1
|
Kerkar AU, Sutherland KR, Thompson AW. Non-viral predators of marine picocyanobacteria. Trends Microbiol 2025; 33:558-568. [PMID: 39709274 DOI: 10.1016/j.tim.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
The Earth's most abundant photosynthetic cells, the picocyanobacteria - Prochlorococcus and Synechococcus - play a fundamental global role in aquatic ecosystems. The success of these picocyanobacteria is interpreted through a cross-scale systems framework that integrates bottom-up controls on growth (e.g., nutrients and light), diversity, and the selective pressures and response to predation. While viral predators are well studied and experimentally tractable, the diverse non-viral predators of picocyanobacteria are disconnected from this framework and experimentally challenging, leaving a major gap in understanding the picocyanobacteria. This review presents existing research on non-viral picocyanobacterial predators and promising research frontiers that will expand knowledge of the ecology and evolution of these crucial microorganisms.
Collapse
Affiliation(s)
- Anvita U Kerkar
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97201, USA
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, OR 97405, USA
| | - Anne W Thompson
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97201, USA.
| |
Collapse
|
2
|
García-Oliva O, Wirtz K. The complex structure of aquatic food webs emerges from a few assembly rules. Nat Ecol Evol 2025; 9:576-588. [PMID: 40021903 PMCID: PMC11976281 DOI: 10.1038/s41559-025-02647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/22/2025] [Indexed: 03/03/2025]
Abstract
Food-web theory assumes that larger-bodied predators generally select larger prey. This allometric rule fails to explain a considerable fraction of trophic links in aquatic food webs. Here we show that food-web constraints result in guilds of predators that vary in size but have specialized on prey of the same size, and that the distribution of such specialist guilds explains about one-half of the food-web structure. We classified 517 pelagic species into five predator functional groups. Most of these follow three prey selection strategies: a guild following the allometric rule whereby larger predators eat larger prey and two guilds of specialists that prefer either smaller or larger prey than predicted by the allometric rule. Such coexistence of non-specialist and specialist guilds independent from taxa or body size points towards structural principles behind ecological complexity. We show that the pattern describes >90% of observed linkages in 218 food webs in 18 aquatic ecosystems worldwide. The pattern can be linked to eco-evolutionary constraints to prey exploitation and provides a blueprint for more effective food-web models.
Collapse
Affiliation(s)
| | - Kai Wirtz
- Helmholtz-Zentrum Hereon, Geesthacht, Germany.
| |
Collapse
|
3
|
Akaarir M, Nicolau MC, Cañellas F, Rubiño JA, Barceló P, Gamundí A, Martin-Reina A, Rial RV. The Disputable Costs of Sleeping. BIOLOGY 2025; 14:352. [PMID: 40282216 PMCID: PMC12024767 DOI: 10.3390/biology14040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 04/29/2025]
Abstract
It is currently affirmed that sleep detracts from time for foraging, reproductive, and anti-predatory activities. In contrast, we show that the sleep-related reductions in food intake and reproductive activities may, in fact, be benefits. Furthermore, the present report shows that the optimal prey are the immature, weak, sick, and senescent animals and rarely the sleeping fit adults. Indeed, the reduced sleeping time observed in prey animals occurs, not because of an evolutionary antipredation pressure but because of the time-expensive foraging-related activities and the digestion of the high-cellulose content in the herbivores' diet, an activity that leaves reduced amounts of daily time for sleeping. We conclude that the need for sleep ranks lower than those of foraging, reproduction, and antipredation activities.
Collapse
Affiliation(s)
- Mourad Akaarir
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - M. Cristina Nicolau
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Francesca Cañellas
- Balearic Islands Health Research Institute (IUNICS), Hospital Universitario Son Espases, Universitat de les Illes Balears, 07122 Palma, Spain; (F.C.)
| | - Jose A. Rubiño
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Pere Barceló
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Antonio Gamundí
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Aida Martin-Reina
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Rubén V. Rial
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| |
Collapse
|
4
|
Zhou L, Luo M, Hong P, Leroux S, Chen F, Wang S. Energy transfer efficiency rather than productivity determines the strength of aquatic trophic cascades. Ecology 2025; 106:e4482. [PMID: 39604056 DOI: 10.1002/ecy.4482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 11/29/2024]
Abstract
Trophic cascades are important determinants of food web dynamics and functioning, yet mechanisms accounting for variation in trophic cascade strength remain elusive. Here, we used food chain models and a mesocosm experiment (phytoplankton-zooplankton-shrimp) to disentangle the relative importance of two energetic processes driving trophic cascades: primary productivity and energy transfer efficiency. Food chain models predicted that the strength of trophic cascades was increased as the energy transfer efficiency between herbivore and predator (predator efficiency) increased, while its relationship with primary productivity was relatively weak. These model predictions were confirmed by a mesocosm experiment, which showed that the strength of trophic cascade increased with predator efficiency but remained unaffected by nutrient supply rate or primary productivity. Combined, our results indicate that the efficiency of energy transfer along the food chain, rather than the total amount of energy fixed by primary producers, determines the strength of trophic cascades. Our study provides an integrative perspective to reconcile energetic and population dynamics in food webs, which has implications for both ecological research and ecosystem management.
Collapse
Affiliation(s)
- Libin Zhou
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Mingyu Luo
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Pubin Hong
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shawn Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Feizhou Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Shaopeng Wang
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
de Lima DEPC, Pessanha ALM. Changes in the food selectivity of zooplanktivorous fishes related to the effects of nutrient enrichment in an urban tropical estuary. MARINE POLLUTION BULLETIN 2024; 209:117146. [PMID: 39454402 DOI: 10.1016/j.marpolbul.2024.117146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Juvenile fish use estuarine ecosystems due to appropriate refuges and food supply found in these environments. The objective of this study was to investigate whether variations in the diet composition of juvenile fishes were mediated by changes in the availability of zooplankton prey in an urban estuary. Changes in fish foraging and prey selectivity were affected by nutrient enrichment. Calanoida and Cyclopoida were the most abundant items present in all zones and seasons, and for this reason, these were the items that most contributed to the fish diet. Shift in feeding strategy associated with eutrophication was registered due to a decrease in water quality. All species showed some contamination with microplastic particles and exhibited selectivity over them. The use of food resources available for fish is likely to be representative of estuarine habitat quality and may provide valuable information on the ecological status of estuaries.
Collapse
Affiliation(s)
- Diele Emele Pontes Carvalho de Lima
- Universidade Estadual da Paraíba, Programa de Pós-Graduação em Ecologia e Conservação, Laboratório de Ecologia de Peixes, Campina Grande, PB 58429-500, Brazil
| | - André Luiz Machado Pessanha
- Universidade Estadual da Paraíba, Programa de Pós-Graduação em Ecologia e Conservação, Laboratório de Ecologia de Peixes, Campina Grande, PB 58429-500, Brazil.
| |
Collapse
|
6
|
Rallings T, Kempes CP, Yeakel JD. On the Dynamics of Mortality and the Ephemeral Nature of Mammalian Megafauna. Am Nat 2024; 204:274-288. [PMID: 39179233 DOI: 10.1086/731331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractEnergy flow through consumer-resource interactions is largely determined by body size. Allometric relationships govern the dynamics of populations by impacting rates of reproduction as well as alternative sources of mortality, which have differential impacts on smaller to larger organisms. Here we derive and investigate the timescales associated with four alternative sources of mortality for terrestrial mammals: mortality from starvation, mortality associated with aging, mortality from consumption by predators, and mortality introduced by anthropogenic subsidized harvest. The incorporation of these allometric relationships into a minimal consumer-resource model illuminates central constraints that may contribute to the structure of mammalian communities. Our framework reveals that while starvation largely impacts smaller-bodied species, the allometry of senescence is expected to be more difficult to observe. In contrast, external predation and subsidized harvest have greater impacts on the populations of larger-bodied species. Moreover, the inclusion of predation mortality reveals mass thresholds for mammalian herbivores, where dynamic instabilities may limit the feasibility of megafaunal populations. We show how these thresholds vary with alternative predator-prey mass relationships, which are not well understood within terrestrial systems. Finally, we use our framework to predict the harvest pressure required to induce mass-specific extinctions, which closely align with previous estimates of anthropogenic megafaunal exploitation in both paleontological and historical contexts. Together our results underscore the tenuous nature of megafaunal populations and how different sources of mortality may contribute to their ephemeral nature over evolutionary time.
Collapse
|
7
|
Li J, Gu H, Lovko VJ, Liang C, Li X, Xu X, Jia L, Jiang M, Wang J, Chen J. The Ciliate Euplotes balteatus Exhibits Removal Capacity upon the Dinoflagellates Karenia mikimotoi and Prorocentrum shikokuense. HARMFUL ALGAE 2024; 138:102685. [PMID: 39244228 DOI: 10.1016/j.hal.2024.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 09/09/2024]
Abstract
The significant threat posed by the ichthyotoxic dinoflagellate Karenia mikimotoi to coastal aquaculture, resulting in substantial economic losses, underscores the need for control and mitigation strategies. Bio-mitigation of algal blooms through grazers presents advantages in sustainability compared to methods relying on chemical or physical procedures. This study explored the inhibitory effect of nine Euplotes spp. (Alveolata, Ciliophora) isolates on simulated blooms, with E. balteatus W413 displaying removal capacity for K. mikimotoi and robust growth in co-cultivation. The unique size plasticity in W413 revealed an efficient predation strategy, as an increase in cellular size enables it to shift prey from bacteria to algal cells. The enlarged cell volume facilitates W413 to accommodate more algal cells, bestowing it with a high ingestion rate and removal capacity upon K. mikimotoi. Furthermore, W413 exhibited considerable inhibition towards co-occurring bloom species, specifically Prorocentrum shikokuense and Karenia spp., implying its potential to mitigate mixed-species blooms. The study enhances our understanding of the prey selectivity of Euplotes species and proposes E. balteatus as a potential bio-mitigation candidate for K. mikimotoi blooms, emphasizing the significance of micro-grazers in marine ecosystems.
