1
|
Orihuela-Torres A, Morales-Reyes Z, Hermoso V, Picazo F, Sánchez Fernández D, Pérez-García JM, Botella F, Sánchez-Zapata JA, Sebastián-González E. Carrion ecology in inland aquatic ecosystems: a systematic review. Biol Rev Camb Philos Soc 2024; 99:1425-1443. [PMID: 38509722 DOI: 10.1111/brv.13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Carrion ecology, i.e. the decomposition and recycling of dead animals, has traditionally been neglected as a key process in ecosystem functioning. Similarly, despite the large threats that inland aquatic ecosystems (hereafter, aquatic ecosystems) face, the scientific literature is still largely biased towards terrestrial ecosystems. However, there has been an increasing number of studies on carrion ecology in aquatic ecosystems in the last two decades, highlighting their key role in nutrient recirculation and disease control. Thus, a global assessment of the ecological role of scavengers and carrion in aquatic ecosystems is timely. Here, we systematically reviewed scientific articles on carrion ecology in aquatic ecosystems to describe current knowledge, identify research gaps, and promote future studies that will deepen our understanding in this field. We found 206 relevant studies, which were highly biased towards North America, especially in lotic ecosystems, covering short time periods, and overlooking seasonality, a crucial factor in scavenging dynamics. Despite the low number of studies on scavenger assemblages, we recorded 55 orders of invertebrates from 179 families, with Diptera and Coleoptera being the most frequent orders. For vertebrates, we recorded 114 species from 40 families, with birds and mammals being the most common. Our results emphasise the significance of scavengers in stabilising food webs and facilitating nutrient cycling within aquatic ecosystems. Studies were strongly biased towards the assessment of the ecosystem effects of carrion, particularly of salmon carcasses in North America. The second most common research topic was the foraging ecology of vertebrates, which was mostly evaluated through sporadic observations of carrion in the diet. Articles assessing scavenger assemblages were scarce, and only a limited number of these studies evaluated carrion consumption patterns, which serve as a proxy for the role of scavengers in the ecosystem. The ecological functions performed by carrion and scavengers in aquatic ecosystems were diverse. The main ecological functions were carrion as food source and the role of scavengers in nutrient cycling, which appeared in 52.4% (N = 108) and 46.1% (N = 95) of publications, respectively. Ecosystem threats associated with carrion ecology were also identified, the most common being water eutrophication and carrion as source of pathogens (2.4%; N = 5 each). Regarding the effects of carrion on ecosystems, we found studies spanning all ecosystem components (N = 85), from soil or the water column to terrestrial vertebrates, with a particular focus on aquatic invertebrates and fish. Most of these articles found positive effects of carrion on ecosystems (e.g. higher species richness, abundance or fitness; 84.7%; N = 72), while a minority found negative effects, changes in community composition, or even no effects. Enhancing our understanding of scavengers and carrion in aquatic ecosystems is crucial to assessing their current and future roles amidst global change, mainly for water-land nutrient transport, due to changes in the amount and speed of nutrient movement, and for disease control and impact mitigation, due to the predicted increase in occurrence and magnitude of mortality events in aquatic ecosystems.
Collapse
Affiliation(s)
- Adrian Orihuela-Torres
- Department of Ecology, University of Alicante, Ctra. San Vicente del Raspeig s/n, Alicante, 03690, Spain
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel km 3.2, Orihuela, 03312, Spain
| | - Zebensui Morales-Reyes
- Instituto de Estudios Sociales Avanzados (IESA), CSIC, Campo Santo de los Mártires, 7, Córdoba, 14004, Spain
| | - Virgilio Hermoso
- Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD) - CSIC, Américo Vespucio 26, Sevilla, 41092, Spain
| | - Félix Picazo
- Department of Ecology/Research Unit Modeling Nature (MNat), University of Granada, Faculty of Sciences, Campus Fuentenueva s/n, Granada, 18071, Spain
- Water Institute (IdA), University of Granada, Ramón y Cajal 4, Granada, 18003, Spain
| | - David Sánchez Fernández
- Department of Ecology and Hidrology, University of Murcia, Campus de Espinardo, Murcia, 30100, Spain
| | - Juan M Pérez-García
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel km 3.2, Orihuela, 03312, Spain
| | - Francisco Botella
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel km 3.2, Orihuela, 03312, Spain
| | - José A Sánchez-Zapata
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel km 3.2, Orihuela, 03312, Spain
| | - Esther Sebastián-González
- Department of Ecology, University of Alicante, Ctra. San Vicente del Raspeig s/n, Alicante, 03690, Spain
| |
Collapse
|
2
|
Sura SA, Gehris CG, Liang MY, Lim AN, Fong P. Press versus pulse nutrient supply and species interactions mediate growth of coral reef macroalgae. OIKOS 2023. [DOI: 10.1111/oik.09716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shayna A. Sura
- Univ. of California Los Angeles, Dept of Ecology and Evolutionary Biology Los Angeles CA USA
- Dauphin Island Sea Lab Dauphin Island AL USA
| | - Connor G. Gehris
- Univ. of California Los Angeles, Dept of Ecology and Evolutionary Biology Los Angeles CA USA
| | - Michelle Y. Liang
- Univ. of California Los Angeles, Dept of Ecology and Evolutionary Biology Los Angeles CA USA
| | - Alexandra N. Lim
- Univ. of California Los Angeles, Dept of Ecology and Evolutionary Biology Los Angeles CA USA
| | - Peggy Fong
- Univ. of California Los Angeles, Dept of Ecology and Evolutionary Biology Los Angeles CA USA
| |
Collapse
|
3
|
Poulin B, Lefebvre G, Hilaire S, Després L. Long-term persistence and recycling of Bacillus thuringiensis israelensis spores in wetlands sprayed for mosquito control. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114004. [PMID: 36007317 DOI: 10.1016/j.ecoenv.2022.114004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Bacillus thuringiensis subsp. israelensis (Bti) is the main larvicide used to control mosquitoes worldwide. Although there is accumulating evidence of Bti having environmental effects on non-target fauna, relatively few field studies have documented the fate of Bti spores in the environment. Spore density was quantified over a 6-yr period (2012-2017) in Mediterranean marshes sprayed with Vectobac 12AS (32 ITU/ha) since 2006 to reduce the nuisance caused by Aedes caspius. Bti spores were naturally found in all habitat types. Spore density expressed as colony-forming units per gram of soil (CFU g-1) increased significantly at treated sites by a factor of 22 to 500 times relative to control sites, with mean values of 7730 CFU g-1 in halophilous scrubs, 38,000 in reed beds, 49,000 in bulrush beds and 50 000 in rush beds. Spore density varied little in the first months after the spraying season (April-October), but increased sharply in spring, just before the annual launch of mosquito control. Considering that Bti is an insect pathogen that cannot proliferate without a suitable insect host, this unexpected recrudescence in spring could be related to the warming of water that triggers activity and development of benthic organisms such as chironomids, which may contribute to Bti proliferation by ingesting accumulated spores at the surface of sediments. While spore density tends to decrease over time, presumably during the summer period as a result of increased UV exposure, three to four years were necessary for spore density to return to normal levels after mosquito-control interruption. This study is important because it demonstrates that environmental effects of mosquito-control using Bti can far exceed the short period of Bti efficacy against lentic mosquitoes. Considering that Bti is a microbial agent, these long-term effects should be addressed at multiple levels of ecosystem organization from a one-health perspective.
