1
|
Inoue Y, Okamiya H, Aota T, Crossland MR, Kishida O. Alien toxic toads suppress individual growth and phenotypic development of native predatory salamanders. Oecologia 2025; 207:27. [PMID: 39881031 DOI: 10.1007/s00442-024-05658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/23/2024] [Indexed: 01/31/2025]
Abstract
Alien species can influence populations of native species through individual-level effects such as predation, competition, and poisoning. For alien species that possess strong defensive chemicals, poisoning is one of the most powerful mechanisms of individual-level effects on native biota. Although toxic alien species could potentially negatively affect survival (lethal effects) or life history traits (sub-lethal effects) of native predators via poisoning, previous studies have mainly focused on acute lethal effects. Thus, delayed effects on predator life history traits have been largely overlooked. To fill this knowledge gap, we conducted laboratory and field experiments to investigate whether toxic alien prey (hatchlings and tadpoles of an invasive toad, Bufo formosus) affect the survival and/or growth and development of a native predatory salamander (larvae of Hynobius retardatus) on Hokkaido, Japan. The laboratory experiment revealed that consumption of a single toad hatchling exerted non-lethal effects on salamanders, but suppressed both salamander growth and development of an ecological phenotype (broad-gape) normally induced by environmental conditions. Furthermore, the field experiment in a natural pond showed that the presence of toad hatchlings and tadpoles resulted in reduced salamander growth (smaller body size) and lower survival of salamanders in the later larval period. The results of the laboratory and field experiments are complementary evidence of the life history impacts of the toxic alien toad on native salamanders. Thus, the poisoning effects of toxic alien species can affect the life history of native predators even if they do not exert acute lethality.
Collapse
Affiliation(s)
- Yoshihiro Inoue
- Graduate School of Environmental Sciences, Hokkaido University, Takaoka, Tomakomai, Hokkaido, 053-0035, Japan
- Kamakura Jogakuin Junior and Senior High School, Yuigahama, Kamakura, Kanagawa, 248-0014, Japan
| | - Hisanori Okamiya
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, 053-0035, Japan
- Museum of Natural and Environmental History, Shizuoka, Shizuoka, 422-8017, Japan
| | | | - Michael R Crossland
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, 053-0035, Japan.
- Wakayama Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Hirai, Kozagawa, Wakayama, 649-4563, Japan.
| |
Collapse
|
2
|
Mori T, Machida K, Kudou Y, Kimishima M, Sassa K, Goto-Inoue N, Minei R, Ogura A, Kobayashi Y, Kamiya K, Nakaya D, Yamamoto N, Kashiwagi A, Kashiwagi K. Novel predator-induced phenotypic plasticity by hemoglobin and physiological changes in the brain of Xenopus tropicalis. Front Physiol 2023; 14:1178869. [PMID: 37346489 PMCID: PMC10279953 DOI: 10.3389/fphys.2023.1178869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Organisms adapt to changes in their environment to survive. The emergence of predators is an example of environmental change, and organisms try to change their external phenotypic systems and physiological mechanisms to adapt to such changes. In general, prey exhibit different phenotypes to predators owing to historically long-term prey-predator interactions. However, when presented with a novel predator, the extent and rate of phenotypic plasticity in prey are largely unknown. Therefore, exploring the physiological adaptive response of organisms to novel predators is a crucial topic in physiology and evolutionary biology. Counterintuitively, Xenopus tropicalis tadpoles do not exhibit distinct external phenotypes when exposed to new predation threats. Accordingly, we examined the brains of X. tropicalis tadpoles to understand their response to novel predation pressure in the absence of apparent external morphological adaptations. Principal component analysis of fifteen external morphological parameters showed that each external morphological site varied nonlinearly with predator exposure time. However, the overall percentage change in principal components during the predation threat (24 h) was shown to significantly (p < 0.05) alter tadpole morphology compared with that during control or 5-day out treatment (5 days of exposure to predation followed by 5 days of no exposure). However, the adaptive strategy of the altered sites was unknown because the changes were not specific to a particular site but were rather nonlinear in various sites. Therefore, RNA-seq, metabolomic, Ingenuity Pathway Analysis, and Kyoto Encyclopedia of Genes and Genomes analyses were performed on the entire brain to investigate physiological changes in the brain, finding that glycolysis-driven ATP production was enhanced and ß-oxidation and the tricarboxylic acid cycle were downregulated in response to predation stress. Superoxide dismutase was upregulated after 6 h of exposure to new predation pressure, and radical production was reduced. Hemoglobin was also increased in the brain, forming oxyhemoglobin, which is known to scavenge hydroxyl radicals in the midbrain and hindbrain. These suggest that X. tropicalis tadpoles do not develop external morphological adaptations that are positively correlated with predation pressure, such as tail elongation, in response to novel predators; however, they improve their brain functionality when exposed to a novel predator.