Collapse
Affiliation(s)
- Jing Li
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Vincent J Lovko
- Mote Marine Laboratory, Fisheries Ecology and Enhancement Program, Sarasota, FL, 34236, USA
| | - Chen Liang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Xiaodong Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350108, China
| | - Xin Xu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Linxuan Jia
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Miaohua Jiang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jinrong Wang
- The Second Geological Institute, China Metallurgical Geology Bureau, Fuzhou, 350108, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
8
|
McClain CR, Webb TJ, Heim NA, Knope ML, Monarrez PM, Payne JL. Navigating uncertainty in maximum body size in marine metazoans. Ecol Evol 2024; 14:e11506. [PMID: 38840585 PMCID: PMC11151150 DOI: 10.1002/ece3.11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Body size is a fundamental biological trait shaping ecological interactions, evolutionary processes, and our understanding of the structure and dynamics of marine communities on a global scale. Accurately defining a species' body size, despite the ease of measurement, poses significant challenges due to varied methodologies, tool usage, and subjectivity among researchers, resulting in multiple, often discrepant size estimates. These discrepancies, stemming from diverse measurement approaches and inherent variability, could substantially impact the reliability and precision of ecological and evolutionary studies reliant on body size data across extensive species datasets. This study examines the variation in reported maximum body sizes across 69,570 individual measurements of maximum size, ranging from <0.2 μm to >45 m, for 27,271 species of marine metazoans. The research aims to investigate how reported maximum size variations within species relate to organism size, taxonomy, habitat, and the presence of skeletal structures. The investigation particularly focuses on understanding why discrepancies in maximum size estimates arise and their potential implications for broader ecological and evolutionary studies relying on body size data. Variation in reported maximum sizes is zero for 38% of species, and low for most species, although it exceeds two orders of magnitude for some species. The likelihood of zero variation in maximum size decreased with more measurements and increased in larger species, though this varied across phyla and habitats. Pelagic organisms consistently had low maximum size range values, while small species with unspecified habitats had the highest variation. Variations in maximum size within a species were notably smaller than interspecific variation at higher taxonomic levels. Significant variation in maximum size estimates exists within marine species, and partially explained by organism size, taxonomic group, and habitat. Variation in maximum size could be reduced by standardized measurement protocols and improved meta-data. Despite the variation, egregious errors in published maximum size measurements are rare, and their impact on comparative macroecological and macroevolutionary research is likely minimal.
Collapse
Affiliation(s)
- Craig R. McClain
- Department of BiologyUniversity of Louisiana at LafayetteLafayetteLouisianaUSA
| | - Thomas J. Webb
- Ecology & Evolutionary Biology, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Noel A. Heim
- Department of Earth and Climate SciencesTufts UniversityMedfordMassachusettsUSA
| | | | - Pedro M. Monarrez
- Department of Earth and Planetary SciencesStanford UniversityStanfordCaliforniaUSA
- Department of Earth, Planetary, and Space SciencesUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Jonathan L. Payne
- Department of Earth and Planetary SciencesStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
9
|
Coghlan AR, Blanchard JL, Wotherspoon S, Stuart-Smith RD, Edgar GJ, Barrett N, Audzijonyte A. Mean reef fish body size decreases towards warmer waters. Ecol Lett 2024; 27:e14375. [PMID: 38361476 DOI: 10.1111/ele.14375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Aquatic ectotherms often attain smaller body sizes at higher temperatures. By analysing ~15,000 coastal-reef fish surveys across a 15°C spatial sea surface temperature (SST) gradient, we found that the mean length of fish in communities decreased by ~5% for each 1°C temperature increase across space, or 50% decrease in mean length from 14 to 29°C mean annual SST. Community mean body size change was driven by differential temperature responses within trophic groups and temperature-driven change in their relative abundance. Herbivores, invertivores and planktivores became smaller on average in warmer temperatures, but no trend was found in piscivores. Nearly 25% of the temperature-related community mean size trend was attributable to trophic composition at the warmest sites, but at colder temperatures, this was <1% due to trophic groups being similarly sized. Our findings suggest that small changes in temperature are associated with large changes in fish community composition and body sizes, with important ecological implications.
Collapse
Affiliation(s)
- Amy Rose Coghlan
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia
| | - Julia L Blanchard
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia
| | - Neville Barrett
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia
| | - Asta Audzijonyte
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
10
|
Atkinson A, Rossberg AG, Gaedke U, Sprules G, Heneghan RF, Batziakas S, Grigoratou M, Fileman E, Schmidt K, Frangoulis C. Steeper size spectra with decreasing phytoplankton biomass indicate strong trophic amplification and future fish declines. Nat Commun 2024; 15:381. [PMID: 38195697 PMCID: PMC10776571 DOI: 10.1038/s41467-023-44406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Under climate change, model ensembles suggest that declines in phytoplankton biomass amplify into greater reductions at higher trophic levels, with serious implications for fisheries and carbon storage. However, the extent and mechanisms of this trophic amplification vary greatly among models, and validation is problematic. In situ size spectra offer a novel alternative, comparing biomass of small and larger organisms to quantify the net efficiency of energy transfer through natural food webs that are already challenged with multiple climate change stressors. Our global compilation of pelagic size spectrum slopes supports trophic amplification empirically, independently from model simulations. Thus, even a modest (16%) decline in phytoplankton this century would magnify into a 38% decline in supportable biomass of fish within the intensively-fished mid-latitude ocean. We also show that this amplification stems not from thermal controls on consumers, but mainly from temperature or nutrient controls that structure the phytoplankton baseline of the food web. The lack of evidence for direct thermal effects on size structure contrasts with most current thinking, based often on more acute stress experiments or shorter-timescale responses. Our synthesis of size spectra integrates these short-term dynamics, revealing the net efficiency of food webs acclimating and adapting to climatic stressors.
Collapse
Affiliation(s)
- Angus Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL13DH, UK.
| | - Axel G Rossberg
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Ursula Gaedke
- Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
| | - Gary Sprules
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6, Canada
| | - Ryan F Heneghan
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stratos Batziakas
- Hellenic Centre for Marine Research, Former U.S. Base at Gournes, P.O. Box 2214, Heraklion GR-71003, Crete, Greece
| | | | - Elaine Fileman
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL13DH, UK
| | - Katrin Schmidt
- University of Plymouth, School of Geography, Earth and Environmental Sciences, Plymouth, PL4 8AA, UK
| | - Constantin Frangoulis
- Hellenic Centre for Marine Research, Former U.S. Base at Gournes, P.O. Box 2214, Heraklion GR-71003, Crete, Greece
| |
Collapse
|
11
|
Benoit-Bird KJ. Resource Patchiness as a Resolution to the Food Paradox in the Sea. Am Nat 2024; 203:1-13. [PMID: 38207143 DOI: 10.1086/727473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractAverage concentrations of biota in the ocean are low, presenting a critical problem for ocean consumers. High-resolution sampling, however, demonstrates that the ocean is peppered with narrow hot spots of organism activity. To determine whether these resource aggregations could provide a significant solution to the ocean's food paradox, a conceptual graphical model was developed that facilitates comparisons of the role of patchiness in predator-prey interactions across taxa, size scales, and ecosystems. The model predicts that predators are more reliant on aggregated resources for foraging success when the average concentrations of resources is low, the size discrepancy between predator and prey is great, the predator has a high metabolic rate, and/or the predator's foraging time is limited. Size structure differences between marine and terrestrial food webs and a vast disparity in the overall mean density of their resources lead to the conclusion that high-density aggregations of prey are much more important to the survival of oceanic predators than their terrestrial counterparts, shaping the foraging decisions that are available to an individual and setting the stage on which evolutionary pressures can act. Patches of plenty may be rare, but they play an outsized role in behavioral, ecological, and evolutionary processes, particularly in the sea.
Collapse
|
12
|
McLaskey AK, Forster I, Hunt BPV. Distinct trophic ecologies of zooplankton size classes are maintained throughout the seasonal cycle. Oecologia 2024; 204:227-239. [PMID: 38219265 DOI: 10.1007/s00442-023-05501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/10/2023] [Indexed: 01/16/2024]
Abstract
Marine food webs are strongly size-structured and size-based analysis of communities is a useful approach to evaluate food webs in a way that can be compared across systems. Fatty acid analysis is commonly used to identify diet sources of species, offering a powerful complement to stable isotopes, but is rarely applied to size-structured communities. In this study, we used fatty acids and stable isotopes to characterize size-based variation in prey resources and trophic pathways over a nine-month temperate coastal ocean time series of seven plankton size classes, from > 0.7-μm particulate organic matter through > 2000-μm zooplankton. Zooplankton size classes were generally distinguishable by their dietary fatty acids, while stable isotopes revealed more seasonal variability. Fatty acids of zooplankton were correlated with those of their prey (particulate organic matter and smaller zooplankton) and identified trophic pathways, including widespread ties to the microbial food web. Diatom fatty acids also contributed to zooplankton but fall blooms were more important than spring. Concurrent isotope-based trophic position estimates and fatty acid markers of carnivory showed that some indicators (18:1ω9/18:1ω7) are not consistent across size classes, while others (DHA:EPA) are relatively reliable. Both analysis methods provided distinct information to build a more robust understanding of resource use. For example, fatty acid markers showed that trophic position was likely underestimated in 250-μm zooplankton, probably due to their consumption of protists with low isotopic fractionation factors. Applying fatty acid analysis to a size-structured framework provides more insight into trophic pathways than isotopes alone.
Collapse
Affiliation(s)
- Anna K McLaskey
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada.
- Hakai Institute, Campbell River, BC, Canada.
| | - Ian Forster
- Pacific Science Enterprise Center, Fisheries and Oceans Canada, West Vancouver, BC, Canada
| | - Brian P V Hunt
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Hakai Institute, Campbell River, BC, Canada
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Tabi A, Gilarranz LJ, Wood SA, Dunne JA, Saavedra S. Protection promotes energetically efficient structures in marine communities. PLoS Comput Biol 2023; 19:e1011742. [PMID: 38127830 PMCID: PMC10769090 DOI: 10.1371/journal.pcbi.1011742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/05/2024] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The sustainability of marine communities is critical for supporting many biophysical processes that provide ecosystem services that promote human well-being. It is expected that anthropogenic disturbances such as climate change and human activities will tend to create less energetically-efficient ecosystems that support less biomass per unit energy flow. It is debated, however, whether this expected development should translate into bottom-heavy (with small basal species being the most abundant) or top-heavy communities (where more biomass is supported at higher trophic levels with species having larger body sizes). Here, we combine ecological theory and empirical data to demonstrate that full marine protection promotes shifts towards top-heavy energetically-efficient structures in marine communities. First, we use metabolic scaling theory to show that protected communities are expected to display stronger top-heavy structures than disturbed communities. Similarly, we show theoretically that communities with high energy transfer efficiency display stronger top-heavy structures than communities with low transfer efficiency. Next, we use empirical structures observed within fully protected marine areas compared to disturbed areas that vary in stress from thermal events and adjacent human activity. Using a nonparametric causal-inference analysis, we find a strong, positive, causal effect between full marine protection and stronger top-heavy structures. Our work corroborates ecological theory on community development and provides a quantitative framework to study the potential restorative effects of different candidate strategies on protected areas.