Collapse
Affiliation(s)
- Brigitte Poulin
- Tour duValat Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, 13200 Arles, France.
| | - Gaëtan Lefebvre
- Tour duValat Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, 13200 Arles, France.
| | - Samuel Hilaire
- Tour duValat Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, 13200 Arles, France.
| | - Laurence Després
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, Laboratoire d'Ecologie Alpine, 38000 Grenoble, France.
| |
Collapse
|
4
|
Orihuela‐Torres A, Pérez‐García JM, Sánchez‐Zapata JA, Botella F, Sebastián‐González E. Scavenger guild and consumption patterns of an invasive alien fish species in a Mediterranean wetland. Ecol Evol 2022; 12:e9133. [PMID: 35923937 PMCID: PMC9339756 DOI: 10.1002/ece3.9133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Invasive Alien Species (IAS) alter ecosystems, disrupting ecological processes and driving the loss of ecosystem services. The common carp Cyprinus carpio is a hazardous and widespread IAS, becoming the most abundant species in many aquatic ecosystems. This species transforms ecosystems by accumulating biomass to the detriment of other species, thus altering food webs. However, some terrestrial species, such as vertebrate scavengers, may benefit from dead carps, by incorporating part of the carp biomass into the terrestrial environment. This study describes the terrestrial vertebrate scavenger assemblage that benefits from carp carcasses in a Mediterranean wetland. We also evaluate the seasonal differences in the scavenger assemblage composition and carrion consumption patterns. Eighty carp carcasses (20 per season) were placed in El Hondo Natural Park, a seminatural mesohaline wetland in south-eastern Spain, and we monitored their consumption using camera traps. We recorded 14 scavenger species (10 birds and four mammals) consuming carp carcasses, including globally threatened species. Vertebrates consumed 73% of the carrion biomass and appeared consuming at 82% of the carcasses. Of these carcasses consumed, 75% were completely consumed and the mean consumption time of carcasses completely consumed by vertebrates was 44.4 h (SD = 42.1 h). We recorded differences in species richness, abundance, and assemblage composition among seasons, but we did not find seasonal differences in consumption patterns throughout the year. Our study recorded a rich and efficient terrestrial vertebrate scavenger assemblage benefitting from carp carcasses. We detected a seasonal replacement on the scavenger species, but a maintenance of the ecological function of carrion removal, as the most efficient carrion consumers were present throughout the year. The results highlight the importance of vertebrate scavengers in wetlands, removing possible infectious focus, and moving nutrients between aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Adrian Orihuela‐Torres
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO‐UMH)Miguel Hernández UniversityOrihuelaSpain
- Department of EcologyAlicante UniversityAlicanteSpain
| | - Juan Manuel Pérez‐García
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO‐UMH)Miguel Hernández UniversityOrihuelaSpain
| | - José Antonio Sánchez‐Zapata
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO‐UMH)Miguel Hernández UniversityOrihuelaSpain
| | - Francisco Botella
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO‐UMH)Miguel Hernández UniversityOrihuelaSpain
| | | |
Collapse
|
5
|
Potapov AM, Beaulieu F, Birkhofer K, Bluhm SL, Degtyarev MI, Devetter M, Goncharov AA, Gongalsky KB, Klarner B, Korobushkin DI, Liebke DF, Maraun M, Mc Donnell RJ, Pollierer MM, Schaefer I, Shrubovych J, Semenyuk II, Sendra A, Tuma J, Tůmová M, Vassilieva AB, Chen T, Geisen S, Schmidt O, Tiunov AV, Scheu S. Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates. Biol Rev Camb Philos Soc 2022; 97:1057-1117. [DOI: 10.1111/brv.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Anton M. Potapov
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Frédéric Beaulieu
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri‐Food Canada Ottawa ON K1A 0C6 Canada
| | - Klaus Birkhofer
- Department of Ecology Brandenburg University of Technology Karl‐Wachsmann‐Allee 6 03046 Cottbus Germany
| | - Sarah L. Bluhm
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Maxim I. Degtyarev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anton A. Goncharov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Konstantin B. Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Bernhard Klarner
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Daniil I. Korobushkin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Dana F. Liebke
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Mark Maraun
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Rory J. Mc Donnell
- Department of Crop and Soil Science Oregon State University Corvallis OR 97331 U.S.A
| | - Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Ina Schaefer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Julia Shrubovych
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Institute of Systematics and Evolution of Animals PAS Slawkowska 17 Pl 31‐016 Krakow Poland
- State Museum Natural History of NAS of Ukraine Teatralna 18 79008 Lviv Ukraine
| | - Irina I. Semenyuk
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
- Joint Russian‐Vietnamese Tropical Center №3 Street 3 Thang 2, Q10 Ho Chi Minh City Vietnam
| | - Alberto Sendra
- Colecciones Entomológicas Torres‐Sala, Servei de Patrimoni Històric, Ajuntament de València València Spain
- Departament de Didàctica de les Cièncias Experimentals i Socials, Facultat de Magisteri Universitat de València València Spain
| | - Jiri Tuma
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Biology Centre CAS, Institute of Entomology Branisovska 1160/31 370 05 Ceske Budejovice Czech Republic
| | - Michala Tůmová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anna B. Vassilieva
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Ting‐Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Stefan Geisen
- Department of Nematology Wageningen University & Research 6700ES Wageningen The Netherlands
| | - Olaf Schmidt
- UCD School of Agriculture and Food Science University College Dublin Belfield Dublin 4 Ireland
| | - Alexei V. Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use Büsgenweg 1 37077 Göttingen Germany
| |
Collapse
|
6
|
O’Gorman EJ, Chemshirova I, McLaughlin ÓB, Stewart RIA. Impacts of Warming on Reciprocal Subsidies Between Aquatic and Terrestrial Ecosystems. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.795603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cross-ecosystem subsidies are important as their recipients often rely on them to supplement in situ resource availability. Global warming has the potential to alter the quality and quantity of these subsidies, but our knowledge of these effects is currently limited. Here, we quantified the biomass and diversity of the invertebrates exchanged between freshwater streams and terrestrial grasslands in a natural warming experiment in Iceland. We sampled invertebrates emerging from the streams, those landing on the water surface, ground-dwelling invertebrates falling into the streams, and those drifting through the streams. Emerging invertebrate biomass or diversity did not change with increasing temperature, suggesting no effect of warming on aquatic subsidies to the terrestrial environment over the 1-month duration of the study. The biomass and diversity of aerial invertebrates of terrestrial origin landing on the streams increased with temperature, underpinned by increasing abundance and species richness, indicating that the greater productivity of the warmer streams may attract more foraging insects. The biomass of ground-dwelling invertebrates falling into the streams also increased with temperature, underpinned by increasing body mass and species evenness, suggesting that soil warming leads to terrestrial communities dominated by larger, more mobile organisms, and thus more in-fall to the streams. The biomass and diversity of terrestrial invertebrates in the drift decreased with temperature, however, underpinned by decreasing abundance and species richness, reflecting upstream consumption due to the higher energetic demands of aquatic consumers in warmer environments. These results highlight the potential for asynchronous responses to warming for reciprocal subsidies between aquatic and terrestrial environments and the importance of further research on warming impacts at the interface of these interdependent ecosystems.
