1
|
Revilla TA. Plant-pollinator interaction model with separate pollen and nectar dynamics. J Theor Biol 2025; 606:112096. [PMID: 40139486 DOI: 10.1016/j.jtbi.2025.112096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
The mutualism between plants and pollinators involves the exchange between plant resources and pollen dispersal services among con-specific plants. Since many pollinators are generalist foragers, the quality of pollination is compromised by inter-specific pollen transfer (IPT). This article proposes a mechanistic approach to model plant-pollinator interactions that considers the dynamics of pollen pick-up and its delivery to con-specific and hetero-specific targets, in parallel but separated from the consumption dynamics of plant rewards by the pollinators. This mechanism can model the interference effect caused by IPT on plant fitness, and predicts saturating effects on the quantity and efficiency of pollination. By coupling the mechanism with population dynamics, the resulting model demonstrates how plant-pollinator associations can shift between net mutualism and parasitism, depending on the ecological context and species traits.
Collapse
Affiliation(s)
- Tomás A Revilla
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Becks L, Gaedke U, Klauschies T. Emergent feedback between symbiosis form and population dynamics. Trends Ecol Evol 2025; 40:449-459. [PMID: 40089449 DOI: 10.1016/j.tree.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 03/17/2025]
Abstract
Symbiotic relationships represent prolonged physical interactions between different species and include various forms such as mutualism, commensalism, exploitation, and competition. Here, we show that the form of symbiosis may change with the densities of the symbiotic partners as they influence the costs and benefits each species experiences. In turn, the form of symbiosis is expected to influence species persistence, population dynamics, and ultimately ecosystem stability. Based on this, we introduce the theoretical concept of a density-symbiosis feedback, where population densities affect the form of symbiosis, and symbiosis form in return affects population dynamics. This dynamic interplay calls for a re-evaluation of traditional ecological concepts and a framework considering the flexibility in symbiosis forms.
Collapse
Affiliation(s)
- Lutz Becks
- Department of Biology, University of Konstanz, Aquatic Ecology and Evolution, Konstanz, Germany.
| | - Ursula Gaedke
- University of Potsdam, Department of Ecology and Ecosystem Modelling, Potsdam, Germany
| | - Toni Klauschies
- University of Potsdam, Department of Ecology and Ecosystem Modelling, Potsdam, Germany
| |
Collapse
|
3
|
Feng T, Wang H. Complex dynamics in plant-pollinator-parasite interactions: facultative versus obligate behaviors and novel bifurcations. J Math Biol 2025; 90:46. [PMID: 40205179 DOI: 10.1007/s00285-025-02210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/26/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025]
Abstract
Understanding the dynamics of plant-pollinator interactions is crucial for maintaining ecosystem stability and biodiversity. In this paper, we formulate a novel tripartite plant-pollinator-parasite model that incorporates the influence of parasites on mutualistic relationships. Our model consists of the plant-pollinator subsystem, which exhibits equilibrium dynamics with up to four bistable states; the pollinator-parasite subsystem, where stability is significantly affected by pollinator density and growth rate; and the complete system combining all three species. We perform comprehensive mathematical and bifurcation analyses on both the subsystems and the full system. We have many interesting findings, including that (1) plant-pollinator-parasite interactions are dependent on the properties of plants and pollinators (i.e., facultative or obligate interactions). For example, systems with facultative pollinators are more likely to exhibit multistability and periodic oscillations, thereby enhancing resilience, whereas scenarios with obligate pollinators are more likely to lead to system collapse. (2) Critical parameters such as parasite mortality and conversion rates can drive complex behaviors, including supercritical and subcritical Hopf bifurcations, saddle-node bifurcations, chaos, and heteroclinic orbits. Notably, we introduce three new concepts-the left bow, right bow, and wave bow phenomena-to characterize variations in oscillation amplitude resulting from parameter bifurcations. These important results provide theoretical guidance for ecological management strategies aimed at enhancing ecosystem resilience and stability by considering the complex interactions among plants, pollinators, and parasites.
Collapse
Affiliation(s)
- Tao Feng
- School of Mathematical Science, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada.
| |
Collapse
|
4
|
Sakarchi J, Germain RM. MacArthur's Consumer-Resource Model: A Rosetta Stone for Competitive Interactions. Am Nat 2025; 205:306-326. [PMID: 39965234 DOI: 10.1086/733516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
AbstractRecent developments in competition theory-namely, modern coexistence theory (MCT)-have aided empiricists in formulating tests of species persistence, coexistence, and evolution from simple to complex community settings. However, the parameters used to predict competitive outcomes, such as interaction coefficients, invasion growth rates, and stabilizing differences, remain biologically opaque, making findings difficult to generalize across ecological settings. This article is structured around five goals toward clarifying MCT by first making a case for the modern-day utility of MacArthur's consumer-resource model, a model with surprising complexity and depth: (i) to describe the model in uniquely accessible language, deciphering the mathematics toward cultivating deeper biological intuition about competition's inner workings regardless of what empirical toolkit one uses; (ii) to provide translation between biological mechanisms from MacArthur's model and parameters used to predict coexistence in MCT; (iii) to make explicit important but understated assumptions of MacArthur's model in plain terms; (iv) to provide empirical recommendations; and (v) to examine how key ecological concepts (e.g., r/K-selection) can be understood with renewed clarity through MacArthur's lens. We end by highlighting opportunities to explore mechanisms in tandem with MCT and to compare and translate results across ecological currencies toward a more unified ecological science.
Collapse
|
5
|
Ruiz-Herrera A. Interaction Outcomes in Mutualism-Antagonism Continua: Context Dependency and Instantaneous Effects of the Interactions. Am Nat 2025; 205:E66-E79. [PMID: 39965233 DOI: 10.1086/733503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
AbstractIt is increasingly evident that most interactions are not static and move along a continuum ranging from pure mutualism (i.e., in which each species in the interaction has a net benefit in the long term) to pure antagonism (i.e., in which each species in the interaction has a net damage in the long term). Despite numerous experimental and theoretical works on this concept, predicting interaction outcomes within an ecological community continues to pose a significant challenge. This article aims to tackle this challenge by presenting a theoretical methodology for predicting the interaction outcomes within the common mutualism-antagonism modeling framework. Specifically, my main finding is to describe the influence of the population abundance of the species, the interaction effects, and the ecological context on the interaction outcomes and to quantify their relative contribution. I found that the interaction outcomes depend on the number of interacting species. In particular, when the number of interacting species increases, the trend is to skip situations where all species benefit from the interactions.
