1
|
Scott TA, Baker KS, Trotter C, Jenkins C, Mostowy S, Hawkey J, Schmidt H, Holt KE, Thomson NR, Baker S. Shigella sonnei: epidemiology, evolution, pathogenesis, resistance and host interactions. Nat Rev Microbiol 2025; 23:303-317. [PMID: 39604656 DOI: 10.1038/s41579-024-01126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Shigella sonnei is a major cause of diarrhoea globally and is increasing in prevalence relative to other Shigella because of multiple demographic and environmental influences. This single-serotype species has traditionally received less attention in comparison to Shigella flexneri and Shigella dysenteriae, which were more common in low-income countries and more tractable in the laboratory. In recent years, we have learned that Shigella are highly complex and highly susceptible to environmental change, as exemplified by epidemiological trends and increasing relevance of S. sonnei. Ultimately, methods, tools and data generated from decades of detailed research into S. flexneri have been used to gain new insights into the epidemiology, microbiology and pathogenesis of S. sonnei. In parallel, widespread adoption of genomic surveillance has yielded insights into antimicrobial resistance, evolution and organism transmission. In this Review, we provide an overview of current knowledge of S. sonnei, highlighting recent insights into this globally disseminated antimicrobial-resistant pathogen and assessing how novel data may impact future vaccine development and implementation.
Collapse
Affiliation(s)
- Timothy A Scott
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
| | - Kate S Baker
- Department of Clinical Microbiology, Immunology and Infection, University of Liverpool, Liverpool, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Serge Mostowy
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jane Hawkey
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Hayden Schmidt
- Neutralizing Antibody Center, International AIDS Vaccine Initiative, San Diego, CA, USA
| | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nicholas R Thomson
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- International AIDS Vaccine Initiative, London, UK.
| |
Collapse
|
2
|
Ali MR, Mahmud S, Faruque MO, Hossain MI, Hossain MA, Kibria KK. Investigation of the vaccine potential of an in silico designed FepA peptide vaccine against Shigella flexneri in mice model. Vaccine X 2024; 18:100493. [PMID: 38812954 PMCID: PMC11134883 DOI: 10.1016/j.jvacx.2024.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Background Shigellosis is one of the significant causes of diarrhea in Bangladesh. It is a global health problem; approximately 1.3 million people die yearly from Shigellosis. The current treatment method, using different antibiotics against Shigellosis is ineffective. Moreover, it becomes a worrying situation due to the emergence of antibiotic-resistant pathogenic microbes responsible for these diarrheal diseases. Methodology Previous immunoinformatics study predicted a potential peptide from the Ferric enterobactin protein (FepA) of Shigella spp. In this study, we have chemically synthesized the FepA peptide. As a highly immunogenic, FepA peptide conjugated with KLH has been tested in mice model with complete and incomplete adjuvants as a vaccine candidate. Results Immunological analysis showed that all vaccinated mice were immunologically boosted, which was statistically significant (P-value 0.0325) compared to control mice. Immunological analysis for bacterial neutralization test result was also statistically significant (P-value 0.0468), where each ELISA plate was coated with 1 × 107S. flexneri cells. The Challenge test with 1 × 1012S. flexneri cells to each vaccinated and controlled mice showed that 37.5 % of control (non-vaccinated) mice died within seven days after the challenge was given while 100 % of vaccinated mice remained strong and stout. The analyses of the post-challenge weight loss of the mice were also significant (P-value 0.0367) as the weight loss percentage in control mice was much higher than in the vaccinated mice. The pathological and phenotypic appearances of vaccinated mice were also clearly differentiable compared with control mice. Thus all these immunological analysis and pathological appearances directly supported our FepA peptide as a potential immune booster. Conclusion This study provides evidence that the FepA peptide is a highly immunogenic vaccine candidate against S. flexneri. Therefore, these findings inspire future trials for the evaluation of the suitability of this vaccine candidate against Shigellosis.
