: 1.03–1.34, p = 0.014) or the dominant model of rs6265 (OR: 1.22, 95% CI: 1.05–1.41, p = 0.011). Statistical significance of rs6265 was lost when one single study was excluded from the analysis (dominant OR: 1.17, 95% CI: 1.00–1.38, p = 0.054; allelic OR: 1.14, 95% CI: 0.99–1.31, p = 0.067), suggesting lack of robustness of pooled estimates. When stratified by migraine type, a similar trend of association was detected with both MA and MO, but a statistically significant association of rs6265 was reached only with the MA subtype in the dominant model (OR: 1.22, 95% CI: 1.00–1.47, p = 0.047). The present meta-analysis supports that BDNF rs6265 may act as a genetic susceptibility factor for migraine. Nevertheless, large-scale studies are required to confirm our findings and to assess potential modifiers of the relationship between rs6265 and migraine.
Collapse
Affiliation(s)
- Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Michele Viana
- Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Grazia Sances
- Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
41
|
Guerrero-Toro C, Timonina A, Gubert-Olive M, Giniatullin R. Facilitation of Serotonin-Induced Signaling by the Migraine Mediator CGRP in Rat Trigeminal Neurons. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0241-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|