1
|
Douglas AJ, Katzenback BA. The wood frog (Rana sylvatica): An emerging comparative model for anuran immunity and host-ranavirus interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104733. [PMID: 37550009 DOI: 10.1016/j.dci.2023.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 08/09/2023]
Abstract
The wood frog (Rana sylvatica) is widely distributed across North America and is the only amphibian found north of the Arctic Circle due to its remarkable ability to tolerate whole-body freezing. Recent mass mortalities attributable to Ranavirus spp. (family Iridoviridae) in wild juvenile wood frogs, coupled with the apparent high susceptibility of wood frogs to experimental infection with frog virus 3 (FV3), the type species of the Ranavirus genus, or FV3-like isolates underscore the serious threat ranaviruses poses to wood frog populations. Despite the ecological relevance and unique life history of wood frogs, our understanding of the wood frog immune system and antiviral response to ranaviral infections is in its infancy. Here we aim to (1) synthesize the limited knowledge of wood frog immune defences, (2) review recent progress in establishing the wood frog as a study system for ranavirus infection, and (3) highlight the future use of wood frogs as a model anuran to provide insight into the evolution of anuran immune systems and antiviral responses.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| |
Collapse
|
2
|
Florencio M, Burraco P, Rendón MÁ, Díaz-Paniagua C, Gomez-Mestre I. Opposite and synergistic physiological responses to water acidity and predator cues in spadefoot toad tadpoles. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110654. [PMID: 31926298 DOI: 10.1016/j.cbpa.2020.110654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
Abstract
Organisms are exposed to multiple environmental factors simultaneously to which they often respond behaviorally, morphologically and/or physiologically. Amphibian larvae are quite plastic and efficiently adjust their phenotype and physiology to the reigning local conditions. Here we tested whether the combination of predator presence and low water pH induces alterations in the morphology and physiology of spadefoot toad tadpoles. We raised Pelobates cultripes tadpoles in the laboratory in water at either pH 4 or 7, and in the presence or absence of caged dragonfly nymphs, and determined their changes in shape through geometric morphometrics to assess whether predator recognition was impaired or not at low pH. We also measured levels of plasma corticosterone, activity of four antioxidant enzymes, as well as markers of oxidative damage and redox status. We found that tadpoles altered their body shape in response to predator cues even at low pH, indicating that predator recognition was not interfered by water acidity and developmental responses were robust even under abiotic stress. Water acidity was associated with increased corticosterone levels in tadpoles, whereas predator presence consistently reduced corticosterone levels. Predator presence was linked to reduced antioxidant enzyme activity, whereas the combination of both factors resulted in negative synergistic effects on lipid peroxidation and the antioxidant capacity of tadpoles. Here we show that tadpoles detect predators even at low pH but that the development of adaptive anti-predatory morphology can magnify physiological imbalances when other stressors co-occur. These results emphasize the need to understand how multiple environmental perturbations can affect animal homeostasis.
Collapse
Affiliation(s)
- Margarita Florencio
- Ecology, Evolution and Development Group, Estación Biológica de Doñana, CSIC, Seville, Spain; Dept. of Ecology, Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Burraco
- Ecology, Evolution and Development Group, Estación Biológica de Doñana, CSIC, Seville, Spain; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Miguel Ángel Rendón
- Dept. of Wetland Ecology, Estación Biológica de Doñana, CSIC, Seville, Spain
| | - Carmen Díaz-Paniagua
- Ecology, Evolution and Development Group, Estación Biológica de Doñana, CSIC, Seville, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Estación Biológica de Doñana, CSIC, Seville, Spain.
| |
Collapse
|
3
|
Brady SP, Zamora‐Camacho FJ, Eriksson FAA, Goedert D, Comas M, Calsbeek R. Fitter frogs from polluted ponds: The complex impacts of human-altered environments. Evol Appl 2019; 12:1360-1370. [PMID: 31417620 PMCID: PMC6691218 DOI: 10.1111/eva.12751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/14/2023] Open
Abstract
Human-modified habitats rarely yield outcomes that are aligned with conservation ideals. Landscapes that are subdivided by roads are no exception, precipitating negative impacts on populations due to fragmentation, pollution, and road kill. Although many