Collapse
Affiliation(s)
- Andrea Tabi
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Te Pūnaha Matatini, Centre of Research Excellence in Complex Systems, Auckland, New Zealand
- Institute for Cross‑Disciplinary Physics and Complex Systems (IFISC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Balearic Islands, Palma de Mallorca, Spain
| | - Luis J. Gilarranz
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland
| | - Spencer A. Wood
- eScience Institute, University of Washington, Seattle, Washington, United States of America
| | | | - Serguei Saavedra
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| |
Collapse
|
14
|
Chakraborty D, Laha A, De R. Inertial effect on evasion and pursuit dynamics of prey swarms: the emergence of a favourable mass ratio for the predator-prey arms race. SOFT MATTER 2023; 19:8587-8594. [PMID: 37905733 DOI: 10.1039/d3sm00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We show, based on a theoretical model, how inertia plays a pivotal role in the survival dynamics of a prey swarm while chased by a predator. With the varying mass of the prey and predator, diverse escape patterns emerge, such as circling, chasing, maneuvering, dividing into subgroups, and merging into a unitary group, similar to the escape trajectories observed in nature. Moreover, we find a transition from non-survival to survival of the prey swarm with increasing predator mass. The transition regime is also sensitive to the variation in prey mass. Further, the analysis of the prey group survival as a function of predator-to-prey mass ratio unveils the existence of three distinct regimes: (i) frequent chase and capture leading to the non-survival of the prey swarm, (ii) an intermediate regime where competition between pursuit and capture occurs, resembling an arms race, and (iii) the survival regime without the capture of prey. Interestingly, our study demonstrates the existence of a favourable predator-prey mass ratio for coexistence of both prey and predator in an ecosystem, which agrees well with the field studies.
Collapse
Affiliation(s)
- Dipanjan Chakraborty
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Arkayan Laha
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Rumi De
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| |
Collapse
|
15
|
Murphy KJ, Pecl GT, Everett JD, Heneghan RF, Richards SA, Richardson AJ, Semmens JM, Blanchard JL. Improving the biological realism of predator-prey size relationships in food web models alters ecosystem dynamics. Biol Lett 2023; 19:20230142. [PMID: 37875159 PMCID: PMC10597676 DOI: 10.1098/rsbl.2023.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Body-size relationships between predators and prey exhibit remarkable diversity. However, the assumption that predators typically consume proportionally smaller prey often underlies size-dependent predation in ecosystem models. In reality, some animals can consume larger prey or exhibit limited changes in prey size as they grow larger themselves. These distinct predator-prey size relationships challenge the conventional assumptions of traditional size-based models. Cephalopods, with their diverse feeding behaviours and life histories, offer an excellent case study to investigate the impact of greater biological realism in predator-prey size relationships on energy flow within a size-structured ecosystem model. By categorizing cephalopods into high and low-activity groups, in line with empirically derived, distinct predator-prey size relationships, we found that incorporating greater biological realism in size-based feeding reduced ecosystem biomass and production, while simultaneously increasing biomass stability and turnover. Our results have broad implications for ecosystem modelling, since distinct predator-prey size relationships extend beyond cephalopods, encompassing a wide array of major taxonomic groups from filter-feeding fishes to baleen whales. Incorporating a diversity of size-based feeding in food web models can enhance their ecological and predictive accuracy when studying ecosystem dynamics.
Collapse
Affiliation(s)
- Kieran J. Murphy
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- The Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Australia
| | - Gretta T. Pecl
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Jason D. Everett
- School of the Environment, The University of Queensland, St Lucia, Australia
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia
- CSIRO Environment, St Lucia, Australia
| | - Ryan F. Heneghan
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, Australia
| | - Shane A. Richards
- School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Anthony J. Richardson
- School of the Environment, The University of Queensland, St Lucia, Australia
- CSIRO Environment, St Lucia, Australia
| | - Jayson M. Semmens
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Julia L. Blanchard
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- The Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Australia
| |
Collapse
|
16
|
Wu P, Zhang Y. Toward a Global Model of Methylmercury Biomagnification in Marine Food Webs: Trophic Dynamics and Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6563-6572. [PMID: 37045790 DOI: 10.1021/acs.est.3c01299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Marine fish is an excellent source of nutrition but also contributes the most to human exposure to methylmercury (MMHg), a neurotoxicant that poses significant risks to human health on a global scale and is regulated by the Minamata Convention. To better predict human exposure to MMHg, it is important to understand the trophic transfer of MMHg in the global marine food webs, which remains largely unknown, especially in the upper trophic level (TL) biota that is more directly relevant to human exposure. In this study, we couple a fish ecological model and an ocean methylmercury model to explore the influencing factors and mechanisms of MMHg transfer in marine fish food webs. Our results show that available MMHg in the zooplankton strongly determines the MMHg in fish. Medium-sized fish are critical intermediaries that transfer more than 70% of the MMHg circulating in food webs. Grazing is the main factor to control MMHg concentrations in different size categories of fish. Feeding interactions affected by ecosystem structures determine the degree of MMHg biomagnification. We estimate a total of 6.1 metric tons of MMHg potentially digested by the global population per year through marine fish consumption. The model provides a useful tool to quantify human exposure to MMHg through marine fish consumption and thus fills a critical gap in the effectiveness evaluation of the convention.
Collapse
Affiliation(s)
- Peipei Wu
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
17
|
Serandour B, Jan KMG, Novotny A, Winder M. Opportunistic vs selective feeding strategies of zooplankton under changing environmental conditions. JOURNAL OF PLANKTON RESEARCH 2023; 45:389-403. [PMID: 37012975 PMCID: PMC10066809 DOI: 10.1093/plankt/fbad007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/25/2023] [Indexed: 06/19/2023]
Abstract
The plankton community consists of diverse interacting species. The estimation of species interactions in nature is challenging. There is limited knowledge on how plankton interactions are influenced by environmental conditions because of limited understanding of zooplankton feeding strategies and factors affecting trophic interactions. In this study, we used DNA-metabarcoding to investigate trophic interactions in mesozooplankton predators and the influence of prey availability on their feeding behavior. We found that mesozooplankton feeding strategies vary within species across an environmental gradient. Some species, such as Temora longicornis consistently used a selective strategy, while diets of Centropages hamatus and Acartia spp. varied between stations, showing a trophic plasticity with the prey community. We found a dominance of Synechococcales reads in Temora's gut content and a high prey diversity for the cladoceran Evadne nordmanni. Our study shows the wide range of prey species that supports mesozooplankton community and helps to understand the spatial and temporal complexity of plankton species interactions and discriminate the selectivity ability of four zooplankton key species. Due to the central role of plankton in marine waters, a better comprehension of the spatiotemporal variability in species interactions helps to estimate fluxes to benthic and pelagic predators.
Collapse
Affiliation(s)
- Baptiste Serandour
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Universitetsvägen 10A, SE-106 91, Stockholm, Sweden
| | - Kinlan M G Jan
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Universitetsvägen 10A, SE-106 91, Stockholm, Sweden
| | - Andreas Novotny
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Universitetsvägen 10A, SE-106 91, Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Universitetsvägen 10A, SE-106 91, Stockholm, Sweden
| |
Collapse
|
18
|
Wallace AA, Ellis GS, Peebles EB. Reconstructions of individual fish trophic geographies using isotopic analysis of eye-lens amino acids. PLoS One 2023; 18:e0282669. [PMID: 36928476 PMCID: PMC10019703 DOI: 10.1371/journal.pone.0282669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/19/2023] [Indexed: 03/18/2023] Open
Abstract
Fish eye lenses are a proteinaceous structure that grows by accumulating layers in a chronological manner. Each layer becomes metabolically inert, capturing the ratio of heavy/light carbon and nitrogen isotopes at time of formation. Therefore, eye lenses contain chronological isotopic records and can be used to create a temporal isotopic history throughout an individual's lifetime. We analyzed eye lens amino-acid δ15N to address spatio-temporal baseline variability and to reconstruct trophic histories of 10 individual Red Snapper. Proteins from sequential eye lens laminae were derivatized to measure 10 amino acids, from which glutamic acid (trophic) and phenylalanine (source) were used to estimate trophic positions at different points in life. Best-fitting regressions were generated to represent individual (R2 ≥ 0.89) and generalized (R2 = 0.77) trophic trajectory for Red Snapper. The resulting trophic trajectories indicated an increase in trophic position with increasing length. Until recently, there has not been a lifetime isotopic structure with enough organic nitrogen to recreate geographic histories using compound-specific stable isotope analysis of amino acids (CSIA-AA). This study confirms that eye-lens laminae can be used to reconstruct trophogeographic histories via CSIA-AA.
