1
|
Garthe S, Schwemmer H, Peschko V, Markones N, Müller S, Schwemmer P, Mercker M. Large-scale effects of offshore wind farms on seabirds of high conservation concern. Sci Rep 2023; 13:4779. [PMID: 37055415 PMCID: PMC10102167 DOI: 10.1038/s41598-023-31601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023] Open
Abstract
The North Sea is a key area worldwide for the installation of offshore wind farms (OWFs). We analysed data from multiple sources to quantify the effects of OWFs on seabirds from the family Gaviidae (loons) in the German North Sea. The distribution and abundance of loons changed substantially from the period before to the period after OWF construction. Densities of loons were significantly reduced at distances of up to 9-12 km from the OWF footprints. Abundance declined by 94% within the OWF + 1 km zone and by 52% within the OWF + 10 km zone. The observed redistribution was a large-scale effect, with birds aggregating within the study area at large distances from the OWFs. Although renewable energies will be needed to provide a large share of our energy demands in the future, it is necessary to minimize the costs in terms of less-adaptable species, to avoid amplifying the biodiversity crisis.
Collapse
Affiliation(s)
- Stefan Garthe
- Research and Technology Centre (FTZ), Kiel University, Hafentörn 1, 25761, Büsum, Germany.
| | - Henriette Schwemmer
- Research and Technology Centre (FTZ), Kiel University, Hafentörn 1, 25761, Büsum, Germany
- Federation of German Avifaunists (DDA), Hafentörn 1, 25761, Büsum, Germany
| | - Verena Peschko
- Research and Technology Centre (FTZ), Kiel University, Hafentörn 1, 25761, Büsum, Germany
| | - Nele Markones
- Research and Technology Centre (FTZ), Kiel University, Hafentörn 1, 25761, Büsum, Germany
- Federation of German Avifaunists (DDA), Hafentörn 1, 25761, Büsum, Germany
| | - Sabine Müller
- Research and Technology Centre (FTZ), Kiel University, Hafentörn 1, 25761, Büsum, Germany
| | - Philipp Schwemmer
- Research and Technology Centre (FTZ), Kiel University, Hafentörn 1, 25761, Büsum, Germany
| | - Moritz Mercker
- Bionum GmbH - Consultants in Biostatistics, Finkenwerder Norderdeich 15 A, 21129, Hamburg, Germany
- Institute of Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Husson B, Lind S, Fossheim M, Kato‐Solvang H, Skern‐Mauritzen M, Pécuchet L, Ingvaldsen RB, Dolgov AV, Primicerio R. Successive extreme climatic events lead to immediate, large-scale, and diverse responses from fish in the Arctic. GLOBAL CHANGE BIOLOGY 2022; 28:3728-3744. [PMID: 35253321 PMCID: PMC9321067 DOI: 10.1111/gcb.16153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The warming trend of the Arctic is punctuated by several record-breaking warm years with very low sea ice concentrations. The nature and reversibility of marine ecosystem responses to these multiple extreme climatic events (ECEs) are poorly understood. Here, we investigate the ecological signatures of three successive bottom temperature maxima concomitant with surface ECEs between 2004 and 2017 in the Barents Sea across spatial and organizational scales. We observed community-level redistributions of fish concurrent with ECEs at the scale of the whole Barents Sea. Three groups, characterized by different sets of traits describing their capacity to cope with short-term perturbations, reacted with different timing and intensity to each ECE. Arctic species co-occurred more frequently with large predators and incoming boreal taxa during ECEs, potentially affecting food web structures and functional diversity, accelerating the impacts of long-term climate change. On the species level, responses were highly diversified, with different ECEs impacting different species, and species responses (expansion, geographical shift) varying from one ECE to another, despite the environmental perturbations being similar. Past ECEs impacts, with potential legacy effects, lagged responses, thresholds, and interactions with the underlying warming pressure, could constantly set up new initial conditions that drive the unique ecological signature of each ECE. These results highlight the complexity of ecological reactions to multiple ECEs and give prominence to several sources of process uncertainty in the predictions of climate change impact and risk for ecosystem management. Long-term monitoring and studies to characterize the vertical extent of each ECE are necessary to statistically link demersal species and environmental spatial-temporal patterns. In the future, regular monitoring will be crucial to detect early signals of change and understand the determinism of ECEs, but we need to adapt our models and management to better integrate risk and stochasticity from the complex impacts of global change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrey V. Dolgov
- Polar Branch of the Federal State Budget Scientific InstitutionRussian Federal Research Institute of Fisheries and Oceanography (“PINRO” named after N.M.Knipovich)MurmanskRussia
- Murmansk State Technical UniversityMurmanskRussia
- Tomsk State UniversityTomskRussia
| | - Raul Primicerio
- Institute of Marine ResearchTromsøNorway
- UiT – The Arctic University of TromsøTromsøNorway
| |
Collapse
|
3
|