Collapse
Affiliation(s)
- Md. Rayhan Ali
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Md. Omar Faruque
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Md. Imam Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - K.M. Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| |
Collapse
|
3
|
Satija K, Anjankar VP. Molecular Characterization of Multidrug-Resistant Shigella flexneri. Cureus 2024; 16:e53276. [PMID: 38435906 PMCID: PMC10905316 DOI: 10.7759/cureus.53276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Due to their propensity for causing diarrheal illnesses and their rising susceptibility to antimicrobials, Shigella infections constitute a serious threat to global public health. This extensive study explores the frequency, antibiotic resistance, genetic evolution, and effects of Shigella infections on vulnerable groups. The research covers a wide range of geographical areas and sheds information on how the prevalence of Shigella species is evolving. Shigella strain antimicrobial resistance patterns are thoroughly examined. Multidrug resistance (MDR) has been found to often occur in investigations, especially when older antimicrobials are used. The improper use of antibiotics in China is blamed for the quick emergence of resistance, and variations in resistance rates have been seen across different geographical areas. Shigella strains' genetic makeup can be used to identify emerging trends and horizontal gene transfer's acquisition of resistance genes. Notably, S. sonnei exhibits the capacity to obtain resistance genes from nearby bacteria, increasing its capacity for infection. The study also emphasizes the difficulties in accurately serotyping Shigella strains due to inconsistencies between molecular and conventional serology. These results highlight the necessity of reliable diagnostic methods for monitoring Shigella infections. In conclusion, this study emphasizes how dynamic Shigella infections are, with varying patterns of occurrence, changing resistance landscapes, and genetic adaptability. In addition to tackling the rising problem of antibiotic resistance in Shigella infections, these findings are essential for guiding efforts for disease surveillance, prevention, and treatment.
Collapse
Affiliation(s)
- Kshitij Satija
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vaibhav P Anjankar
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Peela SM, Basu S, Sharma J, AlAsmari AF, AlAsmari F, Alalmaee S, Ramaiah S, Sistla S, Livingstone P, Anbarasu A. Structure Elucidation and Interaction Dynamics of MefA-MsrD Efflux Proteins in Streptococcus pneumoniae: Impact on Macrolide Susceptibility. ACS OMEGA 2023; 8:39454-39467. [PMID: 37901543 PMCID: PMC10601061 DOI: 10.1021/acsomega.3c05210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
Macrolides are empirically used to treat bacterial community-acquired pneumonia (CAP). Streptococcus pneumoniae, being the major pathogen responsible for bacterial CAP with high mortality rates, express MefA-MsrD efflux pumps to hinder macrolide susceptibility. Despite its importance, the structural features of the efflux-protein complex and its impact on macrolide susceptibility have not yet been elucidated explicitly. Therefore, in the present study, combining homology, threading, and dynamics approaches, MefA and MsrD proteins in pathogenic S. pneumoniae were modeled. Both membrane (lipid-bilayer) and cytoplasmic (aqueous) environments were considered to simulate the MefA and MsrD proteins in their ideal cellular conditions followed by dynamics analyses. The simulated MefA structure represented a typical major facilitator superfamily protein structure with 13 transmembrane helices. MefA-MsrD interaction via clustering-based docking revealed low-energy conformers with stable intermolecular interactions. The higher clinical MIC value of azithromycin over erythromycin was reflected upon erythromycin eliciting stronger interactions (dissociation constant or ki = ∼52 μM) with the cytoplasmic ATP-binding MsrD than azithromycin (ki = ∼112 μM). The strong (binding energy = -132.1 ± 9.5 kcal/mol) and highly stable (root-mean-square fluctuation < 1.0 Å) physical association between MefA with MsrD was validated and was found to be unaffected by the antibiotic binding. Higher propensity of the macrolides to interact with MsrD than MefA established the importance of the former in macrolide susceptibility. Ours is probably the first report on the structural arrangements in the MefA-MsrD efflux complex and the macrolide susceptibility in S. pneumoniae. This study provides a novel lead for experimental explorations and efflux-pump inhibitor designs.
Collapse
Affiliation(s)
- Sreeram
Chandra Murthy Peela
- Department
of Microbiology, Jawaharlal Institute of
Postgraduate Medical Education and Research (JIPMER), Puducherry 605006, India
| | - Soumya Basu
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Jyoti Sharma
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology (IIT), Jodhpur342011, Rajasthan, India
| | - Abdullah F. AlAsmari
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz AlAsmari
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Sudha Ramaiah
- Department
of Biosciences, Vellore Institute of Technology
(VIT), Vellore 632014, Tamil Nadu, India
| | - Sujatha Sistla
- Department
of Microbiology, Jawaharlal Institute of
Postgraduate Medical Education and Research (JIPMER), Puducherry 605006, India
| | - Paul Livingstone
- Department
of Sports and Health Sciences, Cardiff Metropolitan
University, Cardiff CF5 2YB, U.K.