Collapse
Affiliation(s)
- Amy A. Wallace
- College of Marine Science, University of South Florida, St. Petersburg, Florida, United States of America
- * E-mail:
| | - Greg S. Ellis
- Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, United States of America
| | - Ernst B. Peebles
- College of Marine Science, University of South Florida, St. Petersburg, Florida, United States of America
| |
Collapse
|
19
|
Giacomini HC. Metabolic responses of predators to prey density. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.980812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The metabolic cost of foraging is the dark energy of ecological systems. It is much harder to observe and to measure than its beneficial counterpart, prey consumption, yet it is not inconsequential for the dynamics of prey and predator populations. Here I define the metabolic response as the change in energy expenditure of predators in response to changes in prey density. It is analogous and intrinsically linked to the functional response, which is the change in consumption rate with prey density, as they are both shaped by adjustments in foraging activity. These adjustments are adaptive, ubiquitous in nature, and are implicitly assumed by models of predator–prey dynamics that impose consumption saturation in functional responses. By ignoring the associated metabolic responses, these models violate the principle of energy conservation and likely underestimate the strength of predator–prey interactions. Using analytical and numerical approaches, I show that missing this component of interaction has broad consequences for dynamical stability and for the robustness of ecosystems to persistent environmental or anthropogenic stressors. Negative metabolic responses – those resulting from decreases in foraging activity when more prey is available, and arguably the most common – lead to lower local stability of food webs and a faster pace of change in population sizes, including higher excitability, higher frequency of oscillations, and quicker return times to equilibrium when stable. They can also buffer the effects of press perturbations, such as harvesting, on target populations and on their prey through top-down trophic cascades, but are expected to magnify bottom-up cascades, including the effects of nutrient enrichment or the effects of altering lower trophic levels that can be caused by environmental forcing and climate change. These results have implications for any resource management approach that relies on models of food web dynamics, which is the case of many applications of ecosystem-based fisheries management. Finally, besides having their own individual effects, metabolic responses have the potential to greatly alter, or even invert, functional response-stability relationships, and therefore can be critical to an integral understanding of predation and its influence on population dynamics and persistence.
Collapse
|
20
|
Hernández-Salinas U, Ramírez-Bautista A, Cruz-Elizalde R, Torres-Hernández LA. Feeding Niche and Predator–Prey Size Relationship in the Whiptail Lizard Aspidoscelis lineattissima (Squamata: Teiidae) in Insular and Continental Populations of the Mexican Pacific. ICHTHYOLOGY & HERPETOLOGY 2022. [DOI: 10.1643/h2021062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Uriel Hernández-Salinas
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Durango, Calle Sigma 119 Fraccionamiento 20 de Noviembre II Durango, Durango 34220, México;
| | - Aurelio Ramírez-Bautista
- Laboratorio de Ecología de Poblaciones, Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Km 4.5 carretera Pachuca-Tulancingo, 42184, Mineral de La Reforma, Hidalgo, México
| | - Raciel Cruz-Elizalde
- Laboratorio de Ecología y Diversidad Faunística, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Santa Fe Juriquilla, C. P. 76230, Querétaro, Querétaro, México;
| | - Lizzeth A. Torres-Hernández
- Laboratorio de Ecología de Poblaciones, Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Km 4.5 carretera Pachuca-Tulancingo, 42184, Mineral de La Reforma, Hidalgo, México
| |
Collapse
|
21
|
Zhang Z, Li H, Shen W, Feng K, Li S, Gu S, Zhou Y, Peng X, Du X, He Q, Wang L, Zhang Z, Wang D, Wang Z, Deng Y. The Stability of Phyto-Zooplanktonic Networks Varied with Zooplanktonic Sizes in Chinese Coastal Ecosystem. mSystems 2022; 7:e0082122. [PMID: 36200770 PMCID: PMC9599403 DOI: 10.1128/msystems.00821-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022] Open
Abstract
The linkages between phytoplankton and zooplankton are crucial for the stability of complex food webs and the flow of energy within the marine ecosystem. Despite body size exhibiting multiple effects on the planktonic community assembly and the dispersal scale, its role in determining the stability of phyto-zooplanktonic co-occurrence patterns remains unclear. Here, we focused on more than 13,000 kilometers of the Chinese coast to study the diatom-dominated plankton ecosystem and to report the significant negative effects of zooplanktonic body sizes on the topological properties of phyto-zooplanktonic networks (PZNs) by using more than 500 species from 251 samples taken along the coastline. PZNs tended to be more complex and stable when phytoplankton associated with smaller zooplankton. Particularly, the subnetworks of dominant phytoplankton displayed differences with different zooplanktonic body sizes. The zooplankton with larger and smaller body sizes tended to interact with dinoflagellates and diatoms, respectively. Additionally, abiotic factors (i.e., water temperature, pH, salinity, and metal concentrations) displayed significant effects on PZNs via the shifting of zooplanktonic composition, and the zooplanktonic body sizes altered the network modules' associations with different environmental factors. Our study elucidated the general relationship between zooplanktonic body sizes and the stability of PZNs, which provides new insights into marine food webs. IMPORTANCE Body size is a key life trait of aquatic plankton that affects organisms' metabolic rates and ecological functions; however, its specific effects on interactions between phytoplankton and zooplankton are poorly understood. We collected planktonic species and their body size data along more than 13,000 kilometers of coastline to explore the role of zooplanktonic body size in maintaining the stability of phyto-zooplanktonic networks (PZNs). We found that zooplankton play a more important role in maintaining PZN stability than do phytoplankton as well as that the PZN would be more complex and stable with smaller zooplankton. Furthermore, this work revealed that body size significantly determined the relationships between environmental factors and network structure. Overall, these findings lay a general relationship between zooplanktonic body sizes and the stability of PZNs, which helps us further explore the micro food web of coastal ecosystems.
Collapse
Affiliation(s)
- Zheng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, China
| | - Wenli Shen
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Songsong Gu
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqi Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xi Peng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiongfeng Du
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Danrui Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhujun Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Malan G, Harris E, Harris T, Monadjem A. A Bat Hawk Macheiramphus alcinus pair preyed primarily on bats and birds that forage in clutter-edge and open-air habitat groups. AFRICAN ZOOLOGY 2022. [DOI: 10.1080/15627020.2022.2110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- G Malan
- Department of Nature Conservation, Tshwane University of Technology, Pretoria, South Africa
| | - E Harris
- Department of Nature Conservation, Tshwane University of Technology, Pretoria, South Africa
- Humane Solutions Inc., Vancouver, British Columbia, Canada
| | - T Harris
- Department of Nature Conservation, Tshwane University of Technology, Pretoria, South Africa
| | - A Monadjem
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
23
|
Shidemantle G, Blackwood J, Horn K, Velasquez I, Ronan E, Reinke B, Hua J. The morphological effects of artificial light at night on amphibian predators and prey are masked at the community level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119604. [PMID: 35691446 DOI: 10.1016/j.envpol.2022.119604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Artificial light at night (ALAN) is a pervasive pollutant that influences wildlife at both the individual and community level. In this study, we tested the individual-level effects of ALAN on three species of tadpole prey and their newt predators by measuring prey pigmentation and predator and prey mass. Then we evaluated whether the individual-level effects of ALAN on pigmentation and mass had cascading community-level effects by assessing the outcome of predator-prey interactions. We found that spring peepers exposed to ALAN were significantly darker than those reared under control conditions. Additionally, wood frogs reared in ALAN conditions were significantly smaller than those reared in control conditions. In contrast, Eastern newts collected earlier in the spring that were exposed to ALAN were significantly larger than controls while those collected later in the spring were not affected by ALAN, suggesting phenological differences in the effect of ALAN. To understand how changes in pigmentation and size due to ALAN influence predation rates, we ran predation assays in both ALAN-polluted and ALAN-free outdoor environments. After the predation assay, the size disparity in wood frogs reared in ALAN was eliminated such that there was no longer a treatment difference in wood frog size, likely due to size-selective predation. This demonstrates the beneficial nature of predators' selective pressure on prey populations. Lastly, despite individual-level effects of ALAN on pigmentation and mass, we did not detect cascading community-level effects on predation rates. Overall, this study highlights important species-level distinctions in the effects of ALAN. It also emphasizes the need to incorporate ecological complexity to understand the net impact of ALAN.
Collapse
Affiliation(s)
| | - Jurnee Blackwood
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Kelsey Horn
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Isabela Velasquez
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Emily Ronan
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Beth Reinke
- Northeastern Illinois University, 5500 N St Louis Ave, Chicago, IL, 60625, USA
| | - Jessica Hua
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| |
Collapse
|
24
|
Shropshire TA, Morey SL, Chassignet EP, Karnauskas M, Coles VJ, Malca E, Laiz-Carrión R, Fiksen Ø, Reglero P, Shiroza A, Quintanilla Hervas JM, Gerard T, Lamkin JT, Stukel MR. Trade-offs between risks of predation and starvation in larvae make the shelf break an optimal spawning location for Atlantic bluefin tuna. JOURNAL OF PLANKTON RESEARCH 2022; 44:782-798. [PMID: 36045951 PMCID: PMC9424715 DOI: 10.1093/plankt/fbab041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 06/15/2023]
Abstract
Atlantic bluefin tuna (ABT) (Thunnus thynnus) travel long distances to spawn in oligotrophic regions of the Gulf of Mexico (GoM) which suggests these regions offer some unique benefit to offspring survival. To better understand how larval survival varies within the GoM a spatially explicit, Lagrangian, individual-based model was developed that simulates dispersal and mortality of ABT early life stages within realistic predator and prey fields during the spawning periods from 1993 to 2012. The model estimates that starvation is the largest cumulative source of mortality associated with an early critical period. However, elevated predation on older larvae is identified as the main factor limiting survival to late postflexion. As a result, first-feeding larvae have higher survival on the shelf where food is abundant, whereas older larvae have higher survival in the open ocean with fewer predators, making the shelf break an optimal spawning area. The modeling framework developed in this study explicitly simulates both physical and biological factors that impact larval survival and hence could be used to support ecosystem based management efforts for ABT under current and future climate conditions.