Durant JM, Aarvold L, Langangen Ø. Stock collapse and its effect on species interactions: Cod and herring in the Norwegian-Barents Seas system as an example. Ecol Evol 2021; 11:16993-17004. [PMID: 34938487 PMCID: PMC8668721 DOI: 10.1002/ece3.8336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Both the Norwegian Spring Spawning herring (Clupea harengus) and the Northeast Arctic (NEA) cod (Gadus morhua) are examples of strong stock reduction and decline of the associated fisheries due to overfishing followed by a recovery. Cod and herring are both part of the Barents Sea ecosystem, which has experienced major warming events in the early (1920-1940) and late 20th century. While the collapse or near collapse of these stocks seems to be linked to an instability created by overfishing and climate, the difference of population dynamics before and after is not fully understood. In particular, it is unclear how the changes in population dynamics before and after the collapses are associated with biotic interactions. The combination of the availability of unique long-term time series for herring and cod makes it a well-suited study system to investigate the effects of collapse. We examine how species interactions may differently affect the herring and cod population dynamic before and after a collapse. Particularly we explore, using a GAM modeling approach, how herring could affect cod and vice versa. We found that the effect of cod biomass on herring that was generally positive (i.e., covariation) but the effect became negative after the collapse (i.e., predation or competition). Likewise a change occurred for the cod, the juvenile herring biomass that had no effect before the collapse had a negative effect after. Our results indicate that the population collapses may alter the inter-specific interactions and response to abiotic environmental changes. While the stocks are at similar abundance levels before and after the collapses, the system is potentially different in its functioning and may require different management action.
Collapse
Affiliation(s)
- Joël M. Durant
- Centre for Ecological and Evolutionary Synthesis (CEES)Department of BiosciencesUniversity of OsloOsloNorway
| | - Leana Aarvold
- Centre for Ecological and Evolutionary Synthesis (CEES)Department of BiosciencesUniversity of OsloOsloNorway
| | - Øystein Langangen
- Section for Aquatic biology and toxicology (AQUA)Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
4
|
Gonzalez A, Germain RM, Srivastava DS, Filotas E, Dee LE, Gravel D, Thompson PL, Isbell F, Wang S, Kéfi S, Montoya J, Zelnik YR, Loreau M. Scaling-up biodiversity-ecosystem functioning research. Ecol Lett 2020; 23:757-776. [PMID: 31997566 PMCID: PMC7497049 DOI: 10.1111/ele.13456] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 12/14/2019] [Indexed: 12/27/2022]
Abstract
A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale‐dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross‐scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.
Collapse
Affiliation(s)
- Andrew Gonzalez
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, H3A 1B1, Canada
| | - Rachel M Germain
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Diane S Srivastava
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Elise Filotas
- Center for Forest Research, Département Science et Technologie, Université du Québec, 5800 Saint-Denis, Téluq, Montreal, H2S 3L5, Canada
| | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, J1K 2R1, Canada
| | - Patrick L Thompson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China
| | - Sonia Kéfi
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France
| | - Jose Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Yuval R Zelnik
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| |
Collapse
|
5
|
Sertlek HÖ, Slabbekoorn H, Ten Cate C, Ainslie MA. Source specific sound mapping: Spatial, temporal and spectral distribution of sound in the Dutch North Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:1143-1157. [PMID: 30823343 DOI: 10.1016/j.envpol.2019.01.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Effective measures for protecting and preserving the marine environment require an understanding of the potential impact of anthropogenic sound on marine life. A crucial component is a proper assessment of the anthropogenic soundscape: which sounds are present where, when and how strong? We provide an extensive case study modelling the spatial, temporal and spectral distribution of sound radiated by several anthropogenic sources (ships, seismic airguns, explosives) and a naturally occurring one (wind) in the Dutch North Sea. We present the results as a series of sound maps covering the whole of the Dutch North Sea, showing the spatial and temporal distribution of the energy from these sources. Averaged over a two year period, shipping is responsible for the largest amount of acoustic energy (∼1800 J), followed by seismic surveys (∼300 J), explosions (∼20 J) and wind (∼20 J) in the frequency band between 100 Hz and 100 kHz. Our study shows that anthropogenic sources are responsible for 100 times more acoustic energy (averaged over 2 years) in the Dutch North Sea than naturally occurring sound from wind. The potential impact of these sounds on aquatic animals depends not only on these temporally averaged and spatially integrated broadband energies, but also on the source-specific spatial, spectral and temporal variation. Shipping is dominant in the southern part and along the coast in the north, throughout the years and across the spectrum. Seismic surveys are relatively local and spatially and temporally dependent on exploration activities in any particular year, and spectrally shifted to low frequencies relative to the other sources. Explosions in the southern part contribute wide-extent high energy bursts across the spectrum. Relating modelled sound fields to the temporal and spatial distribution of animal species may provide a powerful tool for understanding the potential impact of anthropogenic sound on marine life.