Collapse
Affiliation(s)
- Tsukasa Mori
- Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Kazumasa Machida
- Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Yuki Kudou
- Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Masaya Kimishima
- Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Kaito Sassa
- Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Naoko Goto-Inoue
- Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Ryuhei Minei
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Atsushi Ogura
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | | | | | | | - Naoyuki Yamamoto
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Keiko Kashiwagi
- Hiroshima University Amphibian Research Center, Hiroshima, Japan
| |
Collapse
|
3
|
Chang H, Cassau S, Krieger J, Guo X, Knaden M, Kang L, Hansson BS. A chemical defense deters cannibalism in migratory locusts. Science 2023; 380:537-543. [PMID: 37141362 DOI: 10.1126/science.ade6155] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many animals engage in cannibalism to supplement their diets. Among dense populations of migratory locusts, cannibalism is prevalent. We show that under crowded conditions, locusts produce an anticannibalistic pheromone called phenylacetonitrile. Both the degree of cannibalism and the production of phenylacetonitrile are density dependent and covary. We identified the olfactory receptor that detects phenylacetonitrile and used genome editing to make this receptor nonfunctional, thereby abolishing the negative behavioral response. We also inactivated the gene underlying phenylacetonitrile production and show that locusts that lack this compound lose its protection and are more frequently exposed to intraspecific predation. Thus, we reveal an anticannibalistic feature built on a specifically produced odor. The system is very likely to be of major importance in locust population ecology, and our results might therefore provide opportunities in locust management.
Collapse
Affiliation(s)
- Hetan Chang
- Department of Evolutionary Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sina Cassau
- Department of Animal Physiology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| | - Jürgen Krieger
- Department of Animal Physiology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| | - Xiaojiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Markus Knaden
- Department of Evolutionary Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Bill S Hansson
- Department of Evolutionary Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
4
|
Rosenheim JA, Schreiber SJ. Pathways to the density-dependent expression of cannibalism, and consequences for regulated population dynamics. Ecology 2022; 103:e3785. [PMID: 35818739 DOI: 10.1002/ecy.3785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
Cannibalism, once viewed as a rare or aberrant behavior, is now recognized to be widespread and to contribute broadly to the self-regulation of many populations. Cannibalism can produce endogenous negative feedback on population growth because it is expressed as a conditional behavior, responding to the deteriorating ecological conditions that flow, directly or indirectly, from increasing densities of conspecifics. Thus, cannibalism emerges as a strongly density-dependent source of mortality. In this synthesis, we review recent research that has revealed a rich diversity of pathways through which rising density elicits increased cannibalism, including both factors that (a) elevate the rate of dangerous encounters between conspecifics and (b) enhance the likelihood that such encounters will lead to successful cannibalistic attacks. These pathways include both features of the autecology of cannibal populations and features of interactions with other species, including food resources and pathogens. Using mathematical models, we explore the consequences of including density-dependent cannibal attack rates on population dynamics. The conditional expression of cannibalism generally enhances stability and population regulation in single-species models but also may increase opportunities for alternative states and prey population escape from control by cannibalistic predators.
