1
|
Schomaker RA, Dudycha JL. De novo transcriptome assembly of the green alga Ankistrodesmus falcatus. PLoS One 2021; 16:e0251668. [PMID: 33989339 PMCID: PMC8121315 DOI: 10.1371/journal.pone.0251668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Ankistrodesmus falcatus is a globally distributed freshwater chlorophyte that is a candidate for biofuel production, is used to study the effects of toxins on aquatic communities, and is used as food in zooplankton research. Each of these research fields is transitioning to genomic tools. We created a reference transcriptome for of A. falcatus using NextGen sequencing and de novo assembly methods including Trinity, Velvet-Oases, and EvidentialGene. The assembled transcriptome has a total of 17,997 contigs, an N50 value of 2,462, and a GC content of 64.8%. BUSCO analysis recovered 83.3% of total chlorophyte BUSCOs and 82.5% of the eukaryotic BUSCOs. A portion (7.9%) of these supposedly single-copy genes were found to have transcriptionally active, distinct duplicates. We annotated the assembly using the dammit annotation pipeline, resulting in putative functional annotation for 68.89% of the assembly. Using available rbcL sequences from 16 strains (10 species) of Ankistrodesmus, we constructed a neighbor-joining phylogeny to illustrate genetic distances of our A. falcatus strain to other members of the genus. This assembly will be valuable for researchers seeking to identify Ankistrodesmus sequences in metatranscriptomic and metagenomic field studies and in experiments where separating expression responses of zooplankton and their algal food sources through bioinformatics is important.
Collapse
Affiliation(s)
- Rachel A Schomaker
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States of America
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
2
|
Karakoç C, Clark AT, Chatzinotas A. Diversity and coexistence are influenced by time-dependent species interactions in a predator-prey system. Ecol Lett 2020; 23:983-993. [PMID: 32243074 DOI: 10.1111/ele.13500] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/08/2019] [Accepted: 02/23/2020] [Indexed: 12/17/2022]
Abstract
Although numerous studies show that communities are jointly influenced by predation and competitive interactions, few have resolved how temporal variability in these interactions influences community assembly and stability. Here, we addressed this challenge in experimental microbial microcosms by employing empirical dynamic modelling tools to: (1) detect causal interactions between prey species in the absence and presence of a predator; (2) quantify the time-varying strength of these interactions and (3) explore stability in the resulting communities. Our findings show that predators boost the number of causal interactions among community members, and lead to reduced dynamic stability, but higher coexistence among prey species. These results correspond to time-varying changes in species interactions, including emergence of morphological characteristics that appeared to reduce predation, and indirectly facilitate growth of predator-susceptible species. Jointly, our findings suggest that careful consideration of both context and time may be necessary to predict and explain outcomes in multi-trophic systems.
Collapse
Affiliation(s)
- Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Adam Thomas Clark
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,Synthesis Centre for Biodiversity Sciences (sDiv), Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Institute of Biology, Leipzig University, Talstrasse 33, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Christensen EM, Simpson GL, Ernest SKM. Established rodent community delays recovery of dominant competitor following experimental disturbance. Proc Biol Sci 2019; 286:20192269. [PMID: 31822258 PMCID: PMC6939914 DOI: 10.1098/rspb.2019.2269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/13/2019] [Indexed: 12/04/2022] Open
Abstract
Human activities alter processes that control local biodiversity, causing changes in the abundance and identity of species in ecosystems. However, restoring biodiversity to a previous state is rarely as simple as reintroducing lost species or restoring processes to their pre-disturbance state. Theory suggests that established species can impede shifts in species composition via a variety of mechanisms, including direct interference, pre-empting resources or habitat alteration. These mechanisms can create transitory dynamics that delay convergence to an expected end state. We use an experimental manipulation of a desert rodent community to examine differences in recolonization dynamics of a dominant competitor (kangaroo rats of the genus Dipodomys) when patches were already occupied by an existing rodent community relative to when patches were empty. Recovery of kangaroo rat populations was slow on plots with an established community, taking approximately 2 years, in contrast with rapid recovery on empty plots with no established residents (approx. three months). These results demonstrate that the presence of an established alternate community inhibits recolonization by new species, even those that should be dominant in the community. This has important implications for understanding how biodiversity may change in the future, and what processes may slow or prevent this change.