Collapse
|
7
|
McCary MA, Kasprzak MD, Botsch JC, Hoekman D, Jackson RD, Gratton C. Aquatic insect subsidies influence microbial composition and processing of detritus in near‐shore subarctic heathland. OIKOS 2021. [DOI: 10.1111/oik.08032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Madeline D. Kasprzak
- Dept of Entomology, Univ. of Wisconsin‐Madison Madison WI USA
- Student Activity Center, Univ. of Wisconsin‐Madison Madison WI USA
| | | | - David Hoekman
- Dept of Entomology, Univ. of Wisconsin‐Madison Madison WI USA
- Dept of Biology, Redeemer Univ. Ancaster ON Canada
| | | | - Claudio Gratton
- Dept of Entomology, Univ. of Wisconsin‐Madison Madison WI USA
- Dept of Integrative Biology, Univ. of Wisconsin‐Madison Madison WI USA
| |
Collapse
|
8
|
McCary MA, Jackson RD, Gratton C. Vegetation structure modulates ecosystem and community responses to spatial subsidies. Ecosphere 2021. [DOI: 10.1002/ecs2.3483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Matthew A. McCary
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin53706USA
| | - Randall D. Jackson
- Department of Agronomy University of Wisconsin‐Madison Madison Wisconsin53706USA
| | - Claudio Gratton
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin53706USA
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin53706USA
| |
Collapse
|
9
|
Vaikre M, Remm L, Rannap R. Forest ditch maintenance impoverishes the fauna of aquatic invertebrates: Opportunities for mitigation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111188. [PMID: 32814214 DOI: 10.1016/j.jenvman.2020.111188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
One of the main factors causing biodiversity loss in wetlands is drainage, nevertheless, even drained areas may provide habitat for aquatic fauna in the form of drainage ditches. Assemblages in ditches are regularly disturbed by ditch maintenance, but the extent of these disturbances and mitigation possibilities are poorly documented. We conducted an experimental study in three commercially managed forest plots in eastern Estonia, aiming to find out how ditch network maintenance (DNM) affects the diversity and assemblages of aquatic macroinvertebrates in ditches and remnant pools, and whether this effect can be alleviated by constructing mitigation waterbodies. For comparison we also collected data from natural pools in three undrained forest plots. Before DNM, ditches supported greater number of higher taxa compared to remnant and natural pools and more strictly aquatic taxa, whereas natural pools in undrained plots supported more Trichoptera shredders. After DNM, the diversity in remnant pools decreased. Moreover, majority of the pools dried out, which resulted in further reduction of the richness and abundance of macroinvertebrates. In ditches the diversity dropped immediately after DNM, but recovered in two to three years. Nevertheless, plot-scale richness and abundance did not completely recover. Assemblage shift in ditches took place right after DNM and remained distinct after the four year survey period. Mitigation pools provided habitat for several taxa (especially Odonata) uncommon in other waterbodies in drained and undrained plots. Our results show that DNM in forests substantially impoverishes habitat availability and reduces the abundance and diversity of aquatic macroinvertebrates. We recommend retaining uncleaned sections in ditches and constructing mitigation pools as tools for supporting wetland biodiversity in drained forests.
Collapse
Affiliation(s)
- Maarja Vaikre
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, EE-51014, Tartu, Estonia.
| | - Liina Remm
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, EE-51014, Tartu, Estonia
| | - Riinu Rannap
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, EE-51014, Tartu, Estonia
| |
Collapse
|
10
|
McCary MA, Phillips JS, Ramiadantsoa T, Nell LA, McCormick AR, Botsch JC. Transient top‐down and bottom‐up effects of resources pulsed to multiple trophic levels. Ecology 2020; 102:e03197. [DOI: 10.1002/ecy.3197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Matthew A. McCary
- Department of Entomology University of Wisconsin Madison Wisconsin53706USA
| | - Joseph S. Phillips
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| | - Tanjona Ramiadantsoa
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| | - Lucas A. Nell
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| | - Amanda R. McCormick
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| | - Jamieson C. Botsch
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| |
Collapse
|
11
|
Brühl CA, Després L, Frör O, Patil CD, Poulin B, Tetreau G, Allgeier S. Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp. israelensis (Bti). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:137800. [PMID: 32249002 DOI: 10.1016/j.scitotenv.2020.137800] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Bacillus thuringiensis subsp. israelensis (Bti) has been used in mosquito control programs to reduce nuisance in Europe for decades and is generally considered an environmentally-safe, effective and target-specific biocide. However, the use of Bti is not uncontroversial. Target mosquitoes and affected midges represent an important food source for many aquatic and terrestrial predators and reduction of their populations is likely to result in food-web effects at higher trophic levels. In the context of global biodiversity loss, this appears particularly critical since treated wetlands are often representing conservation areas. In this review, we address the current large-scale use of Bti for mosquito nuisance control in Europe, provide a description of its regulation followed by an overview of the available evidence on the parameters that are essential to evaluate Bti use in mosquito control. Bti accumulation and toxin persistence could result in a chronic expose of mosquito populations ultimately affecting their susceptibility, although observed increase in resistance to Bti in mosquito populations is low due to the four toxins involved. A careful independent monitoring of mosquito susceptibility, using sensitive bioassays, is mandatory to detect resistance development timely. Direct Bti effects were documented for non-target chironomids and other invertebrate groups and are discussed for amphibians. Field studies revealed contrasting results on possible impacts on chironomid abundances. Indirect, food-web effects were rarely studied in the environment. Depending on study design and duration, Bti effects on higher trophic levels were demonstrated or not. Further long-term field studies are needed, especially with observations of bird declines in Bti-treated wetland areas. Socio-economic relevance of mosquito control requires considering nuisance, vector-borne diseases and environmental effects jointly. Existing studies indicate that a majority of the population is concerned regarding potential environmental effects of Bti mosquito control and that they are willing to pay for alternative, more environment-friendly techniques.
Collapse
Affiliation(s)
- Carsten A Brühl
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, D-76829 Landau, Germany.
| | - Laurence Després
- Université Grenoble Alpes, CNRS, Laboratoire d'Ecologie Alpine, F-38000 Grenoble, France
| | - Oliver Frör
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, D-76829 Landau, Germany
| | - Chandrashekhar D Patil
- Centre of Island Research and Environmental Observatory, PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, F-66860 Perpignan, France
| | - Brigitte Poulin
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, F-13200 Arles, France
| | | | - Stefanie Allgeier
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, D-76829 Landau, Germany
| |
Collapse
|
12
|
Burpee BT, Saros JE. Cross-ecosystem nutrient subsidies in Arctic and alpine lakes: implications of global change for remote lakes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1166-1189. [PMID: 32159183 DOI: 10.1039/c9em00528e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Environmental change is continuing to affect the flow of nutrients, material and organisms across ecosystem boundaries. These cross-system flows are termed ecosystem subsidies. Here, we synthesize current knowledge of cross-ecosystem nutrient subsidies between remote lakes and their surrounding terrain, cryosphere, and atmosphere. Remote Arctic and alpine lakes are ideal systems to study the effects of cross ecosystem subsidies because (a) they are positioned in locations experiencing rapid environmental changes, (b) they are ecologically sensitive to even small subsidy changes, (c) they have easily defined ecosystem boundaries, and (d) a variety of standard methods exist that allow for quantification of lake subsidies and their impacts on ecological communities and ecosystem functions. We highlight similarities and differences between Arctic and alpine systems and identify current knowledge gaps to be addressed with future work. It is important to understand the dynamics of nutrient and material flows between lakes and their environments in order to improve our ability to predict ecosystem responses to continued environmental change.