Collapse
Affiliation(s)
- Taylor A Shropshire
- EARTH, OCEAN AND ATMOSPHERIC SCIENCE, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FL 32306, USA
- CENTER FOR OCEAN-ATMOSPHERIC PREDICTION STUDIES, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FL 32306, USA
- DIVISION OF COASTAL SCIENCES, UNIVERSITY OF SOUTHERN MISSISSIPPI, HATTIESBURG, MS 39406, USA
| | - Steven L Morey
- CENTER FOR OCEAN-ATMOSPHERIC PREDICTION STUDIES, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FL 32306, USA
- SCHOOL OF THE ENVIRONMENT, FLORIDA A&M UNIVERSITY, TALLAHASSEE, FL, 32307, USA
| | - Eric P Chassignet
- EARTH, OCEAN AND ATMOSPHERIC SCIENCE, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FL 32306, USA
- CENTER FOR OCEAN-ATMOSPHERIC PREDICTION STUDIES, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FL 32306, USA
| | - Mandy Karnauskas
- SOUTHEAST FISHEIRES SCIENCE CENTER, NATIONAL MARINE FISHERIES SERVICE, MIAMI, FL, 33149, USA
| | - Victoria J Coles
- HORN POINT LABORATORY, UNIVERSITY OF MARYLAND CENTER FOR ENVIRONMENTAL SCIENCE, CAMBRIDGE, MD, 21613, USA
| | - Estrella Malca
- SOUTHEAST FISHEIRES SCIENCE CENTER, NATIONAL MARINE FISHERIES SERVICE, MIAMI, FL, 33149, USA
- COORPERATIVE INSTITUTE FOR MARINE AND ATMOSPHERIC STUDIES, UNIVERSITY OF MIAMI, MIAMI, FL, 33149, USA
| | - Raúl Laiz-Carrión
- CENTRO OCEANOGRáFICO DE MáLAGA, INSTITUTO ESPAñOL DE OCEANOGRAFíA, FUENGIROLA, Spain
| | - Øyvind Fiksen
- DEPARTMENT OF BIOLOGICAL SCIENCES, UNIVERSITY OF BERGEN, BERGEN, Norway
| | - Patricia Reglero
- CENTRE OCEANOGRáFIC DE LES BALEARS, INSTITUTO ESPAñOL DE OCEANOGRAFíA, PALMA DE MALLORCA, Spain
| | - Akihiro Shiroza
- SOUTHEAST FISHEIRES SCIENCE CENTER, NATIONAL MARINE FISHERIES SERVICE, MIAMI, FL, 33149, USA
- COORPERATIVE INSTITUTE FOR MARINE AND ATMOSPHERIC STUDIES, UNIVERSITY OF MIAMI, MIAMI, FL, 33149, USA
| | | | - Trika Gerard
- SOUTHEAST FISHEIRES SCIENCE CENTER, NATIONAL MARINE FISHERIES SERVICE, MIAMI, FL, 33149, USA
| | - John T Lamkin
- SOUTHEAST FISHEIRES SCIENCE CENTER, NATIONAL MARINE FISHERIES SERVICE, MIAMI, FL, 33149, USA
| | - Michael R Stukel
- EARTH, OCEAN AND ATMOSPHERIC SCIENCE, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FL 32306, USA
- CENTER FOR OCEAN-ATMOSPHERIC PREDICTION STUDIES, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FL 32306, USA
| |
Collapse
|
25
|
O'Gorman EJ. Machine learning ecological networks. Science 2022; 377:918-919. [PMID: 36007050 DOI: 10.1126/science.add7563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Deep-learning tools can help to construct historical, modern-day, and future food webs.
Collapse
Affiliation(s)
- Eoin J O'Gorman
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
26
|
Portner EJ, Snodgrass O, Dewar H. Pacific bluefin tuna, Thunnus orientalis, exhibits a flexible feeding ecology in the Southern California Bight. PLoS One 2022; 17:e0272048. [PMID: 36006923 PMCID: PMC9409590 DOI: 10.1371/journal.pone.0272048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022] Open
Abstract
Pacific bluefin tuna, Thunnus orientalis, migrates from spawning grounds in the western Pacific Ocean to foraging grounds in the California Current System (CCS), where they are thought to specialize on high energy, surface schooling prey. However, there has been substantial variability in estimates of forage availability in the CCS over the past two decades. To examine the foraging ecology of juvenile T. orientalis in the face this variability, we quantified the diet and prey energetics of 963 individuals collected in the Southern California Bight (SCB) from 2008 to 2016. Using classification and regression tree analysis, we observed three sampling periods characterized by distinct prey. In 2008, T. orientalis diet was dominated by midwater lanternfishes and enoploteuthid squids. During 2009–2014, T. orientalis consumed diverse fishes, cephalopods, and crustaceans. Only in 2015–2016 did T. orientalis specialize on relatively high energy, surface schooling prey (e.g. anchovy, pelagic red crab). Despite containing the smallest prey, stomachs collected in 2009–2014 had the highest number of prey and similar total energetic contents to stomachs collected in 2015–2016. We demonstrate that T. orientalis is an opportunistic predator that can exhibit distinct foraging behaviors to exploit diverse forage. Expanding our understanding of T. orientalis foraging ecology will improve our ability to predict its responses to changes in resource availability as well as potential impacts on the fisheries it supports.
Collapse
Affiliation(s)
- Elan J. Portner
- NOAA Southwest Fisheries Science Center, La Jolla, California, United States of America
- * E-mail:
| | - Owyn Snodgrass
- NOAA Southwest Fisheries Science Center, La Jolla, California, United States of America
| | - Heidi Dewar
- NOAA Southwest Fisheries Science Center, La Jolla, California, United States of America
| |
Collapse
|
27
|
Perkins DM, Hatton IA, Gauzens B, Barnes AD, Ott D, Rosenbaum B, Vinagre C, Brose U. Consistent predator-prey biomass scaling in complex food webs. Nat Commun 2022; 13:4990. [PMID: 36008387 PMCID: PMC9411528 DOI: 10.1038/s41467-022-32578-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
The ratio of predator-to-prey biomass is a key element of trophic structure that is typically investigated from a food chain perspective, ignoring channels of energy transfer (e.g. omnivory) that may govern community structure. Here, we address this shortcoming by characterising the biomass structure of 141 freshwater, marine and terrestrial food webs, spanning a broad gradient in community biomass. We test whether sub-linear scaling between predator and prey biomass (a potential signal of density-dependent processes) emerges within ecosystem types and across levels of biological organisation. We find a consistent, sub-linear scaling pattern whereby predator biomass scales with the total biomass of their prey with a near ¾-power exponent within food webs - i.e. more prey biomass supports proportionally less predator biomass. Across food webs, a similar sub-linear scaling pattern emerges between total predator biomass and the combined biomass of all prey within a food web. These general patterns in trophic structure are compatible with a systematic form of density dependence that holds among complex feeding interactions across levels of organization, irrespective of ecosystem type. The ratio of predator-to-prey biomass is a key element in food webs. Here, the authors report a unified analysis of predator-prey biomass scaling in complex food webs, finding general patterns of sub-linear scaling across ecosystems and levels of organization.
Collapse
Affiliation(s)
- Daniel M Perkins
- School of Life and Health Sciences, Whitelands College, University of Roehampton, London, SW15 4JD, UK.
| | - Ian A Hatton
- Max Planck Institute for Mathematics in the Sciences, Leipzig, 04103, Germany.
| | - Benoit Gauzens
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Andrew D Barnes
- Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton, New Zealand
| | - David Ott
- Centre for Biodiversity Monitoring (Zbm), Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Benjamin Rosenbaum
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Catarina Vinagre
- Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal.,Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
28
|
Cárdenas-Alayza S, Adkesson MJ, Edwards MR, Hirons AC, Gutiérrez D, Tremblay Y, Franco-Trecu V. Sympatric otariids increase trophic segregation in response to warming ocean conditions in Peruvian Humboldt Current System. PLoS One 2022; 17:e0272348. [PMID: 35951498 PMCID: PMC9371314 DOI: 10.1371/journal.pone.0272348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Determining trophic habits of predator communities is essential to measure interspecific interactions and response to environmental fluctuations. South American fur seals, Arctocephalus australis (SAFS) and sea lions Otaria byronia (SASL), coexist along the coasts of Peru. Recently, ocean warming events (2014–2017) that can decrease and impoverish prey biomass have occurred in the Peruvian Humboldt Current System. In this context, our aim was to assess the effect of warming events on long-term inter- and intra-specific niche segregation. We collected whisker from SAFS (55 females and 21 males) and SASL (14 females and 22 males) in Punta San Juan, Peru. We used δ13C and δ15N values serially archived in otariid whiskers to construct a monthly time series for 2005–2019. From the same period we used sea level anomaly records to determine shifts in the predominant oceanographic conditions using a change point analysis. Ellipse areas (SIBER) estimated niche width of species-sex groups and their overlap. We detected a shift in the environmental conditions marking two distinct periods (P1: January 2005—October 2013; P2: November 2013—December 2019). Reduction in δ15N in all groups during P2 suggests impoverished baseline values with bottom-up effects, a shift towards consuming lower trophic level prey, or both. Reduced overlap between all groups in P2 lends support of a more redundant assemblage during the colder P1 to a more trophically segregated assemblage during warmer P2. SASL females show the largest variation in response to the warming scenario (P2), reducing both ellipse area and δ15N mean values. Plasticity to adapt to changing environments and feeding on a more available food source without fishing pressure can be more advantageous for female SASL, albeit temporary trophic bottom-up effects. This helps explain larger population size of SASL in Peru, in contrast to the smaller and declining SAFS population.
Collapse
Affiliation(s)
- Susana Cárdenas-Alayza
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
- UMR 248 MARBEC: IRD–Univ. Montpellier–CNRS–Ifremer, Sète cedex, France
- * E-mail:
| | - Michael J. Adkesson
- Chicago Zoological Society, Brookfield Zoo, Brookfield, Illinois, United States of America
| | - Mickie R. Edwards
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, Florida, United States of America
| | - Amy C. Hirons
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, Florida, United States of America
| | - Dimitri Gutiérrez
- Laboratorio de Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
- Programa Maestría en Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Yann Tremblay
- UMR 248 MARBEC: IRD–Univ. Montpellier–CNRS–Ifremer, Sète cedex, France
| | - Valentina Franco-Trecu
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
29
|
Impact of squid predation on juvenile fish survival. Sci Rep 2022; 12:11777. [PMID: 35821384 PMCID: PMC9276823 DOI: 10.1038/s41598-022-14389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/06/2022] [Indexed: 11/28/2022] Open
Abstract
Predation is a major source of mortality during the early life stages of marine fishes; however, few studies have demonstrated its impact—especially that of squid predation—on survival processes. Here, we examined the feeding habits and predation impacts of swordtip squid on a major prey fish, juveniles of jack mackerel, in the East China Sea. Otoliths of the juveniles extracted from the squid stomach were used to reconstruct the age–length relationship and the growth trajectory of the consumed juveniles, and they were compared to those of juveniles collected with a net using a newly developed statistical framework. The juveniles consumed by squid had significantly shorter body lengths and smaller body sizes during the late larval and early juvenile stages than the netted juveniles, suggesting that smaller juveniles with slower growth rates have a higher probability to be selected. The body mass ratio of the predator squid to prey juveniles (predator–prey mass ratio, PPMR) ranged from 7 to 700, which was remarkably lower than the PPMR reported in various marine ecosystems based on analyses of fishes. Our findings demonstrate that squid predation can significantly impact the early life survival of fish and the trophodynamics in marine ecosystems.
