1
|
Guo Q, Liu XL, Zhai K, Chen C, Ke XX, Zhang J, Xu G. The Emerging Roles and Mechanisms of PAQR3 in Human Cancer: Pathophysiology and Therapeutic Implications. Int J Gen Med 2023; 16:4321-4328. [PMID: 37767187 PMCID: PMC10521929 DOI: 10.2147/ijgm.s422523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer was one of the common causes of death in the world, and it was increasing year by year. At present, Progestin and AdipoQ receptor family member 3 (PAQR3) was widely studied in cancer. It has been found that PAQR3 was down regulated in various cancers, such as the gastric cancer, osteosarcoma, glioma, hepatocellular carcinoma, acute lymphoblastic leukemia, laryngeal squamous cell carcinoma, esophageal cancer, breast cancer, non-small cell lung cancer, and colorectal cancer. The decreased expression of PAQR3 was associated with short overall survival and disease-free survival in patients with gastric cancer, hepatocellular carcinoma, laryngeal squamous cell carcinoma, esophageal cancer, breast cancer, and non-small cell lung cancer. PAQR3 could inhibit cancer progression by using the Ras/Raf/MEK/ERK, PI3/AKT, EMT and other mechanisms, and was negatively regulated by the miR-543, miR-15b-5p and miR-15b. The roles and signaling mechanisms of PAQR3, and the relationship between the expression of PAQR3 and prognosis in cancer progression are reviewed in this article, and provides new tumor marker and idea to guide cancer treatment.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Xiao-Li Liu
- Department of Ultrasound, The People’s Hospital of Jianyang City, Jianyang, Sichuan, People’s Republic of China
| | - Kui Zhai
- Department of Thoracic Surgery, Xingyi People’s Hospital, Xinyi, Guizhou, People’s Republic of China
| | - Cheng Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Xi-Xian Ke
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Gang Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
2
|
Spano D, Colanzi A. Golgi Complex: A Signaling Hub in Cancer. Cells 2022; 11:1990. [PMID: 35805075 PMCID: PMC9265605 DOI: 10.3390/cells11131990] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023] Open
Abstract
The Golgi Complex is the central hub in the endomembrane system and serves not only as a biosynthetic and processing center but also as a trafficking and sorting station for glycoproteins and lipids. In addition, it is an active signaling hub involved in the regulation of multiple cellular processes, including cell polarity, motility, growth, autophagy, apoptosis, inflammation, DNA repair and stress responses. As such, the dysregulation of the Golgi Complex-centered signaling cascades contributes to the onset of several pathological conditions, including cancer. This review summarizes the current knowledge on the signaling pathways regulated by the Golgi Complex and implicated in promoting cancer hallmarks and tumor progression.
Collapse
Affiliation(s)
- Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Antonino Colanzi
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy;
| |
Collapse
|
3
|
CdGAP promotes prostate cancer metastasis by regulating epithelial-to-mesenchymal transition, cell cycle progression, and apoptosis. Commun Biol 2021; 4:1042. [PMID: 34493786 PMCID: PMC8423782 DOI: 10.1038/s42003-021-02520-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
High mortality of prostate cancer patients is primarily due to metastasis. Understanding the mechanisms controlling metastatic processes remains essential to develop novel therapies designed to prevent the progression from localized disease to metastasis. CdGAP plays important roles in the control of cell adhesion, migration, and proliferation, which are central to cancer progression. Here we show that elevated CdGAP expression is associated with early biochemical recurrence and bone metastasis in prostate cancer patients. Knockdown of CdGAP in metastatic castration-resistant prostate cancer (CRPC) PC-3 and 22Rv1 cells reduces cell motility, invasion, and proliferation while inducing apoptosis in CdGAP-depleted PC-3 cells. Conversely, overexpression of CdGAP in DU-145, 22Rv1, and LNCaP cells increases cell migration and invasion. Using global gene expression approaches, we found that CdGAP regulates the expression of genes involved in epithelial-to-mesenchymal transition, apoptosis and cell cycle progression. Subcutaneous injection of CdGAP-depleted PC-3 cells into mice shows a delayed tumor initiation and attenuated tumor growth. Orthotopic injection of CdGAP-depleted PC-3 cells reduces distant metastasic burden. Collectively, these findings support a pro-oncogenic role of CdGAP in prostate tumorigenesis and unveil CdGAP as a potential biomarker and target for prostate cancer treatments. Mehra et al. investigate the role of CdGAP in early biochemical recurrence and bone metastasis in prostate cancer. The authors find that knocking down CdGAP leads to reduced cell motility, invasion and proliferation in PC-3 and 22Rv1 cells while orthotopic injection of CdGAP-depleted PC-3 cells reduces distant metastatic burden.