Collapse
Affiliation(s)
- Benjamin T Burpee
- Climate Change Institute and School of Biology and Ecology, University of Maine, Orono, ME, USA.
| | | |
Collapse
|
13
|
Stoler AB, Relyea RA. Reviewing the role of plant litter inputs to forested wetland ecosystems: leafing through the literature. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aaron B. Stoler
- Department of Biological Sciences Darrin Fresh Water Institute Rensselaer Polytechnic Institute Troy New York 12180 USA
| | - Rick A. Relyea
- Department of Biological Sciences Darrin Fresh Water Institute Rensselaer Polytechnic Institute Troy New York 12180 USA
| |
Collapse
|
14
|
Collins SF, Baxter CV, Marcarelli AM, Felicetti L, Florin S, Wipfli MS, Servheen G. Reverberating effects of resource exchanges in stream–riparian food webs. Oecologia 2019; 192:179-189. [DOI: 10.1007/s00442-019-04574-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
|
15
|
Wesner JS, Swanson DL, Dixon MD, Soluk DA, Quist DJ, Yager LA, Warmbold JW, Oddy E, Seidel TC. Loss of Potential Aquatic-Terrestrial Subsidies Along the Missouri River Floodplain. Ecosystems 2019. [DOI: 10.1007/s10021-019-00391-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Miller TE, Buhler ML, Cuellar-Gempeler C. Species-specific differences determine responses to a resource pulse and predation. Oecologia 2019; 190:169-178. [PMID: 30941498 DOI: 10.1007/s00442-019-04393-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/25/2019] [Indexed: 11/30/2022]
Abstract
The effects of resource pulses on natural communities are known to vary with the type of pulse. However, less is known about mechanisms that determine the responses of different species to the same pulse. We hypothesized that these differences are related to the size of the species, as increasing size may be correlated with increasing competitive ability and decreasing tolerance to predation. A factorial experiment quantified the magnitude and timing of species' responses to a resource pulse using the aquatic communities found in the leaves of the carnivorous pitcher plant, Sarracenia purpurea. We added prey to leaves and followed the abundances of bacteria and bacterivores (protozoa and rotifers) in the presence and absence of a top predator, larvae of the mosquito Wyeomyia smithii. Resource pulses had significant positive effects on species abundances and diversity in this community; however, the magnitude and timing of responses varied among the bacterivore species and was not related to body size. Larger bacterivores were significantly suppressed by predators, while smaller bacterivores were not; predation also significantly reduced bacterivore species diversity. There were no interactions between the effects of the resource pulse and predation on protozoa abundances. Over 67 days, some species returned to pre-pulse abundances quickly, others did not or did so very slowly, resulting in new community states for extended periods of time. This study demonstrates that species-specific differences in responses to resource pulses and predation are complex and may not be related to simple life history trade-offs associated with size.
Collapse
Affiliation(s)
- Thomas E Miller
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| | - Maya L Buhler
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | | |
Collapse
|
17
|
Pulsed salmonfly emergence and its potential contribution to terrestrial detrital pools. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2018.e00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Hoekman D, McCary MA, Dreyer J, Gratton C. Reducing allochthonous resources in a subarctic grassland alters arthropod food webs via predator diet and density. Ecosphere 2019. [DOI: 10.1002/ecs2.2593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- David Hoekman
- Department of Entomology University of Wisconsin Madison Wisconsin 53706 USA
| | - Matthew A. McCary
- Department of Entomology University of Wisconsin Madison Wisconsin 53706 USA
| | - Jamin Dreyer
- Department of Integrative Biology University of Wisconsin Madison Wisconsin 53706 USA
| | - Claudio Gratton
- Department of Entomology University of Wisconsin Madison Wisconsin 53706 USA
- Department of Integrative Biology University of Wisconsin Madison Wisconsin 53706 USA
| |
Collapse
|
19
|
van den Top GG, Reynolds JD, Prins HHT, Mattsson J, Green DJ, Ydenberg RC. From salmon to salmonberry: The effects of salmon‐derived nutrients on the stomatal density of leaves of the nitriphilic shrub
Rubus spectabilis. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - John D. Reynolds
- Earth to Ocean Research Group, Department of Biological Sciences Simon Fraser University Burnaby BC Canada
| | - Herbert H. T. Prins
- Resource Ecology Group Wageningen University and Research Wageningen The Netherlands
| | - Jim Mattsson
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences Simon Fraser University Burnaby BC Canada
| | - David J. Green
- Centre for Wildlife Ecology, Department of Biological Sciences Simon Fraser University Burnaby BC Canada
| | - Ronald C. Ydenberg
- Resource Ecology Group Wageningen University and Research Wageningen The Netherlands
- Centre for Wildlife Ecology, Department of Biological Sciences Simon Fraser University Burnaby BC Canada
| |
Collapse
|
20
|
Trophic transfer from aquatic to terrestrial ecosystems: a test of the biogeochemical niche hypothesis. Ecosphere 2018. [DOI: 10.1002/ecs2.2338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
21
|
Main AR, Webb EB, Goyne KW, Mengel D. Neonicotinoid insecticides negatively affect performance measures of non-target terrestrial arthropods: a meta-analysis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1232-1244. [PMID: 29603486 DOI: 10.1002/eap.1723] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/20/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Neonicotinoid insecticides are currently the fastest-growing and most widely used insecticide class worldwide. Valued for their versatility in application, these insecticides may cause deleterious effects in a range of non-target (beneficial) arthropods. However, it remains unclear whether strong patterns exist in terms of their major effects, if broad measures of arthropod performance are negatively affected, or whether different functional groups are equally vulnerable. Here, we present a meta-analysis of 372 observations from 44 field and laboratory studies that describe neonicotinoid effects on 14 arthropod orders across five broad performance measures: abundance, behavior, condition, reproductive success, and survival. Across studies, neonicotinoids negatively affected all performance metrics evaluated; however, magnitude of the effects varied. Arthropod behavior and survival were the most negatively affected and abundance was the least negatively affected. Effects on arthropod functional groups were inconsistent. Pollinator condition, reproductive success, and survival were significantly lower in neonicotinoid treatments compared to untreated controls; whereas, neonicotinoid effects on detritivores were not significant. Although magnitude of arthropod response to neonicotinoids varied among performance measures and functional groups, we documented a consistent negative relationship between exposure to neonicotinoid insecticides in published studies and beneficial arthropod performance.