Collapse
|
30
|
Abstract
AbstractTrophic transfer efficiency (TTE) is usually calculated as the ratio of production rates between two consecutive trophic levels. Although seemingly simple, TTE estimates from lakes are rare. In our review, we explore the processes and structures that must be understood for a proper lake TTE estimate. We briefly discuss measurements of production rates and trophic positions and mention how ecological efficiencies, nutrients (N, P) and other compounds (fatty acids) affect energy transfer between trophic levels and hence TTE. Furthermore, we elucidate how TTE estimates are linked with size-based approaches according to the Metabolic Theory of Ecology, and how food-web models can be applied to study TTE in lakes. Subsequently, we explore temporal and spatial heterogeneity of production and TTE in lakes, with a particular focus on the links between benthic and pelagic habitats and between the lake and the terrestrial environment. We provide an overview of TTE estimates from lakes found in the published literature. Finally, we present two alternative approaches to estimating TTE. First, TTE can be seen as a mechanistic quantity informing about the energy and matter flow between producer and consumer groups. This approach is informative with respect to food-web structure, but requires enormous amounts of data. The greatest uncertainty comes from the proper consideration of basal production to estimate TTE of omnivorous organisms. An alternative approach is estimating food-chain and food-web efficiencies, by comparing the heterotrophic production of single consumer levels or the total sum of all heterotrophic production including that of heterotrophic bacteria to the total sum of primary production. We close the review by pointing to a few research questions that would benefit from more frequent and standardized estimates of TTE in lakes.
Collapse
|
31
|
Krumsick KJ, Fisher JAD. Spatial variation in food web structure in a recovering marine ecosystem. PLoS One 2022; 17:e0268440. [PMID: 35594249 PMCID: PMC9122200 DOI: 10.1371/journal.pone.0268440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/30/2022] [Indexed: 11/18/2022] Open
Abstract
Spatial heterogeneity in food web structure and interactions may reconcile spatial variation in population and community dynamics in large marine ecosystems. In order to assess food web contributions to the different community recovery dynamics along the Newfoundland and Labrador shelf ecosystem, we quantified species interactions using stable isotope mixing models and food web metrics within three sub-regions. Representative samples of each species caught in trawls and plankton tows were analyzed for stomach contents and stable isotope ratios (δ15N and δ13C) to parameterize isotope mixing models. Regional variation, highlighted by the diets of three economically important species, was observed such that the southern region demonstrated a variety of trophic pathways of nutrient flow into the higher food web while the diets of fish in the northern regions were typically dominated by one or two pathways via dominant prey species, specifically shrimp (Pandalus sp.) and hyperiids. Food web metrics indicated that the low-diversity northern regions had higher connectance and shorter food chain lengths. This observed regional variation contributes to our understanding of the role of specific forage species to the ecosystem which is an essential contribution towards ecosystem-based management decisions.
Collapse
Affiliation(s)
- Kyle J. Krumsick
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
- * E-mail:
| | - Jonathan A. D. Fisher
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
32
|
Abstract
Nematode predation plays an essential role in determining changes in the rhizosphere microbiome. These changes affect the local nutrient balance and cycling of essential nutrients by selectively structuring interactions across functional taxa in the system. Currently, it is largely unknown to what extent nematode predation induces shifts in the microbiome associated with different rates of soil phosphorous (P) mineralization. Here, we performed an 7-year field experiment to investigate the importance of nematode predation influencing P availability and cycling. These were tracked via the changes in the alkaline phosphomonoesterase (ALP)-producing bacterial community and ALP activity in the rhizosphere of rapeseed. Here, we found that the nematode addition led to high predation pressure and thereby caused shifts in the abundance and composition of the ALP-producing bacterial community. Further analyses based on cooccurrence networks and metabolomics consistently showed that nematode addition induced competitive interactions between potentially keystone ALP-producing bacteria and other members within the community. Structural equation modeling revealed that the outcome of this competition induced by stronger predation pressure of nematodes was significantly associated with higher diversity of ALP-producing bacteria, thereby enhancing ALP activity and P availability. Taken together, our results provide evidence for the importance of predator-prey and competitive interactions in soil biology and their direct influences on nutrient cycling dynamics.
Collapse
|
33
|
Tekwa EW, Watson JR, Pinsky ML. Body size and food-web interactions mediate species range shifts under warming. Proc Biol Sci 2022; 289:20212755. [PMID: 35414233 PMCID: PMC9006017 DOI: 10.1098/rspb.2021.2755] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Species ranges are shifting in response to climate change, but most predictions disregard food-web interactions and, in particular, if and how such interactions change through time. Predator-prey interactions could speed up species range shifts through enemy release or create lags through biotic resistance. Here, we developed a spatially explicit model of interacting species, each with a thermal niche and embedded in a size-structured food-web across a temperature gradient that was then exposed to warming. We also created counterfactual single species models to contrast and highlight the effect of trophic interactions on range shifts. We found that dynamic trophic interactions hampered species range shifts across 450 simulated food-webs with up to 200 species each over 200 years of warming. All species experiencing dynamic trophic interactions shifted more slowly than single-species models would predict. In addition, the trailing edges of larger bodied species ranges shifted especially slowly because of ecological subsidies from small shifting prey. Trophic interactions also reduced the numbers of locally novel species, novel interactions and productive species, thus maintaining historical community compositions for longer. Current forecasts ignoring dynamic food-web interactions and allometry may overestimate species' tendency to track climate change.
Collapse
Affiliation(s)
- E W Tekwa
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James R Watson
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
34
|
Coghlan AR, Blanchard JL, Heather FJ, Stuart‐Smith R, Edgar GJ, Audzijonyte A. Community size structure varies with predator-prey size relationships and temperature across Australian reefs. Ecol Evol 2022; 12:e8789. [PMID: 35414896 PMCID: PMC8987491 DOI: 10.1002/ece3.8789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022] Open
Abstract
Climate change and fisheries exploitation are dramatically changing the abundances, species composition, and size spectra of fish communities. We explore whether variation in 'abundance size spectra', a widely studied ecosystem feature, is influenced by a parameter theorized to govern the shape of size-structured ecosystems-the relationship between the sizes of predators and their prey (predator-prey mass ratios, or PPMRs). PPMR estimates are lacking for avast number of fish species, including at the scale of trophic guilds. Using measurements of 8128 prey items in gut contents of 97 reef fish species, we established predator-prey mass ratios (PPMRs) for four major trophic guilds (piscivores, invertivores, planktivores, and herbivores) using linear mixed effects models. To assess the theoretical predictions that higher community-level PPMRs leads to shallower size spectrum slopes, we compared observations of both ecosystem metrics for ~15,000 coastal reef sites distributed around Australia. PPMRs of individual fishes were remarkably high (median ~71,000), with significant variation between different trophic guilds (~890 for piscivores; ~83,000 for planktivores), and ~8700 for whole communities. Community-level PPMRs were positively related to size spectrum slopes, broadly consistent with theory, however, this pattern was also influenced by the latitudinal temperature gradient. Tropical reefs showed a stronger relationship between community-level PPMRs and community size spectrum slopes than temperate reefs. The extent that these patterns apply outside Australia and consequences for community structure and dynamics are key areas for future investigation.
Collapse
Affiliation(s)
- Amy Rose Coghlan
- Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartTasmaniaAustralia
| | - Julia L. Blanchard
- Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartTasmaniaAustralia
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTasmaniaAustralia
| | - Freddie J. Heather
- Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartTasmaniaAustralia
| | - Rick D. Stuart‐Smith
- Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartTasmaniaAustralia
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartTasmaniaAustralia
| | - Asta Audzijonyte
- Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartTasmaniaAustralia
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
35
|
Kuo C, Ko C, Lai Y. Assessing warming impacts on marine fishes by integrating physiology‐guided distribution projections, life‐history changes, and food web dynamics. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chi‐Yun Kuo
- Department of Biomedical Sciences and Environmental Biology Kaohsiung Medical University Kaohsiung, 80708 Taiwan
| | - Chia‐Ying Ko
- Institute of Fisheries Science National Taiwan University Taipei 10617 Taiwan
| | - Yin‐Zheng Lai
- Institute of Fisheries Science National Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
36
|
Pomeranz JPF, Junker JR, Wesner JS. Individual size distributions across North American streams vary with local temperature. GLOBAL CHANGE BIOLOGY 2022; 28:848-858. [PMID: 34432930 DOI: 10.1111/gcb.15862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Parameters describing the negative relationship between abundance and body size within ecological communities provide a summary of many important biological processes. While it is considered to be one of the few consistent patterns in ecology, spatiotemporal variation of this relationship across continental scale temperature gradients is unknown. Using a database of stream communities collected across North America (18-68°N latitude, -4 to 25°C mean annual air temperature) over 3 years, we constructed 160 individual size distribution (ISD) relationships (i.e. abundance size spectra). The exponent parameter describing ISD's decreased (became steeper) with increasing mean annual temperature, with median slopes varying by ~0.2 units across the 29°C temperature gradient. In addition, total community biomass increased with increasing temperatures, contrary with theoretical predictions. Our study suggests conservation of ISD relationships in streams across broad natural environmental gradients. This supports the emerging use of size-spectra deviations as indicators of fundamental changes to the structure and function of ecological communities.
Collapse
Affiliation(s)
- Justin P F Pomeranz
- Department of Biology, University of South Dakota, Vermillion, South Dakota, USA
| | - James R Junker
- Great Lakes Research Center, Michigan Technological University, Houghton, Michigan, USA
| | - Jeff S Wesner
- Department of Biology, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
37
|
Suzuki Y, Mukaimine W. Prey–predator interactions and body size relationships between annual cicadas and spiders in Japan. J NAT HIST 2022. [DOI: 10.1080/00222933.2021.2019340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yuya Suzuki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima-shi, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Wataru Mukaimine
- Doctoral Program in Biology, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
38
|
De Baets K, Huntley JW, Scarponi D, Klompmaker AA, Skawina A. Phanerozoic parasitism and marine metazoan diversity: dilution versus amplification. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200366. [PMID: 34538136 PMCID: PMC8450635 DOI: 10.1098/rstb.2020.0366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Growing evidence suggests that biodiversity mediates parasite prevalence. We have compiled the first global database on occurrences and prevalence of marine parasitism throughout the Phanerozoic and assess the relationship with biodiversity to test if there is support for amplification or dilution of parasitism at the macroevolutionary scale. Median prevalence values by era are 5% for the Paleozoic, 4% for the Mesozoic, and a significant increase to 10% for the Cenozoic. We calculated period-level shareholder quorum sub-sampled (SQS) estimates of mean sampled diversity, three-timer (3T) origination rates, and 3T extinction rates for the most abundant host clades in the Paleobiology Database to compare to both occurrences of parasitism and the more informative parasite prevalence values. Generalized linear models (GLMs) of parasite occurrences and SQS diversity measures support both the amplification (all taxa pooled, crinoids and blastoids, and molluscs) and dilution hypotheses (arthropods, cnidarians, and bivalves). GLMs of prevalence and SQS diversity measures support the amplification hypothesis (all taxa pooled and molluscs). Though likely scale-dependent, parasitism has increased through the Phanerozoic and clear patterns primarily support the amplification of parasitism with biodiversity in the history of life. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.