| | - Anand Anbarasu
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
5
|
Muzembo BA, Kitahara K, Mitra D, Ohno A, Khatiwada J, Dutta S, Miyoshi SI. Burden of Shigella in South Asia: a systematic review and meta-analysis. J Travel Med 2023; 30:6798401. [PMID: 36331282 DOI: 10.1093/jtm/taac132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Shigella remains one of the most common causes of diarrhoea in South Asia. Current estimates of the prevalence of Shigella are critical for guiding control measures. We estimated the prevalence of Shigella species and serogroups in South Asia. METHODS We performed a systematic review using PubMed, EMBASE, Google Scholar and Web of Science for peer-reviewed studies published between 2000 and 19 June 2022. We also manually searched the reference lists of the reviewed studies to identify additional studies. We included studies that detected the presence of Shigella in stool by culture or polymerase chain reaction (PCR). Studies associated with outbreaks were excluded. Two investigators independently reviewed the studies, extracted the data and performed quality assessment. A random-effects meta-analysis was performed to determine the pooled prevalence of Shigella. RESULTS Our search yielded 5707 studies, of which 91 studies from five South Asian countries were included in the systematic review, 79 in the meta-analysis of Shigella prevalence and 63 in the meta-analysis of Shigella serogroups prevalence. The pooled prevalence of Shigella was 7% [95% confidence interval (CI): 6-7%], with heterogeneity (I2 = 98.7; P < 0.01). The prevalence of Shigella was higher in children aged <5 years (10%; 95% CI: 8-11%), in rural areas (12%; 95% CI: 10-14%) and in studies using PCR (15%; 95% CI: 11-19%). Shigella flexneri (58%) was the most abundant serogroup, followed by Shigella sonnei (19%), Shigella boydii (10%) and Shigella dysenteriae (9%). Shigella flexneri 2a was the most frequently isolated serotype (36%), followed by serotype 3a (12%), serotype 6 (12%) and serotype 1b (6%). The prevalence of non-typeable Shigella was 10.0%. CONCLUSIONS Although the prevalence of Shigella in South Asia remains generally high, it varies by age group and geographical area, with data lacking in some countries. Effective Shigella vaccines would be advantageous for both endemic communities and travellers.
Collapse
Affiliation(s)
- Basilua Andre Muzembo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India
| | - Debmalya Mitra
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India
| | - Ayumu Ohno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India
| | | | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Naha A, Ramaiah S. Structural chemistry and molecular-level interactome reveals histidine kinase EvgS to subvert both antimicrobial resistance and virulence in Shigella flexneri 2a str. 301. 3 Biotech 2022; 12:258. [PMID: 36068841 PMCID: PMC9440972 DOI: 10.1007/s13205-022-03325-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Multi-drug resistant (MDR) Shigella flexneri 2a, one of the leading bacterial agents of diarrhoeal mortality, has posed challenges in treatment strategies. The present study was conducted to identify potential therapeutic biomarkers using gene interaction network (GIN) in order to understand the cellular and molecular level interactions of both antimicrobial resistance (AMR) and virulence genes through topological and clustering metrics. Statistically significant differential gene expression (DGE), structural chemistry and dynamics were incorporated to elucidate biomarker for sustainable therapeutic regimen against MDR S. flexneri. Functional enrichments and topological metrics revealed evgS, ybjZ, tolC, gyrA, parC and their direct interactors to be associated with diverse AMR mechanisms. Histidine kinase EvgS was considered as the hub protein due to its highest prevalence in the molecular interactome profiles of both the AMR (71.6%) and virulence (45.8%) clusters interconnecting several genes concerning two-component system (TCS). DGE profiles of ΔPhoPQ (deleted regulatory PhoP and sensor PhoQ) led to the upregulation of TCS comprising EvgSA thereby validating EvgS as a promising therapeutic biomarker. Druggability and structural stability of EvgS was assessed through thermal shifts, backbone stability and coarse dynamics refinement. Structure-function relationship was established revealing the C-terminal extracellular domain as the drug-binding site which was further validated through molecular dynamics simulation. Structure elucidation of identified biomarker followed by secondary and tertiary structural validation would prove pivotal for future therapeutic interventions against subverting both AMR and virulence posed by this strain. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03325-w.