Collapse
Affiliation(s)
- Anson R Main
- School of Natural Resources, University of Missouri, Columbia, Missouri, 65211, USA
| | - Elisabeth B Webb
- School of Natural Resources, University of Missouri, Columbia, Missouri, 65211, USA
- U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, Columbia, Missouri, 65211, USA
| | - Keith W Goyne
- School of Natural Resources, University of Missouri, Columbia, Missouri, 65211, USA
| | - Doreen Mengel
- Resource Science Division, Missouri Department of Conservation, Columbia, Missouri, 65201, USA
| |
Collapse
|
22
|
Manfrin A, Lehmann D, van Grunsven RHA, Larsen S, Syväranta J, Wharton G, Voigt CC, Monaghan MT, Hölker F. Dietary changes in predators and scavengers in a nocturnally illuminated riparian ecosystem. OIKOS 2018. [DOI: 10.1111/oik.04696] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandro Manfrin
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB); Berlin Germany
- Umwelt-Campus Birkenfeld; Univ. of Applied Sciences Trier; Birkenfeld Germany
| | - David Lehmann
- Leibniz-Inst. for Zoo and Wildlife Research (IZW); Berlin Germany
- Dept of Biological and Environmental Sciences; Univ. of Stirling; Stirling UK
| | | | - Stefano Larsen
- German Center for Integrative Biodiversity Research (iDiv); Leipzig Germany
- Dept of Civil, Environmental and Mechanical Engineering; Univ. of Trento; Trento Italy
| | - Jari Syväranta
- Dept of Environmental and Biological Sciences; Univ. of Eastern Finland; Joensuu Finland
| | | | | | - Michael T. Monaghan
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB); Berlin Germany
| | - Franz Hölker
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB); Berlin Germany
| |
Collapse
|
23
|
Warmbold JW, Wesner JS. Predator foraging strategy mediates the effects of predators on local and emigrating prey. OIKOS 2017. [DOI: 10.1111/oik.04676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jerry W. Warmbold
- Dept of Biology; Univ. of South Dakota; 414 E. Clark Street Vermillion SD 57069 USA
- USDA, Natural Resources Conservation Services 2038 MN-1, Thief River; Falls MN 56701 USA
| | - Jeff S. Wesner
- Dept of Biology; Univ. of South Dakota; 414 E. Clark Street Vermillion SD 57069 USA
| |
Collapse
|
24
|
Gratton C, Hoekman D, Dreyer J, Jackson RD. Increased duration of aquatic resource pulse alters community and ecosystem responses in a subarctic plant community. Ecology 2017; 98:2860-2872. [DOI: 10.1002/ecy.1977] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/18/2017] [Accepted: 07/12/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Claudio Gratton
- Department of Entomology University of Wisconsin–Madison Madison Wisconsin 53706 USA
- Department of Zoology University of Wisconsin–Madison Madison Wisconsin 53706 USA
| | - David Hoekman
- Department of Entomology University of Wisconsin–Madison Madison Wisconsin 53706 USA
| | - Jamin Dreyer
- Department of Zoology University of Wisconsin–Madison Madison Wisconsin 53706 USA
| | - Randall D. Jackson
- Department of Agronomy University of Wisconsin–Madison Madison Wisconsin 53706 USA
| |
Collapse
|
25
|
Responses of orb-weaving spider aggregations to spatiotemporal variation in lake-to-land subsidies at Lake Mývatn, Iceland. Polar Biol 2017. [DOI: 10.1007/s00300-017-2202-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Lawrence KL, Wise DH. Long-term resource addition to a detrital food web yields a pattern of responses more complex than pervasive bottom-up control. PeerJ 2017; 5:e3572. [PMID: 28740752 PMCID: PMC5522720 DOI: 10.7717/peerj.3572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/22/2017] [Indexed: 11/20/2022] Open
Abstract
Background Theory predicts strong bottom-up control in detritus-based food webs, yet field experiments with detritus-based terrestrial systems have uncovered contradictory evidence regarding the strength and pervasiveness of bottom-up control processes. Two factors likely leading to contradictory results are experiment duration, which influences exposure to temporal variation in abiotic factors such as rainfall and affects the likelihood of detecting approach to a new equilibrium; and openness of the experimental units to immigration and emigration. To investigate the contribution of these two factors, we conducted a long-term experiment with open and fenced plots in the forest that was the site of an earlier, short-term experiment (3.5 months) with open plots (Chen & Wise, 1999) that produced evidence of strong bottom-up control for 14 taxonomic groupings of primary consumers of fungi and detritus (microbi-detritivores) and their predators. Methods We added artificial high-quality detritus to ten 2 × 2-m forest-floor plots at bi-weekly intervals from April through September in three consecutive years (Supplemented treatment). Ten comparable Ambient plots were controls. Half of the Supplemented and Ambient plots were enclosed by metal fencing. Results Arthropod community structure (based upon 18 response variables) diverged over time between Supplemented and Ambient treatments, with no effect of Fencing on the multivariate response pattern. Fencing possibly influenced only ca. 30% of the subsequent univariate analyses. Multi- and univariate analyses revealed bottom-up control during Year 1 of some, but not all, microbi-detritivores and predators. During the following two years the pattern of responses became more complex than that observed by Chen & Wise (1999). Some taxa showed consistent bottom-up control whereas others did not. Variation across years could not be explained completely by differences in rainfall because some taxa exhibited negative, not positive, responses to detrital supplementation. Discussion Our 3-year experiment did not confirm the conclusion of strong, pervasive bottom-up control of both microbi-detritivores and predators reported by Chen & Wise (1999). Our longer-term experiment revealed a more complex pattern of responses, a pattern much closer to the range of outcomes reported in the literature for many short-term experiments. Much of the variation in responses across studies likely reflects variation in abiotic and biotic factors and the quality of added detritus. Nevertheless, it is also possible that long-term resource enhancement can drive a community towards a new equilibrium state that differs from what would have been predicted from the initial short-term responses exhibited by primary and secondary consumers.
Collapse
Affiliation(s)
| | - David H Wise
- Department of Biological Sciences, and Institute for Environmental Science and Policy, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
27
|
Krowiak A, Herren CM, Webert KC, Einarsson Á, Hoekman D, Jackson RD, Ives AR. Resource Gradients and the Distribution and Flowering of Butterwort, a Carnivorous Plant. ANN ZOOL FENN 2017. [DOI: 10.5735/086.054.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alexander Krowiak
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
- University of Wisconsin-Madison, Department of Zoology, Madison, WI 53706, USA
| | - Cristina M. Herren
- University of Wisconsin-Madison, Department of Zoology, Madison, WI 53706, USA
- University of Wisconsin-Madison, Freshwater and Marine Science, Madison, WI 53706, USA
| | - Kyle C. Webert
- University of Wisconsin-Madison, Department of Zoology, Madison, WI 53706, USA
| | - Árni Einarsson
- Mývatn Research Station, Skutustadir, 660 Myvatn, Iceland
- University of Iceland, Faculty of Life and Environmental Sciences, 101 Reykjavík, Iceland
| | - David Hoekman
- Southern Nazarene University, Department of Biology, Bethany, OK 73008, USA
| | - Randall D. Jackson
- University of Wisconsin-Madison, Department of Agronomy, Madison, WI 53706, USA
| | - Anthony R. Ives
- University of Wisconsin-Madison, Department of Zoology, Madison, WI 53706, USA
| |
Collapse
|
28
|
Wesner JS, Walters DM, Schmidt TS, Kraus JM, Stricker CA, Clements WH, Wolf RE. Metamorphosis Affects Metal Concentrations and Isotopic Signatures in a Mayfly (Baetis tricaudatus): Implications for the Aquatic-Terrestrial Transfer of Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2438-2446. [PMID: 28078890 DOI: 10.1021/acs.est.6b05471] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Insect metamorphosis often results in substantial chemical changes that can alter contaminant concentrations and fractionate isotopes. We exposed larval mayflies (Baetis tricaudatus) and their food (periphyton) to an aqueous zinc gradient (3-340 μg Zn/l) and measured zinc concentrations at different stages of metamorphosis: larval, subimago, and imago. We also measured changes in stable isotopes (δ15N and δ13C) in unexposed mayflies. Larval zinc concentrations were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Adult zinc concentrations were also positively related to aqueous zinc, but were 7-fold lower than larvae. This relationship varied according to adult substage and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage-by-sex combinations. Metamorphosis also increased δ15N by ∼0.8‰, but not δ13C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with increased δ15N signatures. For zinc, this change was largely consistent across the aqueous exposure gradient. However, differences among sexes and stages suggest that caution is warranted when using nitrogen isotopes or metal concentrations measured in one insect stage (e.g., larvae) to assess risk to wildlife that feed on subsequent life stages (e.g., adults).