Collapse
Affiliation(s)
- Jay A Rosenheim
- Department of Entomology and Nematology, University of California, Davis, California, USA
| | - Sebastian J Schreiber
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
5
|
Matsunami M, Miura T, Kishida O, Michimae H, Nishimura K. Expression of Genes Involved in Offensive and Defensive Phenotype Induction in the Pituitary Gland of the Hokkaido Salamander (Hynobius retardatus). Zoolog Sci 2020; 37:563-574. [DOI: 10.2108/zs190140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/17/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Masatoshi Matsunami
- Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Toru Miura
- Misaki Marine Biological Station, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Tomakomai, Hokkaido 053-0035, Japan
| | - Hirofumi Michimae
- School of Pharmacy, Department of Clinical Medicine (Biostatistics), Kitasato University, Tokyo 108-8641, Japan
| | - Kinya Nishimura
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
6
|
Switching from mesopredator to apex predator: how do responses vary in amphibians adapted to cave living? Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
The effective detection of both prey and predators is pivotal for the survival of mesopredators. However, the condition of being a mesopredator is strongly context dependent. Here we focus on two aquatic caudate species that have colonised caves: the Pyrenean newt (Calotriton asper) and the olm (Proteus anguinus). The former maintains both surface and subterranean populations, while only cave-adapted populations of the latter exist. Both species are apex predators in underground waterbodies, while the Pyrenean newt is a mesopredator in surface waterbodies. Shifting to a higher level of the trophic web through colonising caves may promote the loss of anti-predator response against surface apex predators, and an increase in the ability to detect prey. To test these two non-exclusive hypotheses, we integrated classical behavioural characterisations with a novel approach: the assessment of lateralisation (i.e. preference for one body side exposure). Behavioural experiments were performed using laboratory-reared individuals. We performed 684 trials on 39 Pyrenean newts and eight olms. Under darkness and light conditions, we tested how exposure to different chemical cues (predatory fish, prey and unknown scent) affected individuals’ activity and lateralisation. Both cave and surface Pyrenean newts responded to predator cues, while olms did not. In Pyrenean newts, predator cues reduced the time spent in movement and time spent in lateralisation associated with hunting. Our results show that predator recognition is maintained in a species where recently separated populations inhabit environments lacking of higher predators, while such behaviour tends to be lost in populations with longer history of adaptation.
Significance statement
Predator recognition can be maintained in animals adapted to predator free habitats, but varies with their history of adaptation. Species that are not at the apex of the food web can become top predators if they colonise subterranean environments. We compared the behavioural responses of the olm, a strictly cave species with a long underground evolutionary history, and of the Pyrenean newt, a facultative cave species that also has stream-dwelling populations. Moreover, we integrated a classical behavioural characterisation, such as movement detection, with a novel approach: the assessment of lateralisation. While olms do not respond to external predators scent, cave-dwelling newts still recognise it. This clearly indicates that predator recognition is still maintained in species that have colonised predator-free environments more recently.
Collapse
|
7
|
Heynen M, Bunnefeld N, Borcherding J. Facing different predators: adaptiveness of behavioral and morphological traits under predation. Curr Zool 2017; 63:249-257. [PMID: 29491983 PMCID: PMC5804173 DOI: 10.1093/cz/zow056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
Predation is thought to be one of the main structuring forces in animal communities. However, selective predation is often measured on isolated traits in response to a single predatory species, but only rarely are selective forces on several traits quantified or even compared between different predators naturally occurring in the same system. In the present study, we therefore measured behavioral and morphological traits in young-of-the-year Eurasian perch Perca fluviatilis and compared their selective values in response to the 2 most common predators, adult perch and pike Esox lucius. Using mixed effects models and model averaging to analyze our data, we quantified and compared the selectivity of the 2 predators on the different morphological and behavioral traits. We found that selection on the behavioral traits was higher than on morphological traits and perch predators preyed overall more selectively than pike predators. Pike tended to positively select shallow bodied and nonvigilant individuals (i.e. individuals not performing predator inspection). In contrast, perch predators selected mainly for bolder juvenile perch (i.e. individuals spending more time in the open, more active), which was most important. Our results are to the best of our knowledge the first that analyzed behavioral and morphological adaptations of juvenile perch facing 2 different predation strategies. We found that relative specific predation intensity for the divergent traits differed between the predators, providing some additional ideas why juvenile perch display such a high degree of phenotypic plasticity.