Collapse
Affiliation(s)
- Aniket Naha
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 Tamil Nadu India
- Department of Bio-Medical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 Tamil Nadu India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 Tamil Nadu India
- Department of Bio-Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 Tamil Nadu India
| |
Collapse
|
7
|
Shahid F, Alghamdi YS, Mashraqi M, Khurshid M, Ashfaq UA. Proteome based mapping and molecular docking revealed DnaA as a potential drug target against Shigella sonnei. Saudi J Biol Sci 2022; 29:1147-1159. [PMID: 35241965 PMCID: PMC8886675 DOI: 10.1016/j.sjbs.2021.09.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
Shigella sonnei is one of the major causes of diarrhea and remained a critical microbe responsible for higher morbidity and mortality rates resulting from dysentery every year across the world. Antibiotic therapy of Shigella diseases plays a critical role in decreasing the prevalence as well as the fatality rate of this infection. However, the management of these diseases remains challenging, owing to the overall increase in resistance against many antimicrobials. The situation necessitates the rapid development of effective and feasible S. sonnei treatments. In the present study, the subtractive genomics approach was utilized to find the potential drug targets for S. sonnei strain Ss046. Various tools of bioinformatics were implemented to remove the human-specific homologous and pathogen-specific paralogous sequences from the bacterial proteome. Then, metabolic pathway and subcellular location analysis were performed of essential bacterial proteins to describe their role in various cellular processes. Only one essential protein i-e Chromosomal replication initiator protein DnaA was found in the proteome of the pathogen that could be used as a potent target for designing new drugs. 3D structure prediction of DnaA protein was carried out using Phyre 2. Molecular docking of 5000 phytochemicals was performed against DnaA to identify four top-ranked phytochemicals (Riccionidin A, Dothistromin, Fustin, and Morin) based on scoring functions and interaction with the active site. This study suggests that these phytochemicals could be used as antibacterial drugs to treat S. sonnei infections in the future. To confirm their efficacy and evaluate their drug potency, further in vitro analyses are required.
Collapse
Affiliation(s)
- Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Youssef Saeed Alghamdi
- Department of Biology, Turabah University College, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia
| | - Mutaib Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Najran University, Najran, Saudi Arabia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
8
|
Taneja N, Mewara A, Kumar A, Mishra A, Zaman K, Singh S, Gupta P, Mohan B. Antimicrobial resistant Shigella in North India since the turn of the 21st century. Indian J Med Microbiol 2021; 40:113-118. [PMID: 34924213 DOI: 10.1016/j.ijmmb.2021.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE The ubiquitous presence and rampant spread of antibiotic resistant strains of Shigella spp is a major public health concern. Therefore, monitoring the trends of antimicrobial resistance in them is essential. METHODS A total of 15440 stool samples were inoculated on MacConkey agar, lysine deoxycholate agar and Selenite F enrichment broth from 2001 to 2015.Out of 491 shigellae isolated, 250 isolates were recovered from our culture collection. Antimicrobial susceptibility was performed by Kirby Bauer disc diffusion method, E-test and phenotypic resistance screening for ESBL and AmpC production was performed. For the detection of beta-lactamase genes, PCR for blaTEM, blaSHV, blaOXA, blaCTX-M-15, CMY-2 and mphA PCR in isolates with decreased susceptibility to azithromycin(DSA) was performed. RESULTS S. flexneri (n = 173) was most common, followed by S.dysenteriae (n = 24), S.sonnei (n = 23), S.boydii (n = 10) and Non agglutinating Shigella (NAG, n = 20). A see-saw pattern in the prevalence of S. flexneri and S. dysenteriae and rising prevalence of S. sonnei and NAG was seen. Majority (77%) of the isolates had MICs >4 mg/L for ciprofloxacin and >50% had high MIC90 (12 mg/L) for ceftriaxone and cefepime (8 mg/L). Nearly 20% of S.flexneri were resistant to third generation cephalosporin by disc diffusion and 33.7% had MIC ≥1 μg/mL. Among the ceftriaxone resistant isolates (n = 29) the blaTEM beta-lactamase resistance gene was seen in all, blaCTX-M-15 in 37%, blaCMY-2 in 45.6% and blaOXA in 52%. The first report of DSA at our institute was in 2001 (n = 1, 2.5%) which increased to 35.1% (n = 40) in 2011-15. The isolates with DSA included S. flexneri (n = 40), S. boydii (n = 4) and S. sonnei (n = 1) and plasmid mediated resistance to azithromycin by mphA gene was detected in 19 out of 40 isolates of S. flexneri. CONCLUSION Global emergence of resistance Shigella is a matter of concern and calls for systematic monitoring and periodic updates of countrywide and local antibiogram.