Collapse
|
6
|
Marcou T, Revilla TA, Křivan V. Evolutionary emergence of plant and pollinator polymorphisms in consumer-resource mutualisms. J Theor Biol 2024; 594:111911. [PMID: 39069203 DOI: 10.1016/j.jtbi.2024.111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Mutualism is considered a major driver of biodiversity, as it enables extensive codiversification in terrestrial communities. An important case is flowering plants and their pollinators, where convergent selection on plant and pollinator traits is combined with divergent selection to minimize niche overlap within each group. In this article, we study the emergence of polymorphisms in communities structured trophically: plants are the primary producers of resources required by the primary consumers, the servicing pollinators. We model natural selection on traits affecting mutualism between plants and pollinators and competition within these two trophic levels. We show that phenotypic diversification is favored by broad plant niches, suggesting that bottom-up trophic control leads to codiversification. Mutualistic generalism, i.e., tolerance to differences in plant and pollinator traits, promotes a cascade of evolutionary branching favored by bottom-up plant competition dependent on similarity and top-down mutualistic services that broaden plant niches. Our results predict a strong positive correlation between the diversity of plant and pollinator phenotypes, which previous work has partially attributed to the trophic dependence of pollinators on plants.
Collapse
Affiliation(s)
- Thomas Marcou
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - Tomás A Revilla
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre, Czech Academy of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Vlastimil Křivan
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre, Czech Academy of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
7
|
Nakazawa T, Matsumoto TK, Katsuhara KR. When is lethal deceptive pollination maintained? A population dynamics approach. ANNALS OF BOTANY 2024; 134:665-682. [PMID: 39091208 PMCID: PMC11523630 DOI: 10.1093/aob/mcae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND AND AIMS Not all plant-pollinator interactions are mutualistic, and in fact deceptive pollination systems are widespread in nature. The genus Arisaema has a pollination system known as lethal deceptive pollination, in which plants not only attract pollinating insects without providing any rewards, but also trap them until they die. Many Arisaema species are endangered from various disturbances, including reduction in forest habitat, modification of the forest understorey owing to increasing deer abundance, and plant theft for horticultural cultivation. We aimed to theoretically investigate how lethal deceptive pollination can be maintained from a demographic perspective and how plant and pollinator populations respond to different types of disturbance. METHODS We developed and analysed a mathematical model to describe the population dynamics of a deceptive plant species and its victim pollinator. Calibrating the model based on empirical data, we assessed the conditions under which plants and pollinators could coexist, while manipulating relevant key parameters. KEY RESULTS The model exhibited qualitatively distinct behaviours depending on certain parameters. The plant becomes extinct when it has a low capability for vegetative reproduction and slow transition from male to female, and plant-insect co-extinction occurs especially when the plant is highly attractive to male insects. Increasing deer abundance has both positive and negative effects because of removal of other competitive plants and diminishing pollinators, respectively. Theft for horticultural cultivation can readily threaten plants whether male or female plants are frequently collected. The impact of forest habitat reduction may be limited compared with that of other disturbance types. CONCLUSIONS Our results have emphasized that the demographic vulnerability of lethal deceptive pollination systems would differ qualitatively from that of general mutualistic pollination systems. It is therefore important to consider the demographics of both victim pollinators and deceptive plants to estimate how endangered Arisaema populations respond to various disturbances.
Collapse
Affiliation(s)
- Takefumi Nakazawa
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Tetsuya K Matsumoto
- Faculty of Environmental, Life, Nature Science and Technology, Okayama University, Okayama 700-8530, Japan
- Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan
| | - Koki R Katsuhara
- Faculty of Environmental, Life, Nature Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
8
|
Lee YD, Yokoi T, Nakazawa T. A pollinator crisis can decrease plant abundance despite pollinators being herbivores at the larval stage. Sci Rep 2024; 14:18523. [PMID: 39122794 PMCID: PMC11316071 DOI: 10.1038/s41598-024-69537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Pollinating insects are decreasing worldwide due to various environmental stresses (so-called pollinator crisis), raising concerns that plant productivity could be undermined in natural and agricultural ecosystems. To date, however, few studies have reported a concurrent decline in both pollinators and plants, and little is known about when a "plant crisis" occurs. Here, we propose that anthropogenic environmental stresses on pollinating insects (e.g. climate change, habitat loss, and pesticide usage) can negatively affect herbivorous insects (e.g., pollinator larvae and crop pests) as well, and effects of pollinator declines may be masked by positive effects of herbivore declines. To test the idea, we theoretically investigated plant population dynamics mediated by two insect groups: one representing a pollinator that is mutualistic at the adult stage but antagonistic at the larval stage, and the other representing a non-structured pest herbivore. Our model revealed that environmental stresses (increasing insect mortality) can have counterintuitive effects on plants. Nonetheless, plant abundance generally decreases with decreasing pollinator abundance, especially when plant populations grow slowly without pollinators, when pollinators are effective mutualists, or when pollinators are susceptible to environmental stresses. These findings offer a theoretical basis for assessing the pollinator crisis for biodiversity conservation and agricultural management.