Collapse
Affiliation(s)
- Hüseyin Özkan Sertlek
- Behavioural Biology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands; Gebze Technical University, Electronics Engineering Department, P.O. Box 141, 41400, Gebze, Turkey.
| | - Hans Slabbekoorn
- Behavioural Biology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Carel Ten Cate
- Behavioural Biology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands
| | | |
Collapse
|
6
|
Bellier E. Variation of interspecific interactions at different ecological levels within an assemblage of Arctic marine predators. Polar Biol 2018. [DOI: 10.1007/s00300-018-2402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Goyert HF, Gardner B, Sollmann R, Veit RR, Gilbert AT, Connelly EE, Williams KA. Predicting the offshore distribution and abundance of marine birds with a hierarchical community distance sampling model. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:1797-1815. [PMID: 27755708 DOI: 10.1890/15-1955.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/23/2016] [Accepted: 12/07/2015] [Indexed: 06/06/2023]
Abstract
Proposed offshore wind energy development on the Atlantic Outer Continental Shelf has brought attention to the need for baseline studies of the distribution and abundance of marine birds. We compiled line transect data from 15 shipboard surveys (June 2012-April 2014), along with associated remotely sensed habitat data, in the lower Mid-Atlantic Bight off the coast of Delaware, Maryland, and Virginia, USA. We implemented a recently developed hierarchical community distance sampling model to estimate the seasonal abundance of 40 observed marine bird species. Treating each season separately, we included six oceanographic parameters to estimate seabird abundance: three static (distance to shore, slope, sediment grain size) and three dynamic covariates (sea surface temperature [SST], salinity, primary productivity). We expected that avian bottom-feeders would respond primarily to static covariates that characterize seafloor variability, and that surface-feeders would respond more to dynamic covariates that quantify surface productivity. We compared the variation in species-specific and community-level responses to these habitat features, including for rare species, and we predicted species abundance across the study area. While several protected species used the study area in summer during their breeding season, estimated abundance and observed diversity were highest for nonbreeding species in winter. Distance to shore was the most common significant predictor of abundance, and thus useful in estimating the potential exposure of marine birds to offshore development. In many cases, our expectations based on feeding ecology were confirmed, such as in the first winter season, when bottom-feeders associated significantly with the three static covariates (distance to shore, slope, and sediment grain size), and surface-feeders associated significantly with two dynamic covariates (SST, primary productivity). However, other cases revealed significant relationships between static covariates and surface-feeders (e.g., distance to shore) and between dynamic covariates and bottom-feeders (e.g., primary productivity during that same winter). More generally, we found wide interannual, seasonal, and interspecies variation in habitat relationships with abundance. These results show the importance of quantifying detection and determining the ecological drivers of a community's distribution and abundance, within and among species, for evaluating the potential exposure of marine birds to offshore development.