Collapse
|
4
|
Cao Q, You X, Xu L, Wang L, Chen Y. PAQR3 suppresses the growth of non-small cell lung cancer cells via modulation of EGFR-mediated autophagy. Autophagy 2020; 16:1236-1247. [PMID: 31448672 PMCID: PMC7469495 DOI: 10.1080/15548627.2019.1659654] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 01/07/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved intracellular process that recycles and degrades intracellular components to sustain homeostasis in response to deficiency of nutrients or growth factors. PAQR3 is a newly discovered tumor suppressor that also regulates autophagy induced by nutrient starvation via AMPK and MTORC1 signaling pathways. In this study, we investigated whether PAQR3 modulates EGFR-mediated autophagy and whether such regulation is associated with the tumor suppressive activity of PAQR3. PAQR3 is able to inhibit the in vitro and in vivo growth of non-small cell lung cancer (NSCLC) cells. PAQR3 potentiates autophagy induced by EGFR inhibitor erlotinib. Knockdown of PAQR3 abrogates erlotinib-mediated reduction of BECN1 interaction with autophagy inhibitory proteins RUBCN/Rubicon and BCL2. PAQR3 blocks the interaction of BECN1 with the activated form of EGFR and inhibits tyrosine phosphorylation of BECN1. Furthermore, inhibition of autophagy by knocking down ATG7 abrogates the tumor suppressive activity of PAQR3 in NSCLC cells. Collectively, these data indicate that PAQR3 suppresses tumor progression of NSCLC cells through modulating EGFR-regulated autophagy. ABBREVIATIONS AKT: thymoma viral proto-oncogene; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG14: autophagy related 14; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1; CCK-8: cell counting kit-8; CQ: chloroquine diphosphate; DMEM: Dulbecco's modified Eagle's medium; EdU: 5-ethynyl-2'-deoxyuridine; EGFR: epidermal growth factor receptor; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IgG: Immunoglobulin G; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTT: thiazolyl blue tetrazolium bromide; NSCLC: Non-small cell lung cancer; MAP2K/MEK: mitogen-activated protein kinase kinase; MAPK/ERK: mitogen-activated protein kinase; PAQR3: progestin and adipoQ receptor family member 3; PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15: phosphoinositide-3-kinase regulatory subunit 4; PRKAA/AMPK: protein kinase, AMP-activated alpha catalytic; RUBCN: rubicon autophagy regulator; RPS6: ribosomal protein S6; RAS: Ras proto-oncogene; RAF: Raf proto-oncogene; TKI: tyrosine kinase inhibitor; TUBA4A: tubulin alpha 4a; UVRAG: UV radiation resistance associated.