Collapse
Affiliation(s)
- Yi-De Lee
- Department of Physics, National Cheng Kung University, Tainan City, Taiwan
| | - Tomoyuki Yokoi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takefumi Nakazawa
- Department of Life Sciences, National Cheng Kung University, No.1, University Road, 701, Tainan City, Taiwan.
| |
Collapse
|
9
|
McPeek MA, Hicks Pries C. The complex circuitry of interactions determining coexistence among plants and mycorrhizal fungi. Ecology 2024; 105:e4281. [PMID: 38507266 DOI: 10.1002/ecy.4281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/05/2023] [Accepted: 02/01/2024] [Indexed: 03/22/2024]
Abstract
We present a mechanistic model of coexistence among a mycorrhizal fungus and one or two plant species that compete for a single nutrient. Plant-fungal coexistence is more likely if the fungus is better at extracting the environmental nutrient than the plant and the fungus acquires carbon from the plant above a minimum rate. When they coexist, their interaction can shift from mutualistic to parasitic at high nutrient availability. The fungus is a second nutrient source for plants and can promote the coexistence of two plant competitors if one is better at environmental nutrient extraction and the other is better at acquiring the nutrient from the fungus. Because it extracts carbon from both plants, the fungus also serves as a conduit of apparent competition between the plants. Consequently, the plant with the lower environmental nutrient extraction rate can drive the plant with the higher environmental nutrient extraction rate extinct at high carbon supply rates. This model illustrates mechanisms to explain several observed patterns, including shifts in plant-mycorrhizal growth responses and coexistence along nutrient gradients, equivocal results among experiments testing the effect of mycorrhizal fungi on plant diversity, and differences in plant diversity among ecosystems dominated by different mycorrhizal groups.
Collapse
Affiliation(s)
- Mark A McPeek
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Caitlin Hicks Pries
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
10
|
Mougi A. Dual species interaction and ecological community stability. Ecology 2024; 105:e4251. [PMID: 38272678 DOI: 10.1002/ecy.4251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/08/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
How diverse species coexist in nature remains a challenging issue that is not yet resolved in ecology. The traditional approach to tackling this problem uses an ecological community network comprising various biological interaction links between species, such as predator-prey, mutualism, and competition. However, in nature, the interaction between any species pair is not limited to a singular interaction; instead, various interactions occur mostly in two ways, such as competition/facilitation in plants, mutualism/antagonism in consumer-resource mutualisms, and reciprocal predation. Here, using an ecological community model, I show that such so-called dual interactions play a key role in stabilizing ecological communities. Theory predicts that dual interactions can stabilize ecological communities through the balance of positive and negative effects, which behave as if the interactions disappear. Communities with dual interactions are inherently more stable than a classical random community with multiple types of singular interactions, suggesting that dual interactions are more widespread than expected in nature and help to maintain ecological communities.
Collapse
Affiliation(s)
- Akihiko Mougi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| |
Collapse
|
11
|
Zwolak R, Clement D, Sih A, Schreiber SJ. Granivore abundance shapes mutualism quality in plant-scatterhoarder interactions. THE NEW PHYTOLOGIST 2024; 241:1840-1850. [PMID: 38044708 DOI: 10.1111/nph.19443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Conditional mutualisms involve costs and benefits that vary with environmental factors, but mechanisms driving these dynamics remain poorly understood. Scatterhoarder-plant interactions are a prime example of this phenomenon, as scatterhoarders can either increase or reduce plant recruitment depending on the balance between seed dispersal and predation. We explored factors that drive the magnitude of net benefits for plants in this interaction using a mathematical model, with parameter values based on European beech (Fagus sylvatica) and yellow-necked mice (Apodemus flavicollis). We measured benefits as the percentage of germinating seeds, and examined how varying rodent survival (reflecting, e.g. changes in predation pressure), the rate of seed loss to other granivores, the abundance of alternative food resources, and changes in masting patterns affect the quality of mutualism. We found that increasing granivore abundance can degrade the quality of plant-scatterhoarder mutualism due to increased cache pilferage. Scatterhoarders are predicted to respond by increasing immediate consumption of gathered seeds, leading to higher costs and reduced benefits for plants. Thus, biotic changes that are detrimental to rodent populations can be beneficial for tree recruitment due to adaptive behavior of rodents. When scatterhoarder populations decline too drastically (< 5 individuals ha-1 ); however, tree recruitment may also suffer.
Collapse
Affiliation(s)
- Rafał Zwolak
- Department of Systematic Zoology, Institute of Environmental Biology, Adam Mickiewicz University, Umultowska 89, Poznań, 61-614, Poland
| | - Dale Clement
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Andrew Sih
- Center of Population Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Sebastian J Schreiber
- Center of Population Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
12
|
Naven Narayanan, Shaw AK. Mutualisms impact species' range expansion speeds and spatial distributions. Ecology 2024; 105:e4171. [PMID: 37776264 DOI: 10.1002/ecy.4171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
Species engage in mutually beneficial interspecific interactions (mutualisms) that shape their population dynamics in ecological communities. Species engaged in mutualisms vary greatly in their degree of dependence on their partner from complete dependence (e.g., yucca and yucca moth mutualism) to low dependence (e.g., generalist bee with multiple plant species). While current empirical studies show that, in mutualisms, partner dependence can alter the speed of a species' range expansion, there is no theory that provides conditions when expansion is sped up or slowed down. To address this, we built a spatially explicit model incorporating the population dynamics of two dispersing species interacting mutualistically. We explored how mutualisms impacted range expansion across a gradient of dependence (from complete independence to obligacy) between the two species. We then studied the conditions in which the magnitude of the mutualistic benefits could hinder versus enhance the speed of range expansion. We showed that either complete dependence, no dependence, or intermediate degree of dependence on a mutualist partner can lead to the greatest speeds of a focal species' range expansion based on the magnitude of benefits exchanged between partner species in the mutualism. We then showed how different degrees of dependence between species could alter the spatial distribution of the range expanding populations. Finally, we identified the conditions under which mutualistic interactions can turn exploitative across space, leading to the formation of a species' range limits. Our work highlights how couching mutualisms and mutualist dependence in a spatial context can provide insights about species range expansions, limits, and ultimately their distributions.