Collapse
Affiliation(s)
- Martina Heynen
- Department of General Ecology and Limnology, Ecological Field Station Grietherbusch, Zoological Institute of the University of Cologne, Rees, Germany
- Department of Chemistry, Umeå University, Umeå, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Nils Bunnefeld
- Department of Life Sciences, Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, UK
| | - Jost Borcherding
- Department of General Ecology and Limnology, Ecological Field Station Grietherbusch, Zoological Institute of the University of Cologne, Rees, Germany
| |
Collapse
|
8
|
Yamaguchi A, Takatsu K, Kishida O. Contacts with large, active individuals intensify the predation risk of small conspecifics. Ecology 2016; 97:3206-3218. [PMID: 27870048 DOI: 10.1002/ecy.1543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 05/11/2016] [Accepted: 07/05/2016] [Indexed: 11/09/2022]
Abstract
Size variation within a population can influence the structure of ecosystem interactions, because ecological performance differs between individuals of different sizes. Although the impact of size variation in a predator species on the structure of interactions is well understood, our knowledge about how size variation in a prey species might modify the interactions between predators and prey is very limited. Here, by examining the interactions between predatory Hynobius retardatus salamander larvae and their prey, Rana pirica frog tadpoles, we investigated how large prey individuals affect the predation mortality of small prey conspecifics. First, in an experiment conducted in a field pond in which we manipulated the presence of salamanders and large tadpoles (i.e., large enough to protect them against salamander predation) with small tadpoles, we showed that in the presence of large tadpoles the mortality of small tadpoles from salamander predation was increased. On the basis of our observations of the activity of individuals, we hypothesized that active large tadpoles caused physical disturbances, which in turn caused the small tadpoles to move, and thus increased their encounter frequency with the predatory salamanders. To test this hypothesis, we conducted a laboratory experiment in small tanks with three players (i.e., one salamander as predator, one small tadpole as focal prey, and either a small or a large tadpole as the prospective movement inducer). In each tank, we manipulated the presence or absence of a movement inducer, and, when present, its size (large or small) and access (caged or uncaged) to the focal prey. In the presence of a large, uncaged movement inducer, the focal prey was more active and suffered from higher predation mortality compared with the other treatments, because the large movement inducer (unlike a small movement inducer) moved actively and, when uncaged, could stimulate movement of the focal prey through direct contact. The results indicated that high activity of large prey individuals and the resulting behavioral interactions with small conspecifics via direct contact indirectly increased the mortality of the small prey.
Collapse
Affiliation(s)
- Aya Yamaguchi
- Graduate School of Environmental Science, Hokkaido University, Toikanbetsu, Horonobe, Hokkaido 098-2943, Japan
| | - Kunio Takatsu
- Graduate School of Environmental Science, Hokkaido University, Toikanbetsu, Horonobe, Hokkaido 098-2943, Japan
| | - Osamu Kishida
- Field Science Center for Northern Biosphere, Hokkaido University, Toikanbetsu, Horonobe, Hokkaido 098-2943, Japan
| |
Collapse
|
9
|
Manenti R, Melotto A, Denoël M, Ficetola GF. Amphibians breeding in refuge habitats have larvae with stronger antipredator responses. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Abstract
Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing of hatching can strengthen predatory effects on heterospecific prey and can have impacts on various, traits of both predator and prey. Because animals commonly broaden their diet as they grow, such negative impacts of predator cannibalism on the heterospecific prey may be common in interactions between predators and prey species of similar size.