Collapse
Affiliation(s)
- Jeff S Wesner
- Department of Biology, University of South Dakota , Vermillion, South Dakota 57069, United States
| | - David M Walters
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado 80526, United States
| | - Travis S Schmidt
- U.S. Geological Survey, Colorado Water Science Center, Denver, Colorado 80225, United States
| | - Johanna M Kraus
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado 80526, United States
| | - Craig A Stricker
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado 80526, United States
| | - William H Clements
- Department of Fish, Wildlife & Conservation Biology and Graduate Degree Program in Ecology, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Ruth E Wolf
- PerkinElmer, Inc. San Jose, California 95134, United States
| |
Collapse
|
29
|
Martin-Creuzburg D, Kowarik C, Straile D. Cross-ecosystem fluxes: Export of polyunsaturated fatty acids from aquatic to terrestrial ecosystems via emerging insects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 577:174-182. [PMID: 27810302 DOI: 10.1016/j.scitotenv.2016.10.156] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/30/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
Cross-ecosystem fluxes can crucially influence the productivity of adjacent habitats. Emerging aquatic insects represent one important pathway through which freshwater-derived organic matter can enter terrestrial food webs. Aquatic insects may be of superior food quality for terrestrial consumers because they contain high concentrations of essential polyunsaturated fatty acids (PUFA). We quantified the export of PUFA via emerging insects from a midsize, mesotrophic lake. Insects were collected using emergence traps installed above different water depths and subjected to fatty acid analyses. Insect emergence from different depth zones and seasonal mean fatty acid concentrations in different insect groups were used to estimate PUFA fluxes. In total, 80.5mg PUFA m-2yr-1 were exported, of which 32.8mgm-2yr-1 were eicosapentaenoic acid (EPA), 7.8mgm-2yr-1 were arachidonic acid (ARA), and 2.6mgm-2yr-1 were docosahexaenoic acid (DHA). While Chironomidae contributed most to insect biomass and total PUFA export, Chaoborus flavicans contributed most to the export of EPA, ARA, and especially DHA. The export of total insect biomass from one square meter declined with depth and the timing at which 50% of total insect biomass emerged was correlated with the water depths over which the traps were installed, suggesting that insect-mediated PUFA fluxes are strongly affected by lake morphometry. Applying a conceptual model developed to assess insect deposition rates on land to our insect-mediated PUFA export data revealed an average total PUFA deposition rate of 150mgm-2yr-1 within 100m inland from the shore. We propose that PUFA export can be reliably estimated using taxon-specific information on emergent insect biomass and seasonal mean body PUFA concentrations of adult insects provided here. Our data indicate that insect-mediated PUFA fluxes from lakes are substantial, implying that freshwater-derived PUFA can crucially influence food web processes in adjacent terrestrial habitats.
Collapse
Affiliation(s)
| | - Carmen Kowarik
- Limnological Institute, University of Konstanz, Mainaustrasse 252, 78464 Konstanz, Germany.
| | - Dietmar Straile
- Limnological Institute, University of Konstanz, Mainaustrasse 252, 78464 Konstanz, Germany.
| |
Collapse
|
30
|
Xiang H, Zhang Y, Richardson JS. Importance of Riparian Zone: Effects of Resource Availability at Land-water Interface. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/remc-2016-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractRiparian zone provides a variety of resources to organisms, including availability of water and subsidies. Water availability in riparian areas influences species distribution and trophic interaction of terrestrial food webs. Cross-ecosystem subsidies as resource flux of additional energy, nutrients, and materials benefit riparian populations and communities (e.g. plants, spiders, lizards, birds and mammals). However, aquatic ecosystems and riparian zones are prone to anthropogenic disturbances, which change water availability and affect the flux dynamics of cross-system subsidies. Yet, we still lack sufficient empirical studies assessing impacts of disturbances of land use, climate change and invasive species individually and interactively on aquatic and riparian ecosystems through influencing subsidy resource availability. In filling this knowledge gap, we can make more effective efforts to protect and conserve riparian habitats and biodiversity, and maintain riparian ecosystem functioning and services.
Collapse
|
31
|
Hambäck PA, Weingartner E, Dalén L, Wirta H, Roslin T. Spatial subsidies in spider diets vary with shoreline structure: Complementary evidence from molecular diet analysis and stable isotopes. Ecol Evol 2016; 6:8431-8439. [PMID: 28031795 PMCID: PMC5167037 DOI: 10.1002/ece3.2536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/10/2022] Open
Abstract
Inflow of matter and organisms may strongly affect the local density and diversity of organisms. This effect is particularly evident on shores where organisms with aquatic larval stages enter the terrestrial food web. The identities of such trophic links are not easily estimated as spiders, a dominant group of shoreline predator, have external digestion. We compared trophic links and the prey diversity of spiders on different shore types along the Baltic Sea: on open shores and on shores with a reed belt bordering the water. A priori, we hypothesized that the physical structure of the shoreline reduces the flow between ecosystem and the subsidies across the sea-land interface. To circumvent the lack of morphologically detectable remains of spider prey, we used a combination of stable isotope and molecular gut content analyses. The two tools used for diet analysis revealed complementary information on spider diets. The stable isotope analysis indicated that spiders on open shores had a marine signal of carbon isotopes, while spiders on reedy shores had a terrestrial signal. The molecular analysis revealed a diverse array of dipteran and lepidopteran prey, where spiders on open and reedy shores shared a similar diet with a comparable proportion of chironomids, the larvae of which live in the marine system. Comparing the methods suggests that differences in isotope composition of the two spider groups occurred because of differences in the chironomid diets: as larvae, chironomids of reedy shores likely fed on terrestrial detritus and acquired a terrestrial isotope signature, while chironomids of open shores utilized an algal diet and acquired a marine isotope signature. Our results illustrate how different methods of diet reconstruction may shed light on complementary aspects of nutrient transfer. Overall, they reveal that reed belts can reduce connectivity between habitats, but also function as a source of food for predators.
Collapse
Affiliation(s)
- Peter A Hambäck
- Department of Ecology, Environment and Plants Sciences Stockholm University Stockholm Sweden
| | - Elisabeth Weingartner
- Department of Ecology, Environment and Plants Sciences Stockholm University Stockholm Sweden
| | - Love Dalén
- Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
| | - Helena Wirta
- Department of Agricultural Sciences University of Helsinki Helsinki Finland
| | - Tomas Roslin
- Department of Agricultural Sciences University of Helsinki Helsinki Finland; Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
32
|
Djomina IV, Yermokhin MV, Polukonova NV. Substance and energy flows formed by the emergence of amphibiotic insects across the water–air boundary on the floodplain lakes of the Volga River. CONTEMP PROBL ECOL+ 2016. [DOI: 10.1134/s1995425516040053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Hjältén J, Nilsson C, Jørgensen D, Bell D. Forest–Stream Links, Anthropogenic Stressors, and Climate Change: Implications for Restoration Planning. Bioscience 2016. [DOI: 10.1093/biosci/biw072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Roslin T, Majaneva S. The use of DNA barcodes in food web construction-terrestrial and aquatic ecologists unite! Genome 2016; 59:603-28. [PMID: 27484156 DOI: 10.1139/gen-2015-0229] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
By depicting who eats whom, food webs offer descriptions of how groupings in nature (typically species or populations) are linked to each other. For asking questions on how food webs are built and work, we need descriptions of food webs at different levels of resolution. DNA techniques provide opportunities for highly resolved webs. In this paper, we offer an exposé of how DNA-based techniques, and DNA barcodes in particular, have recently been used to construct food web structure in both terrestrial and aquatic systems. We highlight how such techniques can be applied to simultaneously improve the taxonomic resolution of the nodes of the web (i.e., the species), and the links between them (i.e., who eats whom). We end by proposing how DNA barcodes and DNA information may allow new approaches to the construction of larger interaction webs, and overcome some hurdles to achieving adequate sample size. Most importantly, we propose that the joint adoption and development of these techniques may serve to unite approaches to food web studies in aquatic and terrestrial systems-revealing the extent to which food webs in these environments are structured similarly to or differently from each other, and how they are linked by dispersal.