Collapse
Affiliation(s)
- Erica M. Christensen
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL 32611, USA
- New Mexico State University, Jornada Experimental Range, Wooton Hall, 2995 Knox Street, Las Cruces, NM 88003, USA
| | - Gavin L. Simpson
- Institute of Environmental Change and Society, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, CanadaS4S 0A2
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, CanadaS4S 0A2
| | - S. K. Morgan Ernest
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Interactions between predation and disturbances shape prey communities. Sci Rep 2018; 8:2968. [PMID: 29445181 PMCID: PMC5813231 DOI: 10.1038/s41598-018-21219-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/25/2018] [Indexed: 11/17/2022] Open
Abstract
Ecological disturbances are important drivers of biodiversity patterns. Many biodiversity studies rely on endpoint measurements instead of following the dynamics that lead to those outcomes and testing ecological drivers individually, often considering only a single trophic level. Manipulating multiple factors (biotic and abiotic) in controlled settings and measuring multiple descriptors of multi-trophic communities could enlighten our understanding of the context dependency of ecological disturbances. Using model microbial communities, we experimentally tested the effects of imposed disturbances (i.e. increased dilution simulating density-independent mortality as press or pulse disturbances coupled with resource deprivation) on bacterial abundance, diversity and community structure in the absence or presence of a protist predator. We monitored the communities immediately before and after imposing the disturbance and four days after resuming the pre-disturbance dilution regime to infer resistance and recovery properties. The results highlight that bacterial abundance, diversity and community composition were more affected by predation than by disturbance type, resource loss or the interaction of these factors. Predator abundance was strongly affected by the type of disturbance imposed, causing temporary relief of predation pressure. Importantly, prey community composition differed significantly at different phases, emphasizing that endpoint measurements are insufficient for understanding the recovery of communities.
Collapse
|
5
|
Theory does not meet experiment: transient dynamics changes patterns of exclusion in an intraguild predation system. POPUL ECOL 2017. [DOI: 10.1007/s10144-017-0602-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Karakoç C, Singer A, Johst K, Harms H, Chatzinotas A. Transient recovery dynamics of a predator-prey system under press and pulse disturbances. BMC Ecol 2017; 17:13. [PMID: 28376784 PMCID: PMC5381073 DOI: 10.1186/s12898-017-0123-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 03/17/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Species recovery after disturbances depends on the strength and duration of disturbance, on the species traits and on the biotic interactions with other species. In order to understand these complex relationships, it is essential to understand mechanistically the transient dynamics of interacting species during and after disturbances. We combined microcosm experiments with simulation modelling and studied the transient recovery dynamics of a simple microbial food web under pulse and press disturbances and under different predator couplings to an alternative resource. RESULTS Our results reveal that although the disturbances affected predator and prey populations by the same mortality, predator populations suffered for a longer time. The resulting diminished predation stress caused a temporary phase of high prey population sizes (i.e. prey release) during and even after disturbances. Increasing duration and strength of disturbances significantly slowed down the recovery time of the predator prolonging the phase of prey release. However, the additional coupling of the predator to an alternative resource allowed the predator to recover faster after the disturbances thus shortening the phase of prey release. CONCLUSIONS Our findings are not limited to the studied system and can be used to understand the dynamic response and recovery potential of many natural predator-prey or host-pathogen systems. They can be applied, for instance, in epidemiological and conservational contexts to regulate prey release or to avoid extinction risk of the top trophic levels under different types of disturbances.
Collapse
Affiliation(s)
- Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Alexander Singer
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, P.O. Box 7007, 75007 Uppsala, Sweden
| | - Karin Johst
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Zooplankton community influence on seasonal performance and microalgal dominance in wastewater treatment High Rate Algal Ponds. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Yamamichi M, Yoshida T, Sasaki A. Timing and propagule size of invasion determine its success by a time-varying threshold of demographic regime shift. Ecology 2014; 95:2303-15. [DOI: 10.1890/13-1527.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Abstract
Heterogeneity among prey in their susceptibility to predation is a potentially important stabilizer of predator-prey interactions, reducing the magnitude of population oscillations and enhancing total prey population abundance. When microevolutionary responses of prey populations occur at time scales comparable to population dynamics, adaptive responses in prey defense can, in theory, stabilize predator-prey dynamics and reduce top-down effects on prey abundance. While experiments have tested these predictions, less explored are the consequences of the evolution of prey phenotypes that can persist in both vulnerable and invulnerable classes. We tested this experimentally using a laboratory aquatic system composed of the rotifer
Brachionus calyciflorus as a predator and the prey
Synura petersenii, a colony-forming alga that exhibits genetic variation in its propensity to form colonies and colony size (larger colonies are a defense against predators). Prey populations of either low initial genetic diversity and low adaptive capacity or high initial genetic diversity and high adaptive capacity were crossed with predator presence and absence. Dynamics measured over the last 127 days of the 167-day experiment revealed no effects of initial prey genetic diversity on the average abundance or temporal variability of predator populations. However, genetic diversity and predator presence/absence interactively affected prey population abundance and stability; diversity of prey had no effects in the absence of predators but stabilized dynamics and increased total prey abundance in the presence of predators. The size structure of the genetically diverse prey populations diverged from single strain populations in the presence of predators, showing increases in colony size and in the relative abundance of cells found in colonies. Our work sheds light on the adaptive value of colony formation and supports the general view that genetic diversity and intraspecific trait variation of prey can play a vital role in the short-term dynamics and stability of planktonic predator-prey systems.
Collapse
Affiliation(s)
| | - Jordan Masse
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|