Collapse
|
11
|
Manenti R, Pennati R, Ficetola GF. Role of density and resource competition in determining aggressive behaviour in salamanders. J Zool (1987) 2015. [DOI: 10.1111/jzo.12241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Manenti
- Dipartimento di Bioscienze; Università degli Studi di Milano; Milano Italy
| | - R. Pennati
- Dipartimento di Bioscienze; Università degli Studi di Milano; Milano Italy
| | - G. F. Ficetola
- Laboratoire d'Ecologie Alpine (LECA); Université Grenoble Alpes; Grenoble France
- Laboratoire d'Ecologie Alpine (LECA); Centre National de la Recherche Scientifique (CNRS); Grenoble France
- Dipartimento di Scienze dell'Ambiente e del Territorio e di Scienze della Terra; Università degli Studi di Milano-Bicocca; Milano Italy
| |
Collapse
|
12
|
Mori T, Yanagisawa Y, Kitani Y, Sugiyama M, Kishida O, Nishimura K. Gene expression profiles in Rana pirica tadpoles following exposure to a predation threat. BMC Genomics 2015; 16:258. [PMID: 25886855 PMCID: PMC4403775 DOI: 10.1186/s12864-015-1389-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/24/2015] [Indexed: 11/22/2022] Open
Abstract
Background Rana pirica tadpoles show morphological changes in response to a predation threat: larvae of the dragonfly Aeshna nigroflava induce heightened tail depth, whereas larval salamander Hynobius retardatus induce a bulgy morphology with heightened tail depth. Although both predators induce similar tail morphologies, it is possible that there are functional differences between these tail morphs. Results Here, we performed a discriminant microarray analysis using Xenopus laevis genome arrays to compare tail tissues of control and predator-exposed tadpoles. We identified 9 genes showing large-scale changes in their expression profile: ELAV-like1, methyltransferase like 7A, dolichyl-phosphate mannosyltransferase, laminin subunit beta-1, gremlin 1, BCL6 corepressor-like 1, and three genes of unknown identity. A further 80 genes showed greater than 5 fold differences in expression after exposure to dragonfly larvae and 81 genes showed altered expression after exposure to larval salamanders. Predation-threat responsive genes were identified by selecting genes that reverted to control levels of expression following removal of the predator. Thirteen genes were induced specifically by dragonfly larvae, nine others were salamander-specific, and sixteen were induced by both. Functional analyses indicated that some of the genes induced by dragonfly larvae caused an increase in laminins necessary for cell adhesion in the extracellular matrix. The higher expression of gremlin 1 and HIF1a genes after exposure to dragonfly larvae indicated an in vivo hypoxic reaction, while down-regulation of syndecan-2 may indicate impairment of angiogenesis. Exposure to larval salamanders caused down-regulation of XCIRP-1, which is known to inhibit expression of adhesion molecules; the tadpoles showed reduced expression of cα(E)-catenin, small muscle protein, dystrophin, and myosin light chain genes. Conclusion The connective tissue of tadpoles exposed to larval salamanders may be looser. The differences in gene expression profiles induced by the two predators suggest that there are functional differences between the altered tail tissues of the two groups of tadpoles. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1389-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tsukasa Mori
- Department of Marine Science and Resources, Nihon University College of Bioresource Sciences, Kameino 1866, Fujisawa, 252-0880, Japan.
| | - Yukio Yanagisawa
- Department of Liberal Art, Nihon University College of Bioresource Sciences, Kameino 1866, Fujisawa, 252-0880, Japan.
| | - Yoichiro Kitani
- Department of Marine Science and Resources, Nihon University College of Bioresource Sciences, Kameino 1866, Fujisawa, 252-0880, Japan.
| | - Manabu Sugiyama
- Department of Marine Science and Resources, Nihon University College of Bioresource Sciences, Kameino 1866, Fujisawa, 252-0880, Japan.
| | - Osamu Kishida
- Teshio Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Horonobe, Hokkaido, 098-2943, Japan.
| | - Kinya Nishimura
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan.