Collapse
Affiliation(s)
- Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Abhishek Mewara
- Department of of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Kumar
- University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Arti Mishra
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kamran Zaman
- Indian Council of Medical Research, Regional Medical Research Centre, Gorakhpur, Uttar Pradesh, India
| | - Shreya Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parakriti Gupta
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Taneja N, Tiewsoh JBA, Gupta S, Mohan B, Verma R, Shankar P, Narayan C, Yadav VK, Jayashree M, Singh S. Antimicrobial resistance in Shigella species: Our five years (2015-2019) experience in a tertiary care center in north India. Indian J Med Microbiol 2021; 39:489-494. [PMID: 34148675 DOI: 10.1016/j.ijmmb.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE Shigella is the second leading cause of diarrhoeal mortality especially in children <5 years of age in African and Asian countries. Rapid changes are occurring in the epidemiology of shigellosis and Shigella are increasingly becoming highly drug resistant. To determine the serogroup distribution and antimicrobial resistance of Shigella isolated at our tertiary care centre in North India. METHODS A retrospective study was conducted where demographic details along with antimicrobial susceptibility data of Shigella isolated from stool specimens from 1st January 2015 till 31st December 2019 were retrieved from records and analyzed by WHONET 2019 software. RESULTS Shigella species was isolated in 1.31% (n = 137) of a total of 10,456 stool samples. Males predominated (n = 82; 59.8%) and majority of cases were admitted (n = 94; 68.6%). Children ≤5 years of age (n = 47; 34.3%) were the most commonly affected. Adults in the 21-40 age group contributed 27% of cases (n = 37). Overall, Shigella flexneri (n = 87; 63.5%) was the most common serogroup followed by non-agglutinable Shigella (n = 28; 20.4%) while Shigella sonnei (n = 12, 8.8%) and Shigella boydii (n = 9, 6.6%) fluctuated over the years. Shigella dysenteriae reappeared in 2019 after a hiatus of ten years. Overall, 45.3% (n = 62) of isolates were multidrug resistant to CLSI recommended drugs and high resistance was noted for ampicillin/amoxicillin (68.1%), cotrimoxazole (75.8%) ciprofloxacin (61.5%) and ceftriaxone/cefotaxime (45.2%). CONCLUSIONS Shigella have become highly drug resistant to fluoroquinolones and cephalosporins. Community based studies are required to truly assess the burden of AMR in India.
Collapse
Affiliation(s)
- Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, 160012, India.
| | - Jutang Babat Ain Tiewsoh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, 160012, India.
| | - Swati Gupta
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, 160012, India.
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, 160012, India.
| | - Ritu Verma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, 160012, India.
| | - Pinky Shankar
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, 160012, India.
| | - Chandradeo Narayan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, 160012, India.
| | - Vivek Kumar Yadav
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, 160012, India.
| | - Muralidharan Jayashree
- Division of Pediatric Emergency and Intensive Care, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, 160012, India.
| | - Surjit Singh
- Division of Pediatric Allergy & Immunology, Head of Department, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, 160012, India.
| |
Collapse
|
10
|
Shad AA, Shad WA. Shigella sonnei: virulence and antibiotic resistance. Arch Microbiol 2021; 203:45-58. [PMID: 32929595 PMCID: PMC7489455 DOI: 10.1007/s00203-020-02034-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
Shigella sonnei is the emerging pathogen globally, as it is the second common infectious species of shigellosis (bloody diarrhoea) in low- and middle-income countries (LMICs) and the leading one in developed world. The multifactorial processes and novel mechanisms have been identified in S. sonnei, that are collectively playing apart a substantial role in increasing its prevalence, while replacing the S. flexneri and other Gram-negative gut pathogens niche occupancy. Recently, studies suggest that due to improvement in sanitation S. sonnei has reduced cross-immunization from Plesiomonas shigelliodes (having same O-antigen as S. sonnei) and also found to outcompete the two major species of Enterobacteriaceae family (Shigella flexneri and Escherichia coli), due to encoding of type VI secretion system (T6SS). This review aimed to highlight S. sonnei as an emerging pathogen in the light of recent research with pondering aspects on its epidemiology, transmission, and pathogenic mechanisms. Additionally, this paper aimed to review S. sonnei disease pattern and related complications, symptoms, and laboratory diagnostic techniques. Furthermore, the available treatment reigns and antibiotic-resistance patterns of S. sonnei are also discussed, as the ciprofloxacin and fluoroquinolone-resistant S. sonnei has already intensified the global spread and burden of antimicrobial resistance. In last, prevention and controlling strategies are briefed to limit and tackle S. sonnei and possible future areas are also explored that needed more research to unravel the hidden mysteries surrounding S. sonnei.