Collapse
Affiliation(s)
- Tomas Roslin
- a Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 750 07 Uppsala, Sweden.,b Spatial Foodweb Ecology Group, Department of Agricultural Sciences, PO Box 27, (Latokartanonkaari 5), FI-00014 University of Helsinki, Finland
| | - Sanna Majaneva
- c Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182 Kalmar, Sweden
| |
Collapse
|
35
|
Meunier CL, Gundale MJ, Sánchez IS, Liess A. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. GLOBAL CHANGE BIOLOGY 2016; 22:164-79. [PMID: 25953197 DOI: 10.1111/gcb.12967] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/26/2015] [Accepted: 04/29/2015] [Indexed: 05/09/2023]
Abstract
Increased reactive nitrogen (Nr ) deposition has raised the amount of N available to organisms and has greatly altered the transfer of energy through food webs, with major consequences for trophic dynamics. The aim of this review was to: (i) clarify the direct and indirect effects of Nr deposition on forest and lake food webs in N-limited biomes, (ii) compare and contrast how aquatic and terrestrial systems respond to increased Nr deposition, and (iii) identify how the nutrient pathways within and between ecosystems change in response to Nr deposition. We present that Nr deposition releases primary producers from N limitation in both forest and lake ecosystems and raises plants' N content which in turn benefits herbivores with high N requirements. Such trophic effects are coupled with a general decrease in biodiversity caused by different N-use efficiencies; slow-growing species with low rates of N turnover are replaced by fast-growing species with high rates of N turnover. In contrast, Nr deposition diminishes below-ground production in forests, due to a range of mechanisms that reduce microbial biomass, and decreases lake benthic productivity by switching herbivore growth from N to phosphorus (P) limitation, and by intensifying P limitation of benthic fish. The flow of nutrients between ecosystems is expected to change with increasing Nr deposition. Due to higher litter production and more intense precipitation, more terrestrial matter will enter lakes. This will benefit bacteria and will in turn boost the microbial food web. Additionally, Nr deposition promotes emergent insects, which subsidize the terrestrial food web as prey for insectivores or by dying and decomposing on land. So far, most studies have examined Nr -deposition effects on the food web base, whereas our review highlights that changes at the base of food webs substantially impact higher trophic levels and therefore food web structure and functioning.
Collapse
Affiliation(s)
- Cédric L Meunier
- Department of Ecology and Environmental Sciences, Umeå University, 901 87, Umeå, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Irene S Sánchez
- Department of Ecology and Environmental Sciences, Umeå University, 901 87, Umeå, Sweden
| | - Antonia Liess
- Department of Ecology and Environmental Sciences, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
36
|
Schulz R, Bundschuh M, Gergs R, Brühl CA, Diehl D, Entling MH, Fahse L, Frör O, Jungkunst HF, Lorke A, Schäfer RB, Schaumann GE, Schwenk K. Review on environmental alterations propagating from aquatic to terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:246-61. [PMID: 26311581 DOI: 10.1016/j.scitotenv.2015.08.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 05/24/2023]
Abstract
Terrestrial inputs into freshwater ecosystems are a classical field of environmental science. Resource fluxes (subsidy) from aquatic to terrestrial systems have been less studied, although they are of high ecological relevance particularly for the receiving ecosystem. These fluxes may, however, be impacted by anthropogenically driven alterations modifying structure and functioning of aquatic ecosystems. In this context, we reviewed the peer-reviewed literature for studies addressing the subsidy of terrestrial by aquatic ecosystems with special emphasis on the role that anthropogenic alterations play in this water-land coupling. Our analysis revealed a continuously increasing interest in the coupling of aquatic to terrestrial ecosystems between 1990 and 2014 (total: 661 studies), while the research domains focusing on abiotic (502 studies) and biotic (159 studies) processes are strongly separated. Approximately 35% (abiotic) and 25% (biotic) of the studies focused on the propagation of anthropogenic alterations from the aquatic to the terrestrial system. Among these studies, hydromorphological and hydrological alterations were predominantly assessed, whereas water pollution and invasive species were less frequently investigated. Less than 5% of these studies considered indirect effects in the terrestrial system e.g. via food web responses, as a result of anthropogenic alterations in aquatic ecosystems. Nonetheless, these very few publications indicate far-reaching consequences in the receiving terrestrial ecosystem. For example, bottom-up mediated responses via soil quality can cascade over plant communities up to the level of herbivorous arthropods, while top-down mediated responses via predatory spiders can cascade down to herbivorous arthropods and even plants. Overall, the current state of knowledge calls for an integrated assessment on how these interactions within terrestrial ecosystems are affected by propagation of aquatic ecosystem alterations. To fill these gaps, we propose a scientific framework, which considers abiotic and biotic aspects based on an interdisciplinary approach.
Collapse
Affiliation(s)
- Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany.
| | - Mirco Bundschuh
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - René Gergs
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany; Federal Environment Agency, Berlin, Germany
| | - Carsten A Brühl
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Dörte Diehl
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Martin H Entling
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Lorenz Fahse
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Oliver Frör
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Hermann F Jungkunst
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Andreas Lorke
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Gabriele E Schaumann
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Klaus Schwenk
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| |
Collapse
|
37
|
Green L, Fong P. The good, the bad and theUlva: the density dependent role of macroalgal subsidies in influencing diversity and trophic structure of an estuarine community. OIKOS 2015. [DOI: 10.1111/oik.02860] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lauri Green
- Dept of Ecology and Evolutionary Biology; UCLA; 621 Charles E. Young Dr. South Los Angeles CA 90095 USA
| | - Peggy Fong
- Dept of Ecology and Evolutionary Biology; UCLA; 621 Charles E. Young Dr. South Los Angeles CA 90095 USA
| |
Collapse
|
38
|
Greenwood MJ, Booker DJ. Influence of hydrological regime and land cover on traits and potential export capacity of adult aquatic insects from river channels. Oecologia 2015; 180:551-66. [DOI: 10.1007/s00442-015-3462-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/20/2015] [Indexed: 11/28/2022]
|
39
|
Wallace JB, Eggert SL, Meyer JL, Webster JR. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. Ecology 2015; 96:1213-28. [DOI: 10.1890/14-1589.1] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach. Oecologia 2015; 178:999-1015. [DOI: 10.1007/s00442-015-3271-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/11/2015] [Indexed: 10/23/2022]
|
41
|
Dreyer J, Townsend PA, III JCH, Hoekman D, Vander Zanden MJ, Gratton C. Quantifying aquatic insect deposition from lake to land. Ecology 2015; 96:499-509. [DOI: 10.1890/14-0704.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Bartrons M, Gratton C, Spiesman BJ, Vander Zanden MJ. Taking the trophic bypass: aquatic-terrestrial linkage reduces methylmercury in a terrestrial food web. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:151-159. [PMID: 26255364 DOI: 10.1890/14-0038.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ecosystems can be linked by the movement of matter and nutrients across habitat boundaries via aquatic insect emergence. Aquatic organisms tend to have higher concentrations of certain toxic contaminants such as methylmercury (MeHg) compared to their terrestrial counterparts. If aquatic organisms come to land, terrestrial organisms that consume them are expected to have elevated MeHg concentrations. But emergent aquatic insects could have other impacts as well, such as altering consumer trophic position or increasing ecosystem productivity as a result of nutrient inputs from insect carcasses. We measure MeHg in terrestrial arthropods at two lakes in northeastern Iceland and use carbon and nitrogen stable isotopes to quantify aquatic reliance and trophic position. Across all terrestrial focal arthropod taxa (Lycosidae, Linyphiidae, Acari, Opiliones), aquatic reliance had significant direct and indirect (via changes in trophic position) effects on terrestrial consumer MeHg. However, contrary to our expectations, terrestrial consumers that consumed aquatic prey had lower MeHg concentrations than consumers that ate mostly terrestrial prey. We hypothesize that this is due to the lower trophic position of consumers feeding directly on midges relative to those that fed mostly on terrestrial prey and that had, on average, higher trophic positions. Thus, direct consumption of aquatic inputs results in a trophic bypass that creates a shorter terrestrial food web and reduced biomagnification of MeHg across the food web. Our finding that MeHg was lower at terrestrial sites with aquatic inputs runs counter to the conventional wisdom that aquatic systems are a source of MeHg contamination to surrounding terrestrial ecosystems.