Collapse
Affiliation(s)
- Naven Narayanan
- Department of Ecology, Evolution, Behavior, University of Minnesota Twin Cities, Saint Paul, Minnesota, USA
| | - Allison K Shaw
- Department of Ecology, Evolution, Behavior, University of Minnesota Twin Cities, Saint Paul, Minnesota, USA
| |
Collapse
|
13
|
Jops K, O'Dwyer JP. Life history complementarity and the maintenance of biodiversity. Nature 2023:10.1038/s41586-023-06154-w. [PMID: 37286601 DOI: 10.1038/s41586-023-06154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Life history, the schedule of when and how fast organisms grow, die and reproduce, is a critical axis along which species differ from each other1-4. In parallel, competition is a fundamental mechanism that determines the potential for species coexistence5-8. Previous models of stochastic competition have demonstrated that large numbers of species can persist over long timescales, even when competing for a single common resource9-12, but how life history differences between species increase or decrease the possibility of coexistence and, conversely, whether competition constrains what combinations of life history strategies complement each other remain open questions. Here we show that specific combinations of life history strategy optimize the persistence times of species competing for a single resource before one species overtakes its competitors. This suggests that co-occurring species would tend to have such complementary life history strategies, which we demonstrate using empirical data for perennial plants.
Collapse
Affiliation(s)
- Kenneth Jops
- Department of Plant Biology, University of Illinois, Urbana, IL, USA.
| | - James P O'Dwyer
- Department of Plant Biology, University of Illinois, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
14
|
Kawata S, Takimoto G. Pollinator predation stabilizes plant–pollinator mutualisms through the modification of pollinator behavior. Ecol Res 2022. [DOI: 10.1111/1440-1703.12376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shohei Kawata
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Gaku Takimoto
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| |
Collapse
|
15
|
Godsoe W, Murray R, Iritani R. Species interactions and diversity: a unified framework using Hill numbers. OIKOS 2022. [DOI: 10.1111/oik.09282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- William Godsoe
- Dept of Pest Managament and Conservation, Lincoln Univ. Lincoln New Zealand
| | - Rua Murray
- School of Mathematics and Statistics, Univ. of Canterbury Christchurch New Zealand
| | - Ryosuke Iritani
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Wako Japan
| |
Collapse
|
16
|
Horas EL, Metzger SM, Platzer B, Kelly JB, Becks L. Context-dependent costs and benefits of endosymbiotic interactions in a ciliate-algae system. Environ Microbiol 2022; 24:5924-5935. [PMID: 35799468 DOI: 10.1111/1462-2920.16112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023]
Abstract
Endosymbiosis, an interaction between two species where one lives within the other, has evolved multiple times independently, but the underlying mechanisms remain unclear. Evolutionary theory suggests that for an endosymbiotic interaction to remain stable over time, births of both partners should be higher than their deaths in symbiosis and deaths of both partners should be higher than their births when living independently. However, experimentally measuring this can be difficult and conclusions tend to focus on the host. Using a ciliate-algal system (Paramecium bursaria host and Chlorella endosymbionts), we estimated the benefits and costs of endosymbiosis for both organisms using fitness measurements in different biotic environments to test under which environmental conditions the net effects of the interaction were positive for both partners. We found that the net effects of harbouring endosymbionts were positive for the ciliate hosts as it allowed them to survive in conditions of low-quality bacteria food. The algae benefitted by being endosymbiotic when predators such as the hosts were present, but the net effects were dependent on the total density of hosts, decreasing as hosts densities increased. Overall, we show that including context-dependency of endosymbiosis is essential in understanding how these interactions have evolved.
Collapse
Affiliation(s)
- Elena L Horas
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Sarah M Metzger
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Platzer
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Joseph B Kelly
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Lutz Becks
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| |
Collapse
|
17
|
Gibbs T, Levin SA, Levine JM. Coexistence in diverse communities with higher-order interactions. Proc Natl Acad Sci U S A 2022; 119:e2205063119. [PMID: 36252042 PMCID: PMC9618036 DOI: 10.1073/pnas.2205063119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
A central assumption in most ecological models is that the interactions in a community operate only between pairs of species. However, two species may interactively affect the growth of a focal species. Although interactions among three or more species, called higher-order interactions, have the potential to modify our theoretical understanding of coexistence, ecologists lack clear expectations for how these interactions shape community structure. Here we analytically predict and numerically confirm how the variability and strength of higher-order interactions affect species coexistence. We found that as higher-order interaction strengths became more variable across species, fewer species could coexist, echoing the behavior of pairwise models. If interspecific higher-order interactions became too harmful relative to self-regulation, coexistence in diverse communities was destabilized, but coexistence was also lost when these interactions were too weak and mutualistic higher-order effects became prevalent. This behavior depended on the functional form of the interactions as the destabilizing effects of the mutualistic higher-order interactions were ameliorated when their strength saturated with species' densities. Last, we showed that more species-rich communities structured by higher-order interactions lose species more readily than their species-poor counterparts, generalizing classic results for community stability. Our work provides needed theoretical expectations for how higher-order interactions impact species coexistence in diverse communities.
Collapse
Affiliation(s)
- Theo Gibbs
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Simon A. Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Jonathan M. Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
18
|
Su M, Jiang Z, Hui C. How Multiple Interaction Types Affect Disease Spread and Dilution in Ecological Networks. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.862986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological communities are composed of different functional guilds that are engaging in multiple types of biotic interactions. We explore how ecological networks fare when confronting infectious diseases according to density-dependent (DD) and frequency-dependent (FD) transmission modes. Our model shows that network compositions can dictate both disease spreading and the relationship between disease and community diversity (including species richness and Shannon’s diversity) as depicted in the dilution effect. The disease becomes more prevalent within communities harboring more mutualistic interactions, generating a positive relationship between disease prevalence and community diversity (i.e., an amplification effect). By contrast, in communities with a fixed proportion of mutualistic interactions, higher diversity from the balance of competition and predation can impede disease prevalence (i.e., the dilution effect). Within-species disease prevalence increases linearly with a species’ degree centrality. These patterns of disease transmission and the diversity-disease relationship hold for both transmission modes. Our analyses highlight the complex effects of interaction compositions in ecological networks on infectious disease dynamics and further advance the debate on the dilution effect of host diversity on disease prevalence.