Collapse
Affiliation(s)
- Ahtesham Ahmad Shad
- Institute of Microbiology, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Wajahat Ahmed Shad
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
11
|
Phylogenetic and Evolutionary Analysis Reveals the Recent Dominance of Ciprofloxacin-Resistant Shigella sonnei and Local Persistence of S. flexneri Clones in India. mSphere 2020; 5:5/5/e00569-20. [PMID: 33028681 PMCID: PMC7568650 DOI: 10.1128/msphere.00569-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella is the second leading cause of bacterial diarrhea worldwide. This has been categorized as a priority pathogen among enteric bacteria by the Global Antimicrobial Resistance Surveillance System (GLASS) of the World Health Organization (WHO). Recently, S. sonnei seems to be replacing S. flexneri in low- and middle-income countries undergoing economic development. Antimicrobial resistance in S. flexneri and S. sonnei is a growing international concern, specifically with the international dominance of the multidrug-resistant (MDR) lineage. Genomic studies focusing on S. flexneri and S. sonnei in India remain largely unexplored. This study provides information on the introduction and expansion of drug-resistant Shigella strains in India for the first time by comparing the genome sequences of S. flexneri and S. sonnei isolates from India with the publicly available genomes of global strains. The study discusses the key differences between the two dominant species of Shigella at the genomic level to understand the evolutionary trends and genome dynamics of emerging and existing resistance clones. The present work demonstrates evidence for the long-term persistence of all PGs of S. flexneri and the recent dominance of a ciprofloxacin-resistant S. sonnei lineage in India. Shigella is the second leading cause of bacterial diarrhea worldwide. Recently, Shigella sonnei seems to be replacing Shigella flexneri in low- and middle-income countries undergoing economic development. Despite this, studies focusing on these species at the genomic level remain largely unexplored. Here, we compared the genome sequences of S. flexneri and S. sonnei isolates from India with the publicly available genomes of global strains. Our analysis provides evidence for the long-term persistence of all phylogenetic groups (PGs) of S. flexneri and the recent dominance of the ciprofloxacin-resistant S. sonnei lineage in India. Within S. flexneri PGs, the majority of the study isolates belonged to PG3 within the predominance of serotype 2. For S. sonnei, the current pandemic involves globally distributed multidrug-resistant (MDR) clones that belong to Central Asia lineage III. The presence of such epidemiologically dominant lineages in association with stable antimicrobial resistance (AMR) determinants results in successful survival in the community. IMPORTANCEShigella is the second leading cause of bacterial diarrhea worldwide. This has been categorized as a priority pathogen among enteric bacteria by the Global Antimicrobial Resistance Surveillance System (GLASS) of the World Health Organization (WHO). Recently, S. sonnei seems to be replacing S. flexneri in low- and middle-income countries undergoing economic development. Antimicrobial resistance in S. flexneri and S. sonnei is a growing international concern, specifically with the international dominance of the multidrug-resistant (MDR) lineage. Genomic studies focusing on S. flexneri and S. sonnei in India remain largely unexplored. This study provides information on the introduction and expansion of drug-resistant Shigella strains in India for the first time by comparing the genome sequences of S. flexneri and S. sonnei isolates from India with the publicly available genomes of global strains. The study discusses the key differences between the two dominant species of Shigella at the genomic level to understand the evolutionary trends and genome dynamics of emerging and existing resistance clones. The present work demonstrates evidence for the long-term persistence of all PGs of S. flexneri and the recent dominance of a ciprofloxacin-resistant S. sonnei lineage in India.
Collapse
|
12
|
Halimeh FB, Rafei R, Diene S, Mikhael M, Mallat H, Achkar M, Dabboussi F, Hamze M, Rolain JM. Challenges in identification of enteroinvasive Escherichia coli and Shigella spp. in Lebanon. Acta Microbiol Immunol Hung 2020; 67:100-106. [PMID: 32223306 DOI: 10.1556/030.2020.01102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023]
Abstract
This study aimed to evaluate the routine identification tools available in Lebanon for differentiation of Escherichia coli and Shigella spp. The identification of 43 isolates defined as Shigella spp. by Api 20E was accessed using MALDI-TOF, serological testing, duplex PCR targeting ipaH (present in Shigella spp. and enteroinvasive E. coli "EIEC") and lacY (found in E. coli including EIEC but not Shigella spp.) as well as gyrB gene sequencing. Antibiotic susceptibility was investigated as well as Shiga-toxin production. All isolates were identified as E. coli by MALDI-TOF while the PCR showed a disparate group of 26 EIEC, 11 Shigella spp., 5 E. coli and 1 inactive E. coli. However, the sequencing of gyrB gene, which was recently described as a suitable marker for distinguishing E. coli and Shigella spp., identified all isolates as E. coli. Antibiotic resistance was noticeable against ß-lactams, rifampicin, trimethoprim-sulfamethoxazole, gentamicin, and ciprofloxacin. The most common variants of beta-lactamase genes were blaTEM-1, blaCTX-M-15, and blaCTX-M-3. A great discordance between the used methods in identification was revealed herein. An accurate identification technique able to distinguish E. coli from Shigella spp. in routine laboratories is a pressing need in order to select the appropriate treatment and assess the epidemiology of these bacteria.