| |
Collapse
|
13
|
Kishida O, Tezuka A, Ikeda A, Takatsu K, Michimae H. Adaptive acceleration in growth and development of salamander hatchlings in cannibalistic situations. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Osamu Kishida
- Teshio Experimental Forest, Field Science Center for Northern Biosphere Hokkaido University Toikanbetsu 131 Horonobe, Hokkaido 098‐2943 Japan
| | - Ayumi Tezuka
- Teshio Experimental Forest, Field Science Center for Northern Biosphere Hokkaido University Toikanbetsu 131 Horonobe, Hokkaido 098‐2943 Japan
- Department of Bioscience and Bioinformatics Kyushu Institute of Technology Kawazu 680‐4 Iizuka Fukuoka 820‐8502 Japan
| | - Akiko Ikeda
- Graduate School of Environmental Science Hokkaido University Toikanbetsu 131 Horonobe Hokkaido 098‐2943 Japan
| | - Kunio Takatsu
- Graduate School of Environmental Science Hokkaido University Toikanbetsu 131 Horonobe Hokkaido 098‐2943 Japan
| | - Hirofumi Michimae
- Division of Biostatistics School of Pharmaceutical Sciences Kitasato University Shirokane 5‐9‐1Minato‐ku Tokyo 108‐8641 Japan
| |
Collapse
|
14
|
Nosaka M, Katayama N, Kishida O. Feedback between size balance and consumption strongly affects the consequences of hatching phenology in size-dependent predator-prey interactions. OIKOS 2014. [DOI: 10.1111/oik.01662] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Megumi Nosaka
- Graduate School of Environmental Science, Hokkaido Univ.; Toikanbetsu, Horonobe JP-098-2943 Hokkaido Japan
| | - Noboru Katayama
- Teshio Experimental Forest, Field Center for Northern Biosphere, Hokkaido Univ.; Toikanbetsu, Horonobe JP-098-2943 Hokkaido Japan
| | - Osamu Kishida
- Teshio Experimental Forest, Field Center for Northern Biosphere, Hokkaido Univ.; Toikanbetsu, Horonobe JP-098-2943 Hokkaido Japan
| |
Collapse
|
15
|
Cabrera-Guzmán E, Crossland MR, Brown GP, Shine R. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS One 2013; 8:e70121. [PMID: 23922930 PMCID: PMC3726449 DOI: 10.1371/journal.pone.0070121] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Body size at metamorphosis is a key trait in species (such as many anurans) with biphasic life-histories. Experimental studies have shown that metamorph size is highly plastic, depending upon larval density and environmental conditions (e.g. temperature, food supply, water quality, chemical cues from conspecifics, predators and competitors). To test the hypothesis that this developmental plasticity is adaptive, or to determine if inducing plasticity can be used to control an invasive species, we need to know whether or not a metamorphosing anuran's body size influences its subsequent viability. For logistical reasons, there are few data on this topic under field conditions. We studied cane toads (Rhinella marina) within their invasive Australian range. Metamorph body size is highly plastic in this species, and our laboratory studies showed that larger metamorphs had better locomotor performance (both on land and in the water), and were more adept at catching and consuming prey. In mark-recapture trials in outdoor enclosures, larger body size enhanced metamorph survival and growth rate under some seasonal conditions. Larger metamorphs maintained their size advantage over smaller siblings for at least a month. Our data support the critical but rarely-tested assumption that all else being equal, larger body size at metamorphosis is likely to enhance an individual's long term viability. Thus, manipulations to reduce body size at metamorphosis in cane toads may help to reduce the ecological impact of this invasive species.