Collapse
Affiliation(s)
- Qianqian Cao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xue You
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China
| | - Lijiao Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China
| | - Lin Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
5
|
Peng W, Mo X, Li L, Lu T, Hu Z. PAQR3 protects against oxygen-glucose deprivation/reperfusion-induced injury through the ERK signaling pathway in N2A cells. J Mol Histol 2020; 51:307-315. [PMID: 32448978 DOI: 10.1007/s10735-020-09881-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Cerebral ischemia-reperfusion injury is pivotal in the development of multiple-subcellular organelle and tissue injury after acute ischemic stroke. Recently, the Golgi apparatus (GA) has been shown to be a key subcellular organelle that plays an important role in neuroprotection against oxygen-glucose deprivation/reperfusion (OGD/R) injury. PAQR3, a scaffold protein exclusively localized in the GA, was originally discovered as a potential tumor suppressor protein. PAQR3 acts as a spatial regulator of Raf-1 that binds Raf-1 and sequesters it to the GA, where it negatively modulates the Ras/Raf/MEK/ERK signaling pathway in tumor models. Studies suggest that suppression of the ERK pathway can alleviate OGD/R-induced cell apoptosis. However, whether PAQR3 has potential effects on ischemic stroke and the underlying mechanism(s) remain unexplored. The current study is the first to show that PAQR3 was significantly downregulated in mouse neuroblastoma (N2A) cells upon OGD/R exposure, both at the mRNA and protein levels. Compared to that in controls, the mRNA level of PAQR3 began to decline at 0 h (0 h) after reperfusion, while the protein level began to decline at 4 h. Furthermore, overexpression of PAQR3 reduced OGD/R-induced apoptosis. The mRNA and protein levels of total ERK1 and ERK2 were unaltered, while activated p-ERK1 and p-ERK2 were decreased in N2A cells transfected with a PAQR3 expression vector after OGD for 4 h plus 24 h of reperfusion. Collectively, these data indicated that increased PAQR3 expression protected against OGD/R-induced apoptosis possibly by inhibiting the ERK signaling pathway. Therefore, PAQR3 might be a new attractive target in the treatment of OGD/R insult, and the underlying mechanism will pave the way for its potential experimental and clinical application.
Collapse
Affiliation(s)
- Wenna Peng
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoye Mo
- Department of Emergency, First Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Li
- Colleges of Medicine, Jishou University, Jishou, Hunan, China
| | - Tonglin Lu
- Department of Intensive Care Unit, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Ye J, Gao M, Guo X, Zhang H, Jiang F. Breviscapine suppresses the growth and metastasis of prostate cancer through regulating PAQR4-mediated PI3K/Akt pathway. Biomed Pharmacother 2020; 127:110223. [PMID: 32413672 DOI: 10.1016/j.biopha.2020.110223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Prostate cancer, one of the most frequently diagnosed tumors of men, leads to poor quality of life. Previous studies have shown that breviscapine (BRE) exerts therapeutic activity in malignant tumors. However, the role and mechanism of BRE exhibit an anti-tumor effect on prostate cancer are largely unknown. METHODS The mRNA and protein levels in prostate cancer tissues and cell lines were measured using RT-qPCR, western blot, and immunohistochemical staining, respectively. Cell proliferation, invasion, and migration in both PC3 and DU145 cells were evaluated using CCK-8 and Transwell assay. The effect of BRE on cell proliferation and metastasis by regulating the PAQR4-mediated PI3K/Akt pathway in vitro and in vivo was determined. RESULTS PAQR4 was significantly overexpressed in prostate cancer tissues and cell lines, which was positively correlated with poor prognosis. Knockdown of PAQR4 inhibited the proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) of both PC3 and DU145 cells. Mechanistically, BRE treatment significantly suppressed the malignant biological behavior of both prostate cancer cells by downregulating PAQR4 and blocking the PI3K/Akt pathway. In vivo experiments, BRE administration remarkably inhibited tumor growth and metastasis in a xenograft model of prostate cancer. CONCLUSION Our findings revealed that BRE exerts anti-tumor and anti-metastasis roles in prostate cancer by inhibiting PAQR4-mediated PI3K/Akt pathway, which provides a new therapeutic agent for prostate cancer clinical treatment.
Collapse
Affiliation(s)
- Jiwei Ye
- Department of Urology, Nanyang Second People's Hospital of Henan Province, Nanyang, 473000, Henan, China.
| | - Mingquan Gao
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, Sichuan, China.
| | - Xinwu Guo
- Department of Urology, Nanyang Second People's Hospital of Henan Province, Nanyang, 473000, Henan, China.
| | - Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, China.