Collapse
Affiliation(s)
- Fatima Bachir Halimeh
- 1Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
- 2Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Rayane Rafei
- 1Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Seydina Diene
- 2Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Mary Mikhael
- 1Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Hassan Mallat
- 1Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marcel Achkar
- 3Laboratory of Clinical Biology, NINI Hospital, Tripoli, Lebanon
| | - Fouad Dabboussi
- 1Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- 1Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Jean-Marc Rolain
- 2Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| |
Collapse
|
13
|
Nisa I, Qasim M, Yasin N, Ullah R, Ali A. Shigella flexneri: an emerging pathogen. Folia Microbiol (Praha) 2020; 65:275-291. [PMID: 32026288 DOI: 10.1007/s12223-020-00773-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Shigella flexneri is a leading etiologic agent of diarrhea in low socioeconomic countries. Notably, various serotypes in S. flexneri are reported from different regions of the world. The precise approximations of illness and death owing to shigellosis are missing in low socioeconomic countries, although it is widespread in different regions. The inadequate statistics available reveal S. flexneri to be a significant food and waterborne pathogen. All over the world, different antibiotic-resistant strains of S. flexneri serotypes have been emerged especially multidrug-resistant strains. Recently, increased resistance was observed in cephalosporins (3rd generation), azithromycin, and fluoroquinolones. There is a need for a continuous surveillance study on antibiotic resistance that will be helpful in the update of the antibiogram. The shigellosis burden can be reduced by adopting preventive measures like delivery of safe drinking water, suitable sanitation, and development of an effective and inexpensive multivalent vaccine. This review attempts to provide the recent findings of S. flexneri related to epidemiology and the emergence of multidrug resistance.
Collapse
Affiliation(s)
- Iqbal Nisa
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Nusrat Yasin
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Rafi Ullah
- Bacteriology Laboratory Center of Microbiology and Bacteriology (CMB) Veterinary Research Institute, Peshawar, Pakistan
| | - Anwar Ali
- Bacteriology Laboratory Center of Microbiology and Bacteriology (CMB) Veterinary Research Institute, Peshawar, Pakistan
| |
Collapse
|
14
|
Differential gene expression profile of Shigella dysenteriae causing bacteremia in an immunocompromised individual. Future Sci OA 2020; 6:FSO456. [PMID: 32257369 PMCID: PMC7117556 DOI: 10.2144/fsoa-2019-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
AIM Shigella species has varying levels of virulence gene expression with respect to different sites of infection. In this study, the differential gene expression of S. dysenteriae in response to its site of infection was analyzed by transcriptomics. METHODS This study includes four clinical Shigella isolates. Transcriptomics was done for the stool and blood samples of a single patient. Isolates were screened for the presence of antimicrobial resistance genes. RESULTS The majority of genes involved in invasion were highly expressed in the strain isolated from the primary site of infection. Additionally, antimicrobial resistance (dhfr1A, sulII, bla OXA. bla CTX-M-1 and qnrS) genes were identified. CONCLUSION This study provides a concise view of the transcriptional expression of clinical strains and provides a basis for future functional studies on Shigella spp.
Collapse
|
15
|
Veeraraghavan B, Walia K. Antimicrobial susceptibility profile & resistance mechanisms of Global Antimicrobial Resistance Surveillance System (GLASS) priority pathogens from India. Indian J Med Res 2019; 149:87-96. [PMID: 31219073 PMCID: PMC6563747 DOI: 10.4103/ijmr.ijmr_214_18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance is a major concern globally. Infections due to drug-resistant pathogens are becoming difficult and a challenge to treat. As treatment choices are limited due to the high-drug resistance rates, there is an increase in the health care cost, duration of hospital stay, morbidity and mortality rates. Understanding the true burden of antimicrobial resistance for a geographical location is important to guide effective empirical therapy. To have a national data, it is imperative to have a systemic data capturing across the country through surveillance studies. Very few surveillance studies have been conducted in India to generate national data on antimicrobial resistance. This review aims to report the cumulative antibiogram and the resistance mechanisms of Global Antimicrobial Resistance Surveillance System (GLASS) priority pathogens from India.