Collapse
|
19
|
Morales MA, Kirsch DG, Sanchez DS. Lagged effects of herbivory impact host‐choice but not nymphal survivorship in an ant‐protected treehopper. Ecosphere 2022. [DOI: 10.1002/ecs2.4067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Manuel A. Morales
- Department of Biology Williams College Williamstown Massachusetts USA
| | - Daniel G. Kirsch
- Department of Biology Williams College Williamstown Massachusetts USA
| | - Diana S. Sanchez
- Department of Biology Williams College Williamstown Massachusetts USA
| |
Collapse
|
20
|
Weinbach A, Loeuille N, Rohr RP. Eco-evolutionary dynamics further weakens mutualistic interaction and coexistence under population decline. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Hale KRS, Maes DP, Valdovinos FS. Simple mechanisms of plant reproductive benefits yield different dynamics in pollination and seed dispersal mutualisms. Am Nat 2022; 200:202-216. [DOI: 10.1086/720204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Simha A, Hoz CPDL, Carley L. Moving beyond the “diversity paradox”: the limitations of competition-based frameworks in understanding species diversity. Am Nat 2022; 200:89-100. [DOI: 10.1086/720002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Jhun Sim H, Ngai Lam W, Chisholm RA, Yan Chong K. Downstream Resource Leakage a Necessary Condition for the Stress-Gradient Hypothesis in Processing Chain Commensalisms. J Theor Biol 2022; 538:111043. [DOI: 10.1016/j.jtbi.2022.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
|
24
|
McPeek MA, McPeek SJ, Bronstein JL. Nectar dynamics and the coexistence of two plants that share a pollinator. OIKOS 2022. [DOI: 10.1111/oik.08869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark A. McPeek
- Dept of Biological Sciences, Dartmouth College Hanover NH USA
| | | | | |
Collapse
|
25
|
Liu R, Liu G. Complex dynamics of a stochastic uni-directional consumer-resource mutualism system. ECOLOGICAL COMPLEXITY 2021. [DOI: 10.1016/j.ecocom.2021.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Hale KRS, Valdovinos FS. Ecological theory of mutualism: Robust patterns of stability and thresholds in two-species population models. Ecol Evol 2021; 11:17651-17671. [PMID: 35003630 PMCID: PMC8717353 DOI: 10.1002/ece3.8453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 11/08/2022] Open
Abstract
Mutualisms are ubiquitous in nature, provide important ecosystem services, and involve many species of interest for conservation. Theoretical progress on the population dynamics of mutualistic interactions, however, comparatively lagged behind that of trophic and competitive interactions, leading to the impression that ecologists still lack a generalized framework to investigate the population dynamics of mutualisms. Yet, over the last 90 years, abundant theoretical work has accumulated, ranging from abstract to detailed. Here, we review and synthesize historical models of two-species mutualisms. We find that population dynamics of mutualisms are qualitatively robust across derivations, including levels of detail, types of benefit, and inspiring systems. Specifically, mutualisms tend to exhibit stable coexistence at high density and destabilizing thresholds at low density. These dynamics emerge when benefits of mutualism saturate, whether due to intrinsic or extrinsic density dependence in intraspecific processes, interspecific processes, or both. We distinguish between thresholds resulting from Allee effects, low partner density, and high partner density, and their mathematical and conceptual causes. Our synthesis suggests that there exists a robust population dynamic theory of mutualism that can make general predictions.
Collapse
Affiliation(s)
- Kayla R. S. Hale
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Fernanda S. Valdovinos
- Department of Environmental Science and PolicyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
27
|
McPeek SJ, Bronstein JL, McPeek MA. The Evolution of Resource Provisioning in Pollination Mutualisms. Am Nat 2021; 198:441-459. [PMID: 34559615 DOI: 10.1086/715746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractResource dynamics influence the contemporary ecology of consumer-resource mutualisms. Suites of resource traits, such as floral nectar components, also evolve in response to different selective pressures, changing the ecological dynamics of the interacting species at the evolutionary equilibrium. Here we explore the evolution of resource-provisioning traits in a biotically pollinated plant that produces nectar as a resource for beneficial consumers. We develop a mathematical model describing natural selection on two quantitative nectar traits: maximum nectar production rate and maximum nectar reservoir volume. We use this model to examine how nectar production dynamics evolve under different ecological conditions that impose varying cost-benefit regimes on resource provisioning. The model results predict that natural selection favors higher nectar production when ecological factors limit the plant or pollinator's abundance (e.g., a lower productivity environment or a higher pollinator conversion efficiency). We also find that nectar traits evolve as a suite in which higher costs of producing one trait select for a compensatory increase in investment in the other trait. This empirically explicit approach to studying the evolution of consumer-resource mutualisms illustrates how natural selection acting via direct and indirect pathways of species interactions generates patterns of resource provisioning seen in natural systems.
Collapse
|
28
|
Revilla TA, Marcou T, Křivan V. Plant competition under simultaneous adaptation by herbivores and pollinators. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Martignoni MM, Garnier J, Zhang X, Rosa D, Kokkoris V, Tyson RC, Hart MM. Co-inoculation with arbuscular mycorrhizal fungi differing in carbon sink strength induces a synergistic effect in plant growth. J Theor Biol 2021; 531:110859. [PMID: 34389360 DOI: 10.1016/j.jtbi.2021.110859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi play a key role in determining ecosystem functionality. Understanding how diversity in the fungal community affects plant productivity is therefore an important question in ecology. Current research has focused on understanding the role of functional complementarity in the fungal community when the host plant faces multiple stress factors. Fewer studies, however, have investigated how variation in traits affecting nutrient exchange can impact the plant growth dynamics, even in the absence of environmental stressors. Combining experimental data and a mathematical model based on ordinary differential equations, we investigate the role played by carbon sink strength on plant productivity. We simulate and measure plant growth over time when the plant is associated with two fungal isolates with different carbon sink strength, and when the plant is in pairwise association with each of the isolates alone. Overall, our theoretical as well as our experimental results show that co-inoculation with fungi with different carbon sink strength can induce positive non-additive effects (or synergistic effects) in plant productivity. Fungi with high carbon sink strength are able to quickly establish a fungal community and increase the nutrient supply to the plant, with a consequent positive impact on plant growth rate. On the other side, fungi with low carbon sink strength inflict lower carbon costs to the host plant, and support maximal plant productivity once plant biomass is large. As AM fungi are widely used as organic fertilizers worldwide, our findings have important implications for restoration ecology and agricultural management.