Collapse
Affiliation(s)
- Holly F Goyert
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, 27695, USA.
| | - Beth Gardner
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Rahel Sollmann
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Richard R Veit
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York, 10314, USA
| | | | | | | |
Collapse
|
8
|
Terrestrial and Marine Foraging Strategies of an Opportunistic Seabird Species Breeding in the Wadden Sea. PLoS One 2016; 11:e0159630. [PMID: 27525661 PMCID: PMC4985156 DOI: 10.1371/journal.pone.0159630] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 07/06/2016] [Indexed: 11/19/2022] Open
Abstract
Lesser black-backed gulls Larus fuscus are considered to be mainly pelagic. We assessed the importance of different landscape elements (open sea, tidal flats and inland) by comparing marine and terrestrial foraging behaviours in lesser black-backed gulls breeding along the coast of the southern North Sea. We attached GPS data loggers to eight incubating birds and collected information on diet and habitat use. The loggers recorded data for 10-19 days to allow flight-path reconstruction. Lesser black-backed gulls foraged in both offshore and inland areas, but rarely on tidal flats. Targets and directions were similar among all eight individuals. Foraging trips (n = 108) lasted 0.5-26.4 h (mean 8.7 h), and ranges varied from 3.0-79.9 km (mean 30.9 km). The total distance travelled per foraging trip ranged from 7.5-333.6 km (mean 97.9 km). Trips out to sea were significantly more variable in all parameters than inland trips. Presence in inland areas was closely associated with daylight, whereas trips to sea occurred at day and night, but mostly at night. The most common items in pellets were grass (48%), insects (38%), fish (28%), litter (26%) and earthworms (20%). There was a significant relationship between the carbon and nitrogen isotope signals in blood and the proportional time each individual spent foraging at sea/land. On land, gulls preferentially foraged on bare ground, with significantly higher use of potato fields and significantly less use of grassland. The flight patterns of lesser black-backed gulls at sea overlapped with fishing-vessel distribution, including small beam trawlers fishing for shrimps in coastal waters close to the colony and large beam-trawlers fishing for flatfish at greater distances. Our data show that individuals made intensive use of the anthropogenic landscape and seascape, indicating that lesser black-backed gulls are not a predominantly marine species during the incubation period.
Collapse
|
9
|
Mikkelsen L, Rigét FF, Kyhn LA, Sveegaard S, Dietz R, Tougaard J, Carlström JAK, Carlén I, Koblitz JC, Teilmann J. Comparing Distribution of Harbour Porpoises (Phocoena phocoena) Derived from Satellite Telemetry and Passive Acoustic Monitoring. PLoS One 2016; 11:e0158788. [PMID: 27463509 PMCID: PMC4963116 DOI: 10.1371/journal.pone.0158788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
Cetacean monitoring is essential in determining the status of a population. Different monitoring methods should reflect the real trends in abundance and patterns in distribution, and results should therefore ideally be independent of the selected method. Here, we compare two independent methods of describing harbour porpoise (Phocoena phocoena) relative distribution pattern in the western Baltic Sea. Satellite locations from 13 tagged harbour porpoises were used to build a Maximum Entropy (MaxEnt) model of suitable habitats. The data set was subsampled to one location every second day, which were sufficient to make reliable models over the summer (Jun-Aug) and autumn (Sep-Nov) seasons. The modelled results were compared to harbour porpoise acoustic activity obtained from 36 static acoustic monitoring stations (C-PODs) covering the same area. The C-POD data was expressed as the percentage of porpoise positive days/hours (the number of days/hours per day with porpoise detections) by season. The MaxEnt model and C-POD data showed a significant linear relationship with a strong decline in porpoise occurrence from west to east. This study shows that two very different methods provide comparable information on relative distribution patterns of harbour porpoises even in a low density area.