Collapse
Affiliation(s)
- Kenneth De Baets
- GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-University Erlangen-Nürnberg, Loewenichstraße 28, 91054 Erlangen, Germany
| | - John Warren Huntley
- Department of Geological Sciences, University of Missouri, 101 Geological Sciences Building, Columbia, MO 65211, USA
| | - Daniele Scarponi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, University of Bologna, Piazza di Porta San Donato 1, 40131 Bologna, Italy
| | - Adiël A Klompmaker
- Department of Museum Research and Collections and Alabama Museum of Natural History, University of Alabama, Box 870340, Tuscaloosa, AL 35487, USA
| | - Aleksandra Skawina
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warszawa, Poland
| |
Collapse
|
39
|
Hattich GSI, Listmann L, Govaert L, Pansch C, Reusch TBH, Matthiessen B. Experimentally decomposing phytoplankton community change into ecological and evolutionary contributions. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Giannina S. I. Hattich
- GEOMAR Helmholtz Centre for Ocean Research Kiel Experimental Ecology‐Foodwebs Kiel Germany
- Environmental and Marine Biology Åbo Akademi University Åbo Finland
| | - Luisa Listmann
- Marine Evolutionary Ecology GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
- Institut für Marine Ökosystem‐ und Fischereiwissenschaften University of Hamburg Hamburg Germany
| | - Lynn Govaert
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- URPP Global Change and Biodiversity University of Zurich Zurich Switzerland
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
| | - Christian Pansch
- Environmental and Marine Biology Åbo Akademi University Åbo Finland
| | - Thorsten B. H. Reusch
- Marine Evolutionary Ecology GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
| | - Birte Matthiessen
- GEOMAR Helmholtz Centre for Ocean Research Kiel Experimental Ecology‐Foodwebs Kiel Germany
| |
Collapse
|
40
|
Bianchi D, Carozza DA, Galbraith ED, Guiet J, DeVries T. Estimating global biomass and biogeochemical cycling of marine fish with and without fishing. SCIENCE ADVANCES 2021; 7:eabd7554. [PMID: 34623923 PMCID: PMC8500507 DOI: 10.1126/sciadv.abd7554] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The biomass and biogeochemical roles of fish in the ocean are ecologically important but poorly known. Here, we use a data-constrained marine ecosystem model to provide a first-order estimate of the historical reduction of fish biomass due to fishing and the associated change in biogeochemical cycling rates. The pre-exploitation global biomass of exploited fish (10 g to 100 kg) was 3.3 ± 0.5 Gt, cycling roughly 2% of global primary production (9.4 ± 1.6 Gt year−1) and producing 10% of surface biological export. Particulate organic matter produced by exploited fish drove roughly 10% of the oxygen consumption and biological carbon storage at depth. By the 1990s, biomass and cycling rates had been reduced by nearly half, suggesting that the biogeochemical impact of fisheries has been comparable to that of anthropogenic climate change. Our results highlight the importance of developing a better mechanistic understanding of how fish alter ocean biogeochemistry.
Collapse
Affiliation(s)
- Daniele Bianchi
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Corresponding author.
| | - David A. Carozza
- Département de Mathématiques, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Eric D. Galbraith
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Department of Earth and Planetary Science, McGill University, Montreal, Quebec, Canada
| | - Jérôme Guiet
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Timothy DeVries
- Department of Geography, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
41
|
Vanovac S, Howard D, Monk CT, Arlinghaus R, Giabbanelli PJ. Network analysis of intra- and interspecific freshwater fish interactions using year-around tracking. J R Soc Interface 2021; 18:20210445. [PMID: 34665974 PMCID: PMC8526167 DOI: 10.1098/rsif.2021.0445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 01/23/2023] Open
Abstract
A long-term, yet detailed view into the social patterns of aquatic animals has been elusive. With advances in reality mining tracking technologies, a proximity-based social network (PBSN) can capture detailed spatio-temporal underwater interactions. We collected and analysed a large dataset of 108 freshwater fish from four species, tracked every few seconds over 1 year in their natural environment. We calculated the clustering coefficient of minute-by-minute PBSNs to measure social interactions, which can happen among fish sharing resources or habitat preferences (positive/neutral interactions) or in predator and prey during foraging interactions (agonistic interactions). A statistically significant coefficient compared to an equivalent random network suggests interactions, while a significant aggregated clustering across PBSNs indicates prolonged, purposeful social behaviour. Carp (Cyprinus carpio) displayed within- and among-species interactions, especially during the day and in the winter, while tench (Tinca tinca) and catfish (Silurus glanis) were solitary. Perch (Perca fluviatilis) did not exhibit significant social behaviour (except in autumn) despite being usually described as a predator using social facilitation to increase prey intake. Our work illustrates how methods for building a PBSN can affect the network's structure and highlights challenges (e.g. missing signals, different burst frequencies) in deriving a PBSN from reality mining technologies.
Collapse
Affiliation(s)
- Sara Vanovac
- Computer Science Department, Furman University, Greenville, SC 29613, USA
| | - Dakota Howard
- Computer Science Department, Furman University, Greenville, SC 29613, USA
| | - Christopher T. Monk
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Division of Integrative Fisheries Management, Faculty of Life Sciences and Integrative Research Institute on Transformations of Human-Environmental Systems, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Philippe J. Giabbanelli
- Department of Computer Science and Software Engineering, Miami University, Benton Hall 205 W, 510 E High Street, Oxford, OH 45056, USA
| |
Collapse
|
42
|
Biological and Ecological Aspects of the Blackmouth Catshark (Galeus melastomus Rafinesque, 1810) in the Southern Tyrrhenian Sea. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9090967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Data on the biology and ecology of Galeus melastomus are old/absent for the Southern Tyrrhenian Sea, despite there being numerous studies in the wider area. A total of 127 specimens of G. melastomus from the southern Tyrrhenian Sea, collected in 2018–2019 using trawling nets, were analyzed to investigate size at sexual maturity, sex ratio, length–weight relationships, and feeding habits. To our best knowledge, this is the first time in which all these features were investigated in the Southern Tyrrhenian Sea for G. melastomus. The stomach content analysis showed that G. melastomus had intermediate feeding habits, preying on a great variety of species, especially Cephalopoda, Osteichthyes, and Crustacea. The Levin’s index value (Bi) was 0.53. Sex ratio was 0.92:1, with females slightly more abundant and bigger than males. The results also showed a decrease (33.7 cm for females, 31.1 cm for males) in length at 50% maturity (L50). This could be a result of anthropogenic stressors, such as overfishing and/or and environmental changes, which can induce physiological responses in several species. Our results highlighted the differences related to sexual maturity, growth, and feeding habits of the blackmouth catshark in the studied area, providing reference data to allow comparison with future studies on this species adaptations to this and other deep-sea areas in the Mediterranean Sea.
Collapse
|
43
|
Anderson KE, Fahimipour AK. Body size dependent dispersal influences stability in heterogeneous metacommunities. Sci Rep 2021; 11:17410. [PMID: 34465802 PMCID: PMC8408130 DOI: 10.1038/s41598-021-96629-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022] Open
Abstract
Body size affects key biological processes across the tree of life, with particular importance for food web dynamics and stability. Traits influencing movement capabilities depend strongly on body size, yet the effects of allometrically-structured dispersal on food web stability are less well understood than other demographic processes. Here we study the stability properties of spatially-arranged model food webs in which larger bodied species occupy higher trophic positions, while species’ body sizes also determine the rates at which they traverse spatial networks of heterogeneous habitat patches. Our analysis shows an apparent stabilizing effect of positive dispersal rate scaling with body size compared to negative scaling relationships or uniform dispersal. However, as the global coupling strength among patches increases, the benefits of positive body size-dispersal scaling disappear. A permutational analysis shows that breaking allometric dispersal hierarchies while preserving dispersal rate distributions rarely alters qualitative aspects of metacommunity stability. Taken together, these results suggest that the oft-predicted stabilizing effects of large mobile predators may, for some dimensions of ecological stability, be attributed to increased patch coupling per se, and not necessarily coupling by top trophic levels in particular.