Collapse
Affiliation(s)
- Maria M Martignoni
- Department of Mathematics, University of British Columbia, Kelowna (BC), Canada; Department of Mathematics and Statistics, Memorial University, St. John's (NL), Canada
| | - Jimmy Garnier
- LAboratoire de MAthématiques (LAMA), CNRS, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Chambery, France
| | - Xinlu Zhang
- Department of Biology, University of British Columbia, Kelowna (BC), Canada
| | - Daniel Rosa
- Department of Biology, University of British Columbia, Kelowna (BC), Canada
| | - Vasilis Kokkoris
- Department of Biology, University of Ottawa, Ottawa (ON), Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa (ON), Canada
| | - Rebecca C Tyson
- Department of Mathematics, University of British Columbia, Kelowna (BC), Canada
| | - Miranda M Hart
- Department of Biology, University of British Columbia, Kelowna (BC), Canada
| |
Collapse
|
30
|
Valdovinos FS, Marsland R. Niche Theory for Mutualism: A Graphical Approach to Plant-Pollinator Network Dynamics. Am Nat 2021; 197:393-404. [PMID: 33755542 DOI: 10.1086/712831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractContemporary niche theory is a useful framework for understanding how organisms interact with each other and with their shared environment. Its graphical representation, popularized by Tilman's resource ratio hypothesis, facilitates analysis of the equilibrium structure of complex dynamical models, including species coexistence. This theory has been applied primarily to resource competition since its early beginnings. Here, we integrate mutualism into niche theory by expanding Tilman's graphical representation to the analysis of consumer-resource dynamics of plant-pollinator networks. We graphically explain the qualitative phenomena previously found by numerical simulations, including the effects on community dynamics of nestedness, adaptive foraging, and pollinator invasions. Our graphical approach promotes the unification of niche and network theories and deepens the synthesis of different types of interactions within a consumer-resource framework.
Collapse
|
31
|
Vidal MC, Segraves KA. Coevolved mutualists experience fluctuating costs and benefits over time. Evolution 2021; 75:219-230. [PMID: 33368192 DOI: 10.1111/evo.14155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 01/08/2023]
Abstract
Understanding how mutualisms persist over time requires investigations of how mutualist species coevolve and adapt to the interaction. In particular, the key factors in the evolution of mutualisms are the costs and benefits mutualists experience during the interaction. Here, we used a yeast nutritional mutualism to test how mutualists coevolve and adapt in an obligate mutualism. We allowed two yeast mutualists to evolve together for 15 weeks (about 150 generations), and then we tested if the mutualists had coevolved using time-shift assays. We also examined two mutualistic traits associated with the costs and benefits: resource use efficiency and commodity production. We found that the mutualists quickly coevolved. Furthermore, the changes in benefits and costs were nonlinear and varied with evolutionary changes occurring in the mutualist partner. One mutualist initially evolved to reduce mutualistic commodity production and increase efficiency in mutualistic resource use; however, this negatively affected its mutualist partner that evolved reduced commodity production and resource use efficiency. As a result, the former increased commodity production, resulting in an increase in benefits for its partner. The quick, nonlinear, and asynchronous evolution of yeast mutualists closely resembles antagonistic coevolutionary patterns, supporting the view that mutualisms should be considered as reciprocal exploitation.
Collapse
Affiliation(s)
- Mayra C Vidal
- Department of Biology, Syracuse University, Syracuse, New York, 13244.,Biology Department, University of Massachusetts Boston, Boston, Massachusetts, 02125
| | - Kari A Segraves
- Department of Biology, Syracuse University, Syracuse, New York, 13244
| |
Collapse
|
32
|
Khan AQ, Khaliq S, Tunç O, Khaliq A, Javaid MB, Ahmed I. Bifurcation analysis and chaos of a discrete-time Kolmogorov model. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.2014679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- A. Q. Khan
- Department of Mathematics, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - S. Khaliq
- Department of Mathematics, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - O. Tunç
- Department of Computer Programing Baskale Vocational School, Van Yuzuncu Yil University, Van, Turkey
| | - A. Khaliq
- Department of Mathematics, Riphah International University, Lahore, Pakistan
| | - M. B. Javaid
- Department of Mathematics, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - I. Ahmed
- Department of Mathematics, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| |
Collapse
|
33
|
Aliyu MB, Mohd MH. Combined Impacts of Predation, Mutualism and Dispersal on the Dynamics of a Four-Species Ecological System. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2021. [DOI: 10.47836/pjst.29.1.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multi-species and ecosystem models have provided ecologist with an excellent opportunity to study the effects of multiple biotic interactions in an ecological system. Predation and mutualism are among the most prevalent biotic interactions in the multi-species system. Several ecological studies exist, but they are based on one-or two-species interactions, and in real life, multiple interactions are natural characteristics of a multi-species community. Here, we use a system of partial differential equations to study the combined effects of predation, mutualism and dispersal on the multi-species coexistence and community stability in the ecological system. Our results show that predation provided a defensive mechanism against the negative consequences of the multiple species interactions by reducing the net effect of competition. Predation is critical in the stability and coexistence of the multi-species community. The combined effects of predation and dispersal enhance the multiple species coexistence and persistence. Dispersal exerts a positive effect on the system by supporting multiple species coexistence and stability of community structures. Dispersal process also reduces the adverse effects associated with multiple species interactions. Additionally, mutualism induces oscillatory behaviour on the system through Hopf bifurcation. The roles of mutualism also support multiple species coexistence mechanisms (for some threshold values) by increasing the stable coexistence and the stable limit cycle regions. We discover that the stability and coexistence mechanisms are controlled by the transcritical and Hopf bifurcation that occurs in this system. Most importantly, our results show the important influences of predation, mutualism and dispersal in the stability and coexistence of the multi-species communities
Collapse
|
34
|
Martignoni MM, Garnier J, Hart MM, Tyson RC. Investigating the impact of the mycorrhizal inoculum on the resident fungal community and on plant growth. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Nakazawa T, Katayama N. Stage-Specific Parasitism by a Mutualistic Partner Can Increase the Host Abundance. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.602675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Vidal MC, Wang SP, Rivers DM, Althoff DM, Segraves KA. Species richness and redundancy promote persistence of exploited
mutualisms in yeast. Science 2020; 370:346-350. [DOI: 10.1126/science.abb6703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/26/2020] [Accepted: 08/26/2020] [Indexed: 01/21/2023]
Abstract
Mutualisms, or reciprocally beneficial interspecific interactions,
constitute the foundation of many ecological communities and agricultural
systems. Mutualisms come in different forms, from pairwise interactions to
extremely diverse communities, and they are continually challenged with
exploitation by nonmutualistic community members (exploiters). Thus,
understanding how mutualisms persist remains an essential question in
ecology. Theory suggests that high species richness and functional
redundancy could promote mutualism persistence in complex mutualistic
communities. Using a yeast system (Saccharomyces
cerevisiae), we experimentally show that communities with
the greatest mutualist richness and functional redundancy are nearly two
times more likely to survive exploitation than are simple communities.