| | - Fuchun Jiang
- Department of Pharmaceutical Botany, School of Pharmacy, The Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Lei L, Ling ZN, Chen XL, Hong LL, Ling ZQ. Characterization of the Golgi scaffold protein PAQR3, and its role in tumor suppression and metabolic pathway compartmentalization. Cancer Manag Res 2020; 12:353-362. [PMID: 32021448 PMCID: PMC6970510 DOI: 10.2147/cmar.s210919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus is critical in the compartmentalization of signaling cascades originating from the cytoplasmic membrane and various organelles. Scaffold proteins, such as progestin and adipoQ receptor (PAQR)3, specifically regulate this process, and have recently been identified in the Golgi apparatus. PAQR3 belongs to the PAQR family, and was recently described as a tumor suppressor. Accumulating evidence demonstrates PAQR3 is downregulated in different cancers to suppress its inhibitory effects on malignant potential. PAQR3 functions biologically through the pathological regulation of altered signaling pathways. Significant cell proliferation networks, including Ras proto-oncogene (Ras)/mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), insulin, and vascular endothelial growth factor, are closely controlled by PAQR3 for physiologically relevant effects. Meanwhile, genetic/epigenetic susceptibility and environmental factors, may have functions in the downregulation of PAQR3 in human cancers. This study aimed to assess the subcellular localization of PAQR3 and determine its topological features and functional domains, summarizing its effects on cell signaling compartmentalization. The pathophysiological functions of PAQR3 in cancer pathogenesis, metabolic diseases, and developmental ailments were also highlighted.
Collapse
Affiliation(s)
- Lan Lei
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China.,The Second Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou 310053, People's Republic of China
| | - Zhe-Nan Ling
- Department of Clinical Medicine, Medical College, Zhejiang University City College, Hangzhou 310015, People's Republic of China
| | - Xiang-Liu Chen
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China
| | - Lian-Lian Hong
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China
| | - Zhi-Qiang Ling
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China
| |
Collapse
|
8
|
Li X, Li M, Chen D, Shi G, Zhao H. PAQR3 inhibits proliferation via suppressing PI3K/AKT signaling pathway in non-small cell lung cancer. Arch Med Sci 2018; 14:1289-1297. [PMID: 30393483 PMCID: PMC6209724 DOI: 10.5114/aoms.2017.72220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/29/2017] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Lung cancer is the leading cause of cancer-related death worldwide and non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases. PAQR (progestin and adipoQ receptor family) 3, a Golgi-anchored membrane protein, has been demonstrated to act as a tumor suppressor in multiple cancers. However, the expression and role of PAQR3 have never been explored in NSCLC. The purpose of this study was to investigate the expression and role of PAQR3 in NSCLC. MATERIAL AND METHODS Expression of PAQR3 at mRNA and protein levels was determined by qRT-PCR and western blot, respectively. Cell proliferation was analyzed by MTT assay. Apoptosis and cell cycle distribution were evaluated by flow cytometry. RESULTS The expression of PAQR3 was downregulated in NSCLC tissue samples and cell lines at both mRNA and protein levels (p < 0.05). Overexpression of PAQR3 significantly inhibited cell proliferation, induced apoptosis and promoted cell cycle arrest at G0/G1 phase in NSCLC cell lines (p < 0.05). In contrast, knockdown of PAQR3 showed a reverse effect on NSCLC cells (p < 0.05). Moreover, PAQR3 may exert its tumor suppressive roles via suppressing the PI3K/AKT signaling pathway in NSCLC. CONCLUSIONS Our findings suggest that PAQR3 is a tumor suppressor in the development of NSCLC and may serve as a novel therapeutic target in the treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Mengfei Li
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Dong Chen
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Gongning Shi
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hui Zhao
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