Collapse
|
43
|
Yang LH, Gratton C. Insects as drivers of ecosystem processes. CURRENT OPINION IN INSECT SCIENCE 2014; 2:26-32. [PMID: 32846721 DOI: 10.1016/j.cois.2014.06.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 06/11/2023]
Abstract
Insects and other small invertebrates are ubiquitous components of all terrestrial and freshwater food webs, but their cumulative biomass is small relative to plants and microbes. As a result, it is often assumed that these animals make relatively minor contributions to ecosystem processes. Despite their small sizes and cumulative biomass, we suggest that these animals may commonly have important effects on carbon and nutrient cycling by modulating the quality and quantity of resources that enter the detrital food web, with consequences at the ecosystem level. These effects can occur through multiple pathways, including direct inputs of insect biomass, the transformation of detrital biomass, and the indirect effects of predators on herbivores and detritivores. In virtually all cases, the ecosystem effects of these pathways are ultimately mediated through interactions with plants and soil microbes. Merging our understanding of insect, plant and microbial ecology will offer a valuable way to better integrate community-level interactions with ecosystem processes.
Collapse
Affiliation(s)
- Louie H Yang
- Department of Entomology and Nematology, University of California, Davis, CA, United States.
| | - Claudio Gratton
- Department of Entomology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
44
|
Scharnweber K, Vanni MJ, Hilt S, Syväranta J, Mehner T. Boomerang ecosystem fluxes: organic carbon inputs from land to lakes are returned to terrestrial food webs via aquatic insects. OIKOS 2014. [DOI: 10.1111/oik.01524] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Scharnweber
- Leibniz-Inst. of Freshwater Ecology and Inland Fisheries; Müggelseedamm 310 DE-12587 Berlin Germany
- Freie Univ. Berlin; Königin-Luise-Straße 1-3 DE-14195 Berlin Germany
| | - M. J. Vanni
- Leibniz-Inst. of Freshwater Ecology and Inland Fisheries; Müggelseedamm 310 DE-12587 Berlin Germany
| | - S. Hilt
- Leibniz-Inst. of Freshwater Ecology and Inland Fisheries; Müggelseedamm 310 DE-12587 Berlin Germany
| | - J. Syväranta
- Leibniz-Inst. of Freshwater Ecology and Inland Fisheries; Müggelseedamm 310 DE-12587 Berlin Germany
| | - T. Mehner
- Leibniz-Inst. of Freshwater Ecology and Inland Fisheries; Müggelseedamm 310 DE-12587 Berlin Germany
| |
Collapse
|
45
|
Greenwood MJ. More than a barrier: The complex effects of ecotone vegetation type on terrestrial consumer consumption of an aquatic prey resource. AUSTRAL ECOL 2014. [DOI: 10.1111/aec.12159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michelle J. Greenwood
- National Institute of Water and Atmospheric Research; 10 Kyle Street, Riccarton Christchurch 8011 New Zealand
| |
Collapse
|
46
|
|
47
|
Murphy SM, Wimp GM, Lewis D, Denno RF. Nutrient presses and pulses differentially impact plants, herbivores, detritivores and their natural enemies. PLoS One 2012; 7:e43929. [PMID: 22952814 PMCID: PMC3429447 DOI: 10.1371/journal.pone.0043929] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/27/2012] [Indexed: 11/18/2022] Open
Abstract
Anthropogenic nutrient inputs into native ecosystems cause fluctuations in resources that normally limit plant growth, which has important consequences for associated food webs. Such inputs from agricultural and urban habitats into nearby natural systems are increasing globally and can be highly variable, spanning the range from sporadic to continuous. Despite the global increase in anthropogenically-derived nutrient inputs into native ecosystems, the consequences of variation in subsidy duration on native plants and their associated food webs are poorly known. Specifically, while some studies have examined the effects of nutrient subsidies on native ecosystems for a single year (a nutrient pulse), repeated introductions of nutrients across multiple years (a nutrient press) better reflect the persistent nature of anthropogenic nutrient enrichment. We therefore contrasted the effects of a one-year nutrient pulse with a four-year nutrient press on arthropod consumers in two salt marshes. Salt marshes represent an ideal system to address the differential impacts of nutrient pulses and presses on ecosystem and community dynamics because human development and other anthropogenic activities lead to recurrent introductions of nutrients into these natural systems. We found that plant biomass and %N as well as arthropod density fell after the nutrient pulse ended but remained elevated throughout the nutrient press. Notably, higher trophic levels responded more strongly than lower trophic levels to fertilization, and the predator/prey ratio increased each year of the nutrient press, demonstrating that food web responses to anthropogenic nutrient enrichment can take years to fully manifest themselves. Vegetation at the two marshes also exhibited an apparent tradeoff between increasing %N and biomass in response to fertilization. Our research emphasizes the need for long-term, spatially diverse studies of nutrient enrichment in order to understand how variation in the duration of anthropogenic nutrient subsidies affects native ecosystems.
Collapse
Affiliation(s)
- Shannon M Murphy
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America.
| | | | | | | |
Collapse
|
48
|
Bartels P, Cucherousset J, Steger K, Eklöv P, Tranvik LJ, Hillebrand H. Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics. Ecology 2012; 93:1173-82. [PMID: 22764503 DOI: 10.1890/11-1210.1] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cross-ecosystem movements of material and energy, particularly reciprocal resource fluxes across the freshwater-land interface, have received major attention. Freshwater ecosystems may receive higher amounts of subsidies (i.e., resources produced outside the focal ecosystem) than terrestrial ecosystems, potentially leading to increased secondary production in freshwaters. Here we used a meta-analytic approach to quantify the magnitude and direction of subsidy inputs across the freshwater-land interface and to determine subsequent responses in recipient animals. Terrestrial and freshwater ecosystems differed in the magnitude of subsidies they received, with aquatic ecosystems generally receiving higher subsidies than terrestrial ecosystems. Surprisingly, and despite the large discrepancy in magnitude, the contribution of these subsidies to animal carbon inferred from stable isotope composition did not differ between freshwater and terrestrial ecosystems, likely due to the differences in subsidy quality. The contribution of allochthonous subsidies was highest to primary consumers and predators, suggesting that bottom-up and top-down effects may be affected considerably by the input of allochthonous resources. Future work on subsidies will profit from a food web dynamic approach including indirect trophic interactions and propagating effects.
Collapse
Affiliation(s)
- Pia Bartels
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
49
|
Hoekman D, Bartrons M, Gratton C. Ecosystem linkages revealed by experimental lake-derived isotope signal in heathland food webs. Oecologia 2012; 170:735-43. [DOI: 10.1007/s00442-012-2329-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 04/02/2012] [Indexed: 11/30/2022]
|
50
|
Hagen M, Kissling WD, Rasmussen C, De Aguiar MA, Brown LE, Carstensen DW, Alves-Dos-Santos I, Dupont YL, Edwards FK, Genini J, Guimarães PR, Jenkins GB, Jordano P, Kaiser-Bunbury CN, Ledger ME, Maia KP, Marquitti FMD, Mclaughlin Ó, Morellato LPC, O'Gorman EJ, Trøjelsgaard K, Tylianakis JM, Vidal MM, Woodward G, Olesen JM. Biodiversity, Species Interactions and Ecological Networks in a Fragmented World. ADV ECOL RES 2012. [DOI: 10.1016/b978-0-12-396992-7.00002-2] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|