Persistence increased because diverse communities were better able to
mitigate the negative effects of competition with exploiters. Thus, large
mutualistic networks may be inherently buffered from exploitation.
Collapse
Affiliation(s)
- Mayra C. Vidal
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
- Biology Department, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sheng Pei Wang
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | | | - David M. Althoff
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Kari A. Segraves
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
37
|
Fast behavioral feedbacks make ecosystems sensitive to pace and not just magnitude of anthropogenic environmental change. Proc Natl Acad Sci U S A 2020; 117:25580-25589. [PMID: 32989156 DOI: 10.1073/pnas.2003301117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Anthropogenic environmental change is altering the behavior of animals in ecosystems around the world. Although behavior typically occurs on much faster timescales than demography, it can nevertheless influence demographic processes. Here, we use detailed data on behavior and empirical estimates of demography from a coral reef ecosystem to develop a coupled behavioral-demographic ecosystem model. Analysis of the model reveals that behavior and demography feed back on one another to determine how the ecosystem responds to anthropogenic forcing. In particular, an empirically observed feedback between the density and foraging behavior of herbivorous fish leads to alternative stable ecosystem states of coral population persistence or collapse (and complete algal dominance). This feedback makes the ecosystem more prone to coral collapse under fishing pressure but also more prone to recovery as fishing is reduced. Moreover, because of the behavioral feedback, the response of the ecosystem to changes in fishing pressure depends not only on the magnitude of changes in fishing but also on the pace at which changes are imposed. For example, quickly increasing fishing to a given level can collapse an ecosystem that would persist under more gradual change. Our results reveal conditions under which the pace and not just the magnitude of external forcing can dictate the response of ecosystems to environmental change. More generally, our multiscale behavioral-demographic framework demonstrates how high-resolution behavioral data can be incorporated into ecological models to better understand how ecosystems will respond to perturbations.
Collapse
|
38
|
Luo JW, Li M, Liu K, Guan R. Analysis of a mutualism model with time-related coefficients in a stochastic environment. INT J BIOMATH 2020. [DOI: 10.1142/s1793524520500734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, a mutualism model with stochastic perturbations is considered and some of its coefficients are related to time. Under some assumptions, we make efforts to prove the existence and uniqueness of a positive solution, and the asymptotic behavior to the problem is discussed. Furthermore, we also prove the properties of stochastic boundedness, uniform continuity and stochastic permanence of this system. At last, some numerical simulations are introduced to illustrate our main results.
Collapse
Affiliation(s)
- Jun Wei Luo
- School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, P. R. China
| | - Mei Li
- School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, P. R. China
| | - Kai Liu
- School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, P. R. China
| | - Rui Guan
- School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
39
|
Martignoni MM, Hart MM, Garnier J, Tyson RC. Parasitism within mutualist guilds explains the maintenance of diversity in multi-species mutualisms. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-020-00472-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Moderate parasitoidism on pollinators contributes to population oscillations and increases species diversity in the fig-fig wasp community. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-019-00448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Martinez ND. Allometric Trophic Networks From Individuals to Socio-Ecosystems: Consumer–Resource Theory of the Ecological Elephant in the Room. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
42
|
Mutualistic cross-feeding in microbial systems generates bistability via an Allee effect. Sci Rep 2020; 10:7763. [PMID: 32385386 PMCID: PMC7210978 DOI: 10.1038/s41598-020-63772-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
In microbial ecosystems, species not only compete for common resources but may also display mutualistic interactions as a result from metabolic cross-feeding. Such mutualism can lead to bistability. Depending on the initial population sizes, species will either survive or go extinct. Various phenomenological models have been suggested to describe bistability in mutualistic systems. However, these models do not account for interaction mediators such as nutrients. In contrast, nutrient-explicit models do not provide an intuitive understanding of what causes bistability. Here, we reduce a theoretical nutrient-explicit model of two mutualistic cross-feeders in a chemostat, uncovering an explicit relation to a growth model with an Allee effect. We show that the dilution rate in the chemostat leads to bistability by turning a weak Allee effect into a strong Allee effect. This happens as long as there is more production than consumption of cross-fed nutrients. Thanks to the explicit relationship of the reduced model with the underlying experimental parameters, these results allow to predict the biological conditions that sustain or prevent the survival of mutualistic species.
Collapse
|
43
|
Hale KRS, Valdovinos FS, Martinez ND. Mutualism increases diversity, stability, and function of multiplex networks that integrate pollinators into food webs. Nat Commun 2020; 11:2182. [PMID: 32358490 PMCID: PMC7195475 DOI: 10.1038/s41467-020-15688-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/19/2020] [Indexed: 01/10/2023] Open
Abstract
Ecosystems are composed of complex networks of many species interacting in different ways. While ecologists have long studied food webs of feeding interactions, recent studies increasingly focus on mutualistic networks including plants that exchange food for reproductive services provided by animals such as pollinators. Here, we synthesize both types of consumer-resource interactions to better understand the controversial effects of mutualism on ecosystems at the species, guild, and whole-community levels. We find that consumer-resource mechanisms underlying plant-pollinator mutualisms can increase persistence, productivity, abundance, and temporal stability of both mutualists and non-mutualists in food webs. These effects strongly increase with floral reward productivity and are qualitatively robust to variation in the prevalence of mutualism and pollinators feeding upon resources in addition to rewards. This work advances the ability of mechanistic network theory to synthesize different types of interactions and illustrates how mutualism can enhance the diversity, stability, and function of complex ecosystems.