9
|
Zou Y, Chen Z, Li J, Gong W, Zhang L, Xu F, Chen L, Liu P, Huang H. Progestin and AdipoQ Receptor 3 Upregulates Fibronectin and Intercellular Adhesion Molecule-1 in Glomerular Mesangial Cells via Activating NF-κB Signaling Pathway Under High Glucose Conditions. Front Endocrinol (Lausanne) 2018; 9:275. [PMID: 29930535 PMCID: PMC5999916 DOI: 10.3389/fendo.2018.00275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Progestin and adipoQ receptor 3 (PAQR3), is a Golgi-anchored membrane protein containing seven transmembrane helices. It has been demonstrated that PAQR3 mediates insulin resistance, glucose and lipid metabolism, and inflammation. In addition, kidney inflammatory fibrosis is an important pathological feature of diabetic nephropathy (DN). Therefore, we aimed to investigate the role of PAQR3 in diabetic kidney fibrosis as well as inflammation in DN. OBJECT The effect of PAQR3 on NF-κB signaling pathway, expressions of fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1) in glomerular mesangial cells (GMCs) cultured by high glucose (HG) were examined. METHOD Diabetic mouse and rat models were induced by streptozotocin (STZ). GMCs were treated with HG and transfected with PAQR3 plasmids or small-interfering RNA targeting PAQR3 or NF-κB. The protein levels of FN and ICAM-1 were examined by Western blotting, and the transcriptional activity and DNA binding activity of NF-κB were measured by dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The interaction between PAQR3 and IKKβ (inhibitor of nuclear factor κB kinase β) was analyzed by co-immunoprecipitation. RESULTS PAQR3 was increased in both STZ-induced diabetic models and HG-treated GMCs. PAQR3 overexpression further increased HG-induced FN and ICAM-1 upregulation. In contrast, silencing of PAQR3 suppressed the expressions of FN and ICAM-1. PAQR3 overexpression promoted the nuclear accumulation, DNA binding activity, and transcriptional activity of NF-κB. Mechanically, PAQR3 directly interacted with IKKβ. The upregulation effect of PAQR3 overexpression on the expressions of FN and ICAM-1 was abolished by the treatment of NF-κB siRNA or PDTC (ammonium pyrrolidinedithiocarbamate) in HG-treated GMCs. CONCLUSION PAQR3 promotes the expressions of FN and ICAM-1 via activating NF-κB signaling pathway. Mechanistically, PAQR3 activates NF-κB signaling pathway to mediate kidney inflammatory fibrosis through direct interaction with IKKβ in DN.
Collapse
Affiliation(s)
- Yezi Zou
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiquan Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jie Li
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wenyan Gong
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Futian Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihao Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Bai G, Yang M, Zheng C, Zhang L, Eli M. Suppressor PAQR3 associated with the clinical significance and prognosis in esophageal squamous cell carcinoma. Oncol Lett 2018; 15:5703-5711. [PMID: 29552204 PMCID: PMC5840698 DOI: 10.3892/ol.2018.8004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/15/2017] [Indexed: 12/14/2022] Open
Abstract
Progestin and adipoQ receptor family member 3 (PAQR3) is a novel tumor suppressor; however, its function in esophageal cancer is not well understood. The present study explored the association between PAQR3, and the survival and clinical phenotype in patients with esophageal squamous cell carcinoma (ESCC). The expression of PAQR3 in 80 cases of ESCC and its corresponding adjacent tissues was detected by reverse transcription-quantitative polymerase chain reaction. The results demonstrated that PAQR3 expression in cancer tissues was significantly lower compared with that in adjacent tissues. Clinicopathological analysis indicated that PAQR3 expression was significantly correlated with ethnicity (P=0.032), tumor length (P=0.019), lymph node metastasis (P=0.011) and local recurrence (P=0.009). Notably, the Kaplan-Meier survival curve demonstrated that a decrease in PAQR3 expression was associated with poor prognosis in patients with ESCC. Multivariate analysis indicated that PAQR3 expression was an independent prognostic indicator for patients with ESCC. PAQR3 may serve an important role in the progress of ESCC and become a potential candidate for ESCC targeted therapy.