Collapse
Affiliation(s)
- Kurt E Anderson
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA.
| | - Ashkaan K Fahimipour
- Department of Computer Science, University of California, Davis, CA, USA.,Institute of Marine Sciences, University of California, Santa Cruz, CA, USA
| |
Collapse
|
44
|
Potapov AM, Rozanova OL, Semenina EE, Leonov VD, Belyakova OI, Bogatyreva VY, Degtyarev MI, Esaulov AS, Korotkevich AY, Kudrin AA, Malysheva EA, Mazei YA, Tsurikov SM, Zuev AG, Tiunov AV. Size compartmentalization of energy channeling in terrestrial belowground food webs. Ecology 2021; 102:e03421. [PMID: 34086977 DOI: 10.1002/ecy.3421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/11/2021] [Accepted: 03/21/2021] [Indexed: 11/05/2022]
Abstract
Size-structured food webs form integrated trophic systems where energy is channeled from small to large consumers. Empirical evidence suggests that size structure prevails in aquatic ecosystems, whereas in terrestrial food webs trophic position is largely independent of body size. Compartmentalization of energy channeling according to size classes of consumers was suggested as a mechanism that underpins functioning and stability of terrestrial food webs including those belowground, but their structure has not been empirically assessed across the whole size spectrum. Here we used stable isotope analysis and metabolic regressions to describe size structure and energy use in eight belowground communities with consumers spanning 12 orders of magnitude in living body mass, from protists to earthworms. We showed a negative correlation between trophic position and body mass in invertebrate communities and a remarkable nonlinearity in community metabolism and trophic positions across all size classes. Specifically, we found that the correlation between body mass and trophic level is positive in the small-sized (protists, nematodes, arthropods below 1 μg in body mass), neutral in the medium-sized (arthropods of 1 μg to 1 mg), and negative in the large-sized consumers (large arthropods, earthworms), suggesting that these groups form compartments with different trophic organization. Based on this pattern, we propose a concept of belowground food webs being composed of (1) size-structured micro-food web driving fast energy channeling and nutrient release, for example in microbial loop; (2) arthropod macro-food web with no clear correlation between body size and trophic level, hosting soil arthropod diversity and subsidizing aboveground predators; and (3) "trophic whales," sequestering energy in their large bodies and restricting its propagation to higher trophic levels in belowground food webs. The three size compartments are based on a similar set of basal resources, but contribute to different ecosystem-level functions and respond differently to variations in climate, soil characteristics and land use. We suggest that the widely used vision of resource-based energy channeling in belowground food webs can be complemented with size-based energy channeling, where ecosystem multifunctionality, biodiversity, and stability are supported by a balance across individual size compartments.
Collapse
Affiliation(s)
- Anton M Potapov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia.,J. F. Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Untere Karspüle 2, 37073, Goettingen, Germany
| | - Oksana L Rozanova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Eugenia E Semenina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Vladislav D Leonov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Olga I Belyakova
- Penza State University, Krasnaya Street 40, Penza, 440068, Russia
| | - Varvara Yu Bogatyreva
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Maxim I Degtyarev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia.,Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
| | - Anton S Esaulov
- Penza State University, Krasnaya Street 40, Penza, 440068, Russia
| | - Anastasiya Yu Korotkevich
- Institute of Biology and Chemistry, Moscow State Pedagogical University, Kibalchicha Street 6k3, 129164, Moscow, Russia
| | - Alexey A Kudrin
- Institute of Biology of Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Kommunisticheskaja 28, 167000, Syktyvkar, Russia
| | | | - Yuri A Mazei
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia.,Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia.,Faculty of Biology, Shenzhen MSU-BIT University, 1 International University Park Road, Dayun New Town, Longgang District, Shenzhen, 517182, China
| | - Sergey M Tsurikov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Andrey G Zuev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Alexei V Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| |
Collapse
|
45
|
Trophic indices for micronektonic fishes reveal their dependence on the microbial system in the North Atlantic. Sci Rep 2021; 11:8488. [PMID: 33875692 PMCID: PMC8055700 DOI: 10.1038/s41598-021-87767-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/05/2021] [Indexed: 02/02/2023] Open
Abstract
The importance of microbes for the functioning of oceanic food webs is well established, but their relevance for top consumers is still poorly appreciated. Large differences in individual size, and consequently in growth rates and the relevant spatial and temporal scales involved, make the integration of microorganisms and large metazoans in a common food web framework difficult. Using stable isotopes, this study estimated the trophic position of 13 species of micronektonic fishes to examine the microbial and metazoan contribution to mid trophic level consumers. Vertically migrant species displayed higher trophic positions than non-migrant species in all depth layers. The estimated trophic positions agreed well with those from the literature, but all species displayed mean increases between 0.5 and 0.8 trophic positions when taking into account microbial trophic steps. Trophic position, but not the relative importance of the microbial food web, increased with individual size, suggesting that current estimates of the trophic position of top consumers and of the length of oceanic food webs are too low because they are based only on metazoan trophic steps. This finding calls for a review of trophic position estimates and of the efficiency of trophic transfers along oceanic food webs.
Collapse
|
46
|
Seco J, Aparício S, Brierley AS, Bustamante P, Ceia FR, Coelho JP, Philips RA, Saunders RA, Fielding S, Gregory S, Matias R, Pardal MA, Pereira E, Stowasser G, Tarling GA, Xavier JC. Mercury biomagnification in a Southern Ocean food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116620. [PMID: 33581632 DOI: 10.1016/j.envpol.2021.116620] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Biomagnification of mercury (Hg) in the Scotia Sea food web of the Southern Ocean was examined using the stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) as proxies for trophic level and feeding habitat, respectively. Total Hg and stable isotopes were measured in samples of particulate organic matter (POM), zooplankton, squid, myctophid fish, notothenioid fish and seabird tissues collected in two years (austral summers 2007/08 and 2016/17). Overall, there was extensive overlap in δ13C values across taxonomic groups suggesting similarities in habitats, with the exception of the seabirds, which showed some differences, possibly due to the type of tissue analysed (feathers instead of muscle). δ15N showed increasing enrichment across groups in the order POM to zooplankton to squid to myctophid fish to notothenioid fish to seabirds. There were significant differences in δ15N and δ13C values among species within taxonomic groups, reflecting inter-specific variation in diet. Hg concentrations increased with trophic level, with the lowest values in POM (0.0005 ± 0.0002 μg g-1 dw) and highest values in seabirds (3.88 ± 2.41 μg g-1 in chicks of brown skuas Stercorarius antarcticus). Hg concentrations tended to be lower in 2016/17 than in 2007/08 for mid-trophic level species (squid and fish), but the opposite was found for top predators (i.e. seabirds), which had higher levels in the 2016/17 samples. This may reflect an interannual shift in the Scotia Sea marine food web, caused by the reduced availability of a key prey species, Antarctic krill Euphausia superba. In 2016/17, seabirds would have been forced to feed on higher trophic-level prey, such as myctophids, that have higher Hg burdens. These results suggest that changes in the food web are likely to affect the pathway of mercury to Southern Ocean top predators.
Collapse
Affiliation(s)
- José Seco
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal; Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | - Sara Aparício
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Andrew S Brierley
- Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| | - Filipe R Ceia
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - João P Coelho
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Richard A Philips
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Ryan A Saunders
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Sophie Fielding
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Susan Gregory
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK; Government of South Georgia & the South Sandwich Islands, Stanley, Falkland Islands
| | - Ricardo Matias
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Eduarda Pereira
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Gabriele Stowasser
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Geraint A Tarling
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - José C Xavier
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
47
|
Eddy TD, Bernhardt JR, Blanchard JL, Cheung WW, Colléter M, du Pontavice H, Fulton EA, Gascuel D, Kearney KA, Petrik CM, Roy T, Rykaczewski RR, Selden R, Stock CA, Wabnitz CC, Watson RA. Energy Flow Through Marine Ecosystems: Confronting Transfer Efficiency. Trends Ecol Evol 2021; 36:76-86. [DOI: 10.1016/j.tree.2020.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/18/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022]
|
48
|
Ho HC, Tylianakis JM, Pawar S. Behaviour moderates the impacts of food-web structure on species coexistence. Ecol Lett 2020; 24:298-309. [PMID: 33205909 DOI: 10.1111/ele.13643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
How species coexistence (mathematical 'feasibility') in food webs emerges from species' trophic interactions remains a long-standing open question. Here we investigate how structure (network topology and body-size structure) and behaviour (foraging strategy and spatial dimensionality of interactions) interactively affect feasibility in food webs. Metabolically-constrained modelling of food-web dynamics based on whole-organism consumption revealed that feasibility is promoted in systems dominated by large-eat-small foraging (consumers eating smaller resources) whenever (1) many top consumers are present, (2) grazing or sit-and-wait foraging strategies are common, and (3) species engage in two-dimensional interactions. Congruently, the first two conditions were associated with dominance of large-eat-small foraging in 74 well-resolved (primarily aquatic) real-world food webs. Our findings provide a new, mechanistic understanding of how behavioural properties can modulate the effects of structural properties on species coexistence in food webs, and suggest that 'being feasible' constrains the spectra of behavioural and structural properties seen in natural food webs.
Collapse
Affiliation(s)
- Hsi-Cheng Ho
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Jason M Tylianakis
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Samraat Pawar
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| |
Collapse
|
49
|
Griffiths D. Foraging habitat determines predator-prey size relationships in marine fishes. JOURNAL OF FISH BIOLOGY 2020; 97:964-973. [PMID: 32613622 DOI: 10.1111/jfb.14451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Predator-prey size (PPS) relationships are determined by predator behaviour, with the likelihood of prey being eaten dependent on their size relative to that of the consumer. Published PPS relationships for 30 pelagic or benthic marine fish species were analysed using quantile regression to determine how median, lower and upper prey sizes varied with predator size and habitat. Habitat effects on predator foraging activity/mode, morphology, growth and natural mortality are quantified and the effects on PPS relationships explored. Pelagic species are more active, more likely to move by caudal fin propulsion and grow more rapidly but have higher mortality rates than benthic species, where the need for greater manoeuvrability when foraging in more physically complex habitats favours ambush predators using pectoral fin propulsion. Prey size increased with predator size in most species, but pelagic species ate relatively smaller prey than benthic predators. As pelagic predators grew, lower prey size limits changed little, and prey size range increased but median relative prey size declined, whereas the lower limit increased and median relative prey size was constant or increased in benthic species.
Collapse
Affiliation(s)
- David Griffiths
- School of Geography and Environmental Sciences, University of Ulster, Coleraine, UK
| |
Collapse
|
50
|
DeLong JP. Detecting the Signature of Body Mass Evolution in the Broad-Scale Architecture of Food Webs. Am Nat 2020; 196:443-453. [PMID: 32970468 DOI: 10.1086/710350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractBody mass-based links between predator and prey are fundamental to the architecture of food webs. These links determine who eats whom across trophic levels and strongly influence the population abundance, flow of energy, and stability properties of natural communities. Body mass links scale up to create predator-prey mass relationships across species, but the origin of these relationships is unclear. Here I show that predator-prey mass relationships are consistent with the idea that body mass evolves to maximize a dependable supply of resource uptake. I used a global database of ~2,100 predator-prey links and a mechanistic optimization model to correctly predict the slope of the predator-prey mass scaling relationships across species generally and for nine taxonomic subsets. The model also predicted cross-group variation in the heights of the body mass relationships, providing an integrated explanation for mass relationships and their variation across taxa. The results suggest that natural selection on body mass at the local scale is detectable in ecological organization at the macro scale.
Collapse
|