Collapse
Affiliation(s)
- Lonnie Mikkelsen
- Department of Bioscience, Aarhus University, Roskilde, Denmark
- * E-mail:
| | - Frank F. Rigét
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Line A. Kyhn
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Signe Sveegaard
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Jakob Tougaard
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Julia A. K. Carlström
- AquaBiota Water Research, Stockholm, Sweden
- Swedish Museum of Natural History, Stockholm, Sweden
| | - Ida Carlén
- AquaBiota Water Research, Stockholm, Sweden
- Coalition Clean Baltic, Uppsala, Sweden
| | - Jens C. Koblitz
- German Oceanographic Museum, Stralsund, Germany
- BioAcoustics Network, Stralsund, Germany
| | - Jonas Teilmann
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| |
Collapse
|
10
|
Wakefield ED, Cleasby IR, Bearhop S, Bodey TW, Davies RD, Miller PI, Newton J, Votier SC, Hamer KC. Long-term individual foraging site fidelity—why some gannets don't change their spots. Ecology 2015; 96:3058-74. [DOI: 10.1890/14-1300.1] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Dawson NM, Bishop MA, Kuletz KJ, Zuur AF. Using Ships of Opportunity to Assess Winter Habitat Associations of Seabirds in Subarctic Coastal Alaska. NORTHWEST SCIENCE 2015. [DOI: 10.3955/046.089.0203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Baskett ML, Fabina NS, Gross K. Response diversity can increase ecological resilience to disturbance in coral reefs. Am Nat 2014; 184:E16-31. [PMID: 25058289 DOI: 10.1086/676643] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Community-level resilience depends on the interaction between multiple populations that vary in individual responses to disturbance. For example, in tropical reefs, some corals can survive higher stress (resistance) while others exhibit faster recovery (engineering resilience) following disturbances such as thermal stress. While each type will negatively affect the other through competition, each might also benefit the other by reducing the potential for an additional competitor such as macroalgae to invade after a disturbance. To determine how community composition affects ecological resilience, we modeled coral-macroalgae interactions given either a resistant coral, a resilient coral, or both together. Having both coral types (i.e., response diversity) can lead to observable enhanced ecological resilience if (1) the resilient coral is not a superior competitor and (2) disturbance levels are high enough such that the resilient coral would collapse when considered alone. This enhanced resilience occurs through competitor-enabled rescue where each coral increases the potential for the other to recover from disturbance through external recruitment, such that both corals benefit from the presence of each other in terms of total cover and resilience. Therefore, conservation management aimed at protecting resilience under global change requires consideration of both diversity and connectivity between sites experiencing differential disturbance.
Collapse
Affiliation(s)
- Marissa L Baskett
- Department of Environmental Science and Policy, University of California, Davis, California 95616
| | | | | |
Collapse
|
13
|
Goyert HF, Manne LL, Veit RR. Facilitative interactions among the pelagic community of temperate migratory terns, tunas and dolphins. OIKOS 2014. [DOI: 10.1111/oik.00814] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Holly F. Goyert
- Dept of Biology, Subprogram in Ecology, Evolutionary Biology and Behavior; The Graduate Center, City Univ. of New York; 365 Fifth Avenue New York NY 10016
- College of Staten Island, CUNY; 6S-143, 2800 Victory Boulevard Staten Island NY 10314 USA
| | - Lisa L. Manne
- Dept of Biology, Subprogram in Ecology, Evolutionary Biology and Behavior; The Graduate Center, City Univ. of New York; 365 Fifth Avenue New York NY 10016
- College of Staten Island, CUNY; 6S-143, 2800 Victory Boulevard Staten Island NY 10314 USA
| | - Richard R. Veit
- Dept of Biology, Subprogram in Ecology, Evolutionary Biology and Behavior; The Graduate Center, City Univ. of New York; 365 Fifth Avenue New York NY 10016
- College of Staten Island, CUNY; 6S-143, 2800 Victory Boulevard Staten Island NY 10314 USA
| |
Collapse
|
14
|
Wintering habitat model for the North Atlantic Right Whale (Eubalaena glacialis) in the southeastern United States. PLoS One 2014; 9:e95126. [PMID: 24740091 PMCID: PMC3989274 DOI: 10.1371/journal.pone.0095126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 03/24/2014] [Indexed: 11/19/2022] Open
Abstract
The coastal waters off the southeastern United States (SEUS) are a primary wintering ground for the endangered North Atlantic right whale (Eubalaena glacialis), used by calving females along with other adult and juvenile whales. Management actions implemented in this area for the recovery of the right whale population rely on accurate habitat characterization and the ability to predict whale distribution over time. We developed a temporally dynamic habitat model to predict wintering right whale distribution in the SEUS using a generalized additive model framework and aerial survey data from 2003/2004 through 2012/2013. We built upon previous habitat models for right whales in the SEUS and include data from new aerial surveys that extend the spatial coverage of the analysis, particularly in the northern portion of this wintering ground. We summarized whale sightings, survey effort corrected for probability of whale detection, and environmental data at a semimonthly resolution. Consistent with previous studies, sea surface temperature (SST), water depth, and survey year were significant predictors of right whale relative abundance. Additionally, distance to shore, distance to the 22°C SST isotherm, and an interaction between time of year and latitude (to account for the latitudinal migration of whales) were also selected in the analysis presented here. Predictions from the model revealed that the location of preferred habitat differs within and between years in correspondence with variation in environmental conditions. Although cow-calf pairs were rarely sighted in the company of other whales, there was minimal evidence that the preferred habitat of cow-calf pairs was different than that of whale groups without calves at the scale of this study. The results of this updated habitat model can be used to inform management decisions for a migratory species in a dynamic oceanic environment.