Collapse
Affiliation(s)
- Elisa Cabrera-Guzmán
- School of Biological Sciences A08, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|
16
|
Predatory cannibalism in Drosophila melanogaster larvae. Nat Commun 2013; 4:1789. [DOI: 10.1038/ncomms2744] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/15/2013] [Indexed: 11/09/2022] Open
|
17
|
Soldiers with large weapons in predator-abundant midsummer: phenotypic plasticity in a eusocial aphid. Evol Ecol 2013. [DOI: 10.1007/s10682-012-9628-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Effects of size and size structure on predation and inter-cohort competition in red-eyed treefrog tadpoles. Oecologia 2012; 170:629-39. [PMID: 22565492 DOI: 10.1007/s00442-012-2332-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
Individual and relative body size are key determinants of ecological performance, shaping the strength and types of interactions within and among species. Size-dependent performance is particularly important for iteroparous species with overlapping cohorts, determining the ability of new cohorts to invade habitats with older, larger conspecifics. We conducted two mesocosm experiments to examine the role of size and size structure in shaping growth and survival in tadpoles of the red-eyed treefrog (Agalychnis callidryas), a tropical species with a prolonged breeding season. First, we used a response surface design to quantify the competitive effect and response of two tadpole size classes across three competitive environments. Large tadpoles were superior per capita effect competitors, increasing the size difference between cohorts through time at high resource availability. Hatchlings were better per biomass response competitors, and maintained the size difference between cohorts when resource availability was low. However, in contrast to previous studies, small tadpoles never closed the size gap with large tadpoles. Second, we examine the relationship between body size, size structure, and predation by dragonfly nymphs (Anax amazili) on tadpole survival and growth. Hatchlings were more vulnerable to predation; predator and large competitor presence interacted to reduce hatchling growth. Again, the size gap between cohorts increased over time, but increased marginally more with predators present. These findings have implications for understanding how variation in resources and predation over the breeding season will shape population size structure through time and the ability of new cohorts to invade habitats with older conspecifics.
Collapse
|
19
|
|
20
|
Mori T, Kitani Y, Ogihara J, Sugiyama M, Yamamoto G, Kishida O, Nishimura K. Histological and MS spectrometric analyses of the modified tissue of bulgy form tadpoles induced by salamander predation. Biol Open 2012; 1:308-17. [PMID: 23213421 PMCID: PMC3509453 DOI: 10.1242/bio2012604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid induction of a defensive morphology by a prey species in face of a predation risk is an intriguing in ecological context; however, the physiological mechanisms that underlie this phenotypic plasticity remain uncertain. Here we investigated the phenotypic changes shown by Rana pirica tadpoles in response to a predation threat by larvae of the salamander Hynobius retardatus. One such response is the bulgy morph phenotype, a relatively rapid swelling in size by the tadpoles that begins within 4 days and reaches a maximum at 8 to 10 days. We found that although the total volume of bodily fluid increased significantly (P<0.01) in bulgy morph tadpoles, osmotic pressure was maintained at the same level as control tadpoles by a significant increase (P<0.01) in Na and Cl ion concentrations. In our previous report, we identified a novel frog gene named pirica that affects the waterproofing of the skin membrane in tadpoles. Our results support the hypothesis that predator-induced expression of pirica on the skin membrane causes retention of absorbed water. Midline sections of bulgy morph tadpoles showed the presence of swollen connective tissue beneath the skin that was sparsely composed of cells containing hyaluronic acid. Mass spectrographic (LC-MS/MS) analysis identified histone H3 and 14-3-3 zeta as the most abundant constituents in the liquid aspirated from the connective tissue of bulgy tadpoles. Immunohistochemistry using antibodies against these proteins showed the presence of non-chromatin associated histone H3 in the swollen connective tissue. Histones and 14-3-3 proteins are also involved in antimicrobial activity and secretion of antibacterial proteins, respectively. Bulgy tadpoles have a larger surface area than controls, and their skin often has bite wounds inflicted by the larval salamanders. Thus, formation of the bulgy morph may also require and be supported by activation of innate immune systems.