Collapse
Affiliation(s)
- Ge Bai
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uyghur Autonomous Region 830011, P.R. China
| | - Mei Yang
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uyghur Autonomous Region 830011, P.R. China
| | - Chao Zheng
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uyghur Autonomous Region 830011, P.R. China
| | - Li Zhang
- VIP Medicine, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uyghur Autonomous Region 830011, P.R. China
| | - Mayinur Eli
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uyghur Autonomous Region 830011, P.R. China
| |
Collapse
|
11
|
Shao N, Ma G, Zhang J, Zhu W. miR-221-5p enhances cell proliferation and metastasis through post-transcriptional regulation of SOCS1 in human prostate cancer. BMC Urol 2018; 18:14. [PMID: 29506516 PMCID: PMC5836432 DOI: 10.1186/s12894-018-0325-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 02/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the effect of miR-221-5p on cell proliferaton and metastasis of human prostate cancer in vitro and vivo. METHODS We established PC3 cell lines with stable overexpression or silencing of miRNA-221-5p via lentivirus infection. miRNA-221-5p and its target gene SOCS1 expression levels in the stable cells were analyzed by real-time polymerase chain reaction (RT-PCR) and western blotting. Using luciferase reporter assays to study the relationship between miR-221-5p and SOCS1. Cell proliferative activity was measured using the MTT assay and colony formation assay. Migration ability was assessed using wound-healing assay and transwell assay. To further study the function of miR-221-5p in human prostate cancer we established nude mice xenograft model in vivo. RESULTS miR-221-5p regulates the proliferation, migration of prostate cancer cells in vitro and tumorigenesis in vivo by regulating socs1 expression through targeted its 3'UTR, and miR-221-5p regulates MAPK/ERK signaling pathway and EMT features in prostate cancer cells. CONCLUSIONS Up-regulation and silencing of miR-221-5p expression in prostate cancer cells are correlated with cell proliferation, migration and tumorigenesis, which suggest that miR-221-5p plays an important role in prostate cancer progression.
Collapse
Affiliation(s)
- Ning Shao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Gui Ma
- Department of Urology, Second People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Jinying Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210023, China.
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210023, China.
| |
Collapse
|
12
|
Yang F, Ma J, Tang Q, Zhang W, Fu Q, Sun J, Wang H, Song B. MicroRNA-543 promotes the proliferation and invasion of clear cell renal cell carcinoma cells by targeting Krüppel-like factor 6. Biomed Pharmacother 2017; 97:616-623. [PMID: 29101805 DOI: 10.1016/j.biopha.2017.10.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
MicroRNA-543 (miR-543) has been suggested as an important regulator of the development and progression of various cancer types. However, the role and biological function of miR-543 in clear cell renal cell carcinoma (ccRCC) remains unclear. Here, we found that miR-543 expression was significantly increased in tumor tissues from ccRCC patients and ccRCC cell lines. We found that overexpression of miR-543 markedly promoted the proliferation and invasion of ccRCC cells, whereas suppression of miR-543 had the opposite effects. Krüppel-like factor 6 (KLF6) was identified as a target gene of miR-543. Furthermore, we found that miR-543 negatively regulates the expression of KLF6 and p21 in ccRCC cells. Overexpression of KLF6 markedly attenuated the oncogenic effect of miR-543 overexpression. Moreover, knockdown of KLF6 significantly reversed the antitumor effect of miR-543 inhibition. Overall, our results demonstrate that miR-543 promotes the proliferation and invasion of ccRCC cells by targeting KLF6 and suggest that miR-543 may serve as a potential therapeutic target for treatment of ccRCC.
Collapse
Affiliation(s)
- Fan Yang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jianjun Ma
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Qisheng Tang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Wei Zhang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Qiang Fu
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jinbo Sun
- Department of Urology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - He Wang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| | - Bin Song
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| |
Collapse
|
13
|
Abstract
Progestin and adipoQ receptor family member III (PAQR3), a member of the PAQR family, is frequently downregulated in different types of human cancer. However, its expression and functions in esophageal cancer are still unknown. This study aimed to explore the expression of PAQR3 in esophageal cancer cell lines and to investigate the role of PAQR3 in the development of esophageal cancer. Our data showed that PAQR3 is expressed in low amounts in human esophageal cancer cell lines. Overexpression of PAQR3 significantly suppressed the proliferation, migration, and invasion of esophageal cancer cells. In addition, overexpression of PAQR3 downregulated the protein expression levels of RAF1, p-MEK1, and p-ERK1/2 in esophageal cancer cells. Furthermore, overexpression of PAQR3 attenuated the tumor growth in a tumor xenograft model. In conclusion, we demonstrated that overexpression of PAQR3 suppresses cell proliferation, migration, and invasion in esophageal cancer in vitro and in vivo. Therefore, PAQR3 may act as a therapeutic target for human esophageal cancer.
Collapse
Affiliation(s)
- Fang Zhou
- *Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, P.R. China
| | - Shunchang Wang
- †Department of Surgery, Huaihe Hospital of Henan University, Kaifeng, P.R. China
| | - Jianjun Wang
- *Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, P.R. China
| |
Collapse
|