Collapse
Affiliation(s)
- Kayla R S Hale
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI, 48109, USA.
| | - Fernanda S Valdovinos
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI, 48109, USA
- Center for the Study of Complex Systems, University of Michigan, Weiser Hall Suite 700, 500 Church St, Ann Arbor, MI, 48109, USA
| | - Neo D Martinez
- School of Informatics, Computing, and Engineering, Indiana University, Room 302, 919 E. 10th Street, Bloomington, IN, 47408, USA
- Pacific Ecoinformatics and Computational Ecology Lab, Berkeley, CA, 94703, USA
| |
Collapse
|
44
|
Abstract
This paper is concerned with the permanence and extinction of a stochastic regime-switching mutualism model. We aim to find the difference between the stochastic mutualism model with regime-switching and without regime-switching. By studying ergodicity of regime-switching diffusion processes, we establish the sufficient conditions to estimate the permanence and extinction of a species in a random switching environment. Moreover, compared with the system without switching, the advantages of the stochastic regime-switching mutualism model are given.
Collapse
Affiliation(s)
- Guangying Lv
- College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China
| | - Beibei Zhang
- School of Mathematics and Statistics, Henan University, Kaifeng, Henan 475001, P. R. China
| |
Collapse
|
45
|
Martignoni MM, Hart MM, Tyson RC, Garnier J. Diversity within mutualist guilds promotes coexistence and reduces the risk of invasion from an alien mutualist. Proc Biol Sci 2020; 287:20192312. [PMID: 32208836 DOI: 10.1098/rspb.2019.2312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biodiversity is an important component of healthy ecosystems, and thus understanding the mechanisms behind species coexistence is critical in ecology and conservation biology. In particular, few studies have focused on the dynamics resulting from the co-occurrence of mutualistic and competitive interactions within a group of species. Here we build a mathematical model to study the dynamics of a guild of competitors who are also engaged in mutualistic interactions with a common partner. We show that coexistence as well as competitive exclusion can occur depending on the competition strength and on strength of the mutualistic interactions, and we formulate concrete criteria for predicting invasion success of an alien mutualist based on propagule pressure, alien traits (such as its resource exchange ability) and composition of the recipient community. We find that intra guild diversity promotes the coexistence of species that would otherwise competitively exclude each other, and makes a guild less vulnerable to invasion. Our results can serve as a useful framework to predict the consequences of species manipulation in mutualistic communities.
Collapse
Affiliation(s)
- Maria M Martignoni
- Department of Mathematics, University of British Columbia, Kelowna, Canada
| | - Miranda M Hart
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Rebecca C Tyson
- Department of Mathematics, University of British Columbia, Kelowna, Canada
| | - Jimmy Garnier
- Laboratoire de Mathématiques (LAMA), CNRS and Université de Savoie-Mont Blanc, Chambery, France
| |
Collapse
|
46
|
Affiliation(s)
- Takefumi Nakazawa
- Dept of Life Sciences, National Cheng Kung Univ. No.1, University Road Tainan City 701 Taiwan
| |
Collapse
|
47
|
Butler S, O’Dwyer JP. Cooperation and stability for complex systems in resource-limited environments. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-019-00447-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Peralta G, Stouffer DB, Bringa EM, Vázquez DP. No such thing as a free lunch: interaction costs and the structure and stability of mutualistic networks. OIKOS 2020. [DOI: 10.1111/oik.06503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guadalupe Peralta
- Inst. Argentino de Investigaciones de las Zonas Áridas, CONICET Mendoza Argentina
- Centre for Integrative Ecology, School of Biological Sciences, Univ. of Canterbury Christchurch New Zealand
| | - Daniel B. Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, Univ. of Canterbury Christchurch New Zealand
| | - Eduardo M. Bringa
- CONICET, Facultad de Ingeniería, Univ. de Mendoza Mendoza Argentina
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Univ Mayor Chile
| | - Diego P. Vázquez
- Inst. Argentino de Investigaciones de las Zonas Áridas, CONICET Mendoza Argentina
- Facultad de Ciencias Exactas y Naturales, Univ. Nacional de Cuyo Mendoza Argentina
| |
Collapse
|
49
|
|
50
|
Křivan V, Revilla TA. Plant coexistence mediated by adaptive foraging preferences of exploiters or mutualists. J Theor Biol 2019; 480:112-128. [PMID: 31401058 DOI: 10.1016/j.jtbi.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 11/19/2022]
Abstract
Coexistence of plants depends on their competition for common resources and indirect interactions mediated by shared exploiters or mutualists. These interactions are driven either by changes in animal abundance (density-mediated interactions, e.g., apparent competition), or by changes in animal preferences for plants (behaviorally-mediated interactions). This article studies effects of behaviorally-mediated interactions on two plant population dynamics and animal preference dynamics when animal densities are fixed. Animals can be either adaptive exploiters or adaptive mutualists (e.g., herbivores or pollinators) that maximize their fitness. Analysis of the model shows that adaptive animal preferences for plants can lead to multiple outcomes of plant coexistence with different levels of specialization or generalism for the mediator animal species. In particular, exploiter generalism promotes plant coexistence even when inter-specific competition is too strong to make plant coexistence possible without exploiters, and mutualist specialization promotes plant coexistence at alternative stable states when plant inter-specific competition is weak. Introducing a new concept of generalized isoclines allows us to fully analyze the model with respect to the strength of competitive interactions between plants (weak or strong), and the type of interaction between plants and animals (exploitation or mutualism).
Collapse
Affiliation(s)
- Vlastimil Křivan
- Department of Mathematics, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, České Budějovice 370 05, Czech Republic.
| | - Tomás A Revilla
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, České Budějovice 370 05, Czech Republic; Department of Mathematics, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic.
| |
Collapse
|