Collapse
Affiliation(s)
| | - Kamini Walia
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
16
|
Sethuvel DPM, Perumalla S, Anandan S, Michael JS, Ragupathi NKD, Gajendran R, Walia K, Veeraraghavan B. Antimicrobial resistance, virulence & plasmid profiles among clinical isolates of Shigella serogroups. Indian J Med Res 2019; 149:247-256. [PMID: 31219090 PMCID: PMC6563743 DOI: 10.4103/ijmr.ijmr_2077_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background & objectives: Bacillary dysentery caused by Shigella spp. remains an important cause of the crisis in low-income countries. It has been observed that Shigella species have become increasingly resistant to most widely used antimicrobials. In this study, the antimicrobial resistance, virulence and plasmid profile of clinical isolates of Shigella species were determined. Methods: Sixty clinical Shigella isolates were subjected to whole-genome sequencing using Ion Torrent platform and the genome sequences were analyzed for the presence of acquired resistance genes, virulence genes and plasmids using web-based software tools. Results: Genome analysis revealed more resistance genes in Shigella flexneri than in other serogroups. Among β-lactamases, blaOXA-1 was predominantly seen followed by the blaTEM-1B and blaEC genes. For quinolone resistance, the qnrS gene was widely seen. Novel mutations in gyrB, parC and parE genes were observed. Cephalosporins resistance gene, blaCTX-M-15 was identified and plasmid-mediated AmpC β-lactamases genes were found among the isolates. Further, a co-trimoxazole resistance gene was identified in most of the isolates studied. Virulence genes such as ipaD, ipaH, virF, senB, iha, capU, lpfA, sigA, pic, sepA, celb and gad were identified. Plasmid analysis revealed that the IncFII was the most commonly seen plasmid type in the isolates. Interpretation & conclusions: The presence of quinolone and cephalosporin resistance genes in Shigella serogroups has serious implications for the further spread of this resistance to other enteric pathogens or commensal organisms. This suggests the need for continuous surveillance to understand the epidemiology of the resistance.
Collapse
Affiliation(s)
| | - Susmitha Perumalla
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | | | - Revathi Gajendran
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Kamini Walia
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | | |
Collapse
|
17
|
Ranjbar R, Farahani A. Shigella: Antibiotic-Resistance Mechanisms And New Horizons For Treatment. Infect Drug Resist 2019; 12:3137-3167. [PMID: 31632102 PMCID: PMC6789722 DOI: 10.2147/idr.s219755] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are a common cause of diarrheal disease and have remained an important pathogen responsible for increased rates of morbidity and mortality caused by dysentery each year around the globe. Antibiotic treatment of Shigella infections plays an essential role in reducing prevalence and death rates of the disease. However, treatment of these infections remains a challenge, due to the global rise in broad-spectrum resistance to many antibiotics. Drug resistance in Shigella spp. can result from many mechanisms, such as decrease in cellular permeability, extrusion of drugs by active efflux pumps, and overexpression of drug-modifying and -inactivating enzymes or target modification by mutation. Therefore, there is an increasing need for identification and evolution of alternative therapeutic strategies presenting innovative avenues against Shigella infections, as well as paying further attention to this infection. The current review focuses on various antibiotic-resistance mechanisms of Shigella spp. with a particular emphasis on epidemiology and new mechanisms of resistance and their acquisition, and also discusses the status of novel strategies for treatment of Shigella infection and vaccine candidates currently under evaluation in preclinical or clinical phases.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Farahani
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Gandra S, Kotwani A. Need to improve availability of "access" group antibiotics and reduce the use of "watch" group antibiotics in India for optimum use of antibiotics to contain antimicrobial resistance. J Pharm Policy Pract 2019; 12:20. [PMID: 31346472 PMCID: PMC6636108 DOI: 10.1186/s40545-019-0182-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/30/2023] Open
Affiliation(s)
- Sumanth Gandra
- 1Department of Medicine, Washington University School of Medicine, Saint Louis, MO USA
| | - Anita Kotwani
- 2Department of Pharmacology, V. P. Chest Institute, University of Delhi, Delhi, 110007 India
| |
Collapse
|