Collapse
|
15
|
Robinson JPW, Dornelas M, Ojanguren AF. Interspecific synchrony of seabird population growth rate and breeding success. Ecol Evol 2013; 3:2013-9. [PMID: 23919147 PMCID: PMC3728942 DOI: 10.1002/ece3.592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 12/05/2022] Open
Abstract
Environmental variability can destabilize communities by causing correlated interspecific fluctuations that weaken the portfolio effect, yet evidence of such a mechanism is rare in natural systems. Here, we ask whether the population dynamics of similar sympatric species of a seabird breeding community are synchronized, and if these species have similar exceptional responses to environmental variation. We used a 24-year time series of the breeding success and population growth rate of a marine top predator species group to assess the degree of synchrony between species demography. We then developed a novel method to examine the species group – all species combined – response to environmental variability, in particular, whether multiple species experience similar, pronounced fluctuations in their demography. Multiple species were positively correlated in breeding success and growth rate. Evidence of “exceptional” years was found, where the species group experienced pronounced fluctuations in their demography. The synchronous response of the species group was negatively correlated with winter sea surface temperature of the preceding year for both growth rate and breeding success. We present evidence for synchronous, exceptional responses of a species group that are driven by environmental variation. Such species covariation destabilizes communities by reducing the portfolio effect, and such exceptional responses may increase the risk of a state change in this community. Our understanding of the future responses to environmental change requires an increased focus on the short-term fluctuations in demography that are driven by extreme environmental variability.
Collapse
Affiliation(s)
- James P W Robinson
- Department of Biology, University of Victoria Victoria, British Columbia, Canada ; Centre for Biological Diversity, Scottish Oceans Institute, University of St Andrews St Andrews, Fife, U.K
| | | | | |
Collapse
|
16
|
Fauchald P, Skov H, Skern-Mauritzen M, Johns D, Tveraa T. Wasp-waist interactions in the North Sea ecosystem. PLoS One 2011; 6:e22729. [PMID: 21829494 PMCID: PMC3145753 DOI: 10.1371/journal.pone.0022729] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 06/29/2011] [Indexed: 11/28/2022] Open
Abstract
Background In a “wasp-waist” ecosystem, an intermediate trophic level is expected to control the abundance of predators through a bottom-up interaction and the abundance of prey through a top-down interaction. Previous studies suggest that the North Sea is mainly governed by bottom-up interactions driven by climate perturbations. However, few studies have investigated the importance of the intermediate trophic level occupied by small pelagic fishes. Methodology/Principal Findings We investigated the numeric interactions among 10 species of seabirds, two species of pelagic fish and four groups of zooplankton in the North Sea using decadal-scale databases. Linear models were used to relate the time series of zooplankton and seabirds to the time series of pelagic fish. Seabirds were positively related to herring (Clupea harengus), suggesting a bottom-up interaction. Two groups of zooplankton; Calanus helgolandicus and krill were negatively related to sprat (Sprattus sprattus) and herring respectively, suggesting top-down interactions. In addition, we found positive relationships among the zooplankton groups. Para/pseudocalanus was positively related to C. helgolandicus and C. finmarchicus was positively related to krill. Conclusion/Significance Our results indicate that herring was important in regulating the abundance of seabirds through a bottom-up interaction and that herring and sprat were important in regulating zooplankton through top-down interactions. We suggest that the positive relationships among zooplankton groups were due to selective foraging and switching in the two clupeid fishes. Our results suggest that “wasp-waist” interactions might be more important in the North Sea than previously anticipated. Fluctuations in the populations of pelagic fish due to harvesting and depletion of their predators might accordingly have profound consequences for ecosystem dynamics through trophic cascades.
Collapse
Affiliation(s)
- Per Fauchald
- Department of Arctic Ecology, Norwegian Institute for Nature Research (NINA), Fram Centre, Tromsø, Norway.
| | | | | | | | | |
Collapse
|