Collapse
Affiliation(s)
- Tsukasa Mori
- Nihon University College of Bioresource Sciences , Kameino 1866, Fujisawa 252-0880 , Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Kishida O, Trussell GC, Ohno A, Kuwano S, Ikawa T, Nishimura K. Predation risk suppresses the positive feedback between size structure and cannibalism. J Anim Ecol 2011; 80:1278-87. [PMID: 21668893 DOI: 10.1111/j.1365-2656.2011.01871.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. Cannibalism can play a prominent role in the structuring and dynamics of ecological communities. Previous studies have emphasized the importance of size structure and density of cannibalistic species in shaping short- and long-term cannibalism dynamics, but our understanding of how predators influence cannibalism dynamics is limited. This is despite widespread evidence that many prey species exhibit behavioural and morphological adaptations in response to predation risk. 2. This study examined how the presence and absence of predation risk from larval dragonflies Aeshna nigroflava affected cannibalism dynamics in its prey larval salamanders Hynobius retardatus. 3. We found that feedback dynamics between size structure and cannibalism depended on whether dragonfly predation risk was present. In the absence of dragonfly risk cues, a positive feedback between salamander size structure and cannibalism through time occurred because most of the replicates in this treatment contained at least one salamander larvae having an enlarged gape (i.e. cannibal). In contrast, this feedback and the emergence of cannibalism were rarely observed in the presence of the dragonfly risk cues. Once salamander size divergence occurred, experimental reversals of the presence or absence of dragonfly risk cues did not alter existing cannibalism dynamics as the experiment progressed. Thus, the effects of risk on the mechanisms driving cannibalism dynamics likely operated during the early developmental period of the salamander larvae. 4. The effects of dragonfly predation risk on behavioural aspects of cannibalistic interactions among hatchlings may prohibit the initiation of dynamics between size structure and cannibalism. Our predation trials clearly showed that encounter rates among hatchlings and biting and ingestion rates of prospective prey by prospective cannibals were significantly lower in the presence vs. absence of dragonfly predation risk even though the size asymmetry between cannibals and victims was similar in both risk treatments. These results suggest that dragonfly risk cues first suppress cannibalism among hatchlings and then prevent size variation from increasing through time. 5. We suggest that the positive feedback dynamics between size structure and cannibalism and their modification by predation risk may also operate in other systems to shape the population dynamics of cannibalistic prey species as well as overall community dynamics.
Collapse
Affiliation(s)
- Osamu Kishida
- Teshio Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Horonobe, Hokkaido 098-2943, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Mougi A, Kishida O, Iwasa Y. Coevolution of phenotypic plasticity in predator and prey: why are inducible offenses rarer than inducible defenses? Evolution 2010; 65:1079-87. [PMID: 21062279 DOI: 10.1111/j.1558-5646.2010.01187.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inducible defenses of prey and inducible offenses of predators are drastic phenotypic changes activated by the interaction between a prey and predator. Inducible defenses occur in many taxa and occur more frequently than inducible offenses. Recent empirical studies have reported reciprocal phenotypic changes in both predator and prey. Here, we model the coevolution of inducible plasticity in both prey and predator, and examine how the evolutionary dynamics of inducible plasticity affect the population dynamics of a predator-prey system. Under a broad range of parameter values, the proportion of predators with an offensive phenotype is smaller than the proportion of prey with a defensive phenotype, and the offense level is relatively lower than the defense level at evolutionary end points. Our model also predicts that inducible plasticity evolves in both species when predation success depends sensitively on the difference in the inducible trait value between the two species. Reciprocal phenotypic plasticity may be widespread in nature but may have been overlooked by field studies because offensive phenotypes are rare and inconspicuous.
Collapse
Affiliation(s)
- Akihiko Mougi
- Department of Biology, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan.
| | | | | |
Collapse
|
23
|
Utsumi S, Kishida O, Ohgushi T. Trait-mediated indirect interactions in ecological communities. POPUL ECOL 2010. [DOI: 10.1007/s10144-010-0236-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Evolutionary ecology of inducible morphological plasticity in predator–prey interaction: toward the practical links with population ecology. POPUL ECOL 2009. [DOI: 10.1007/s10144-009-0182-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Mougi A, Kishida O. Reciprocal phenotypic plasticity can lead to stable predator-prey interaction. J Anim Ecol 2009; 78:1172-81. [DOI: 10.1111/j.1365-2656.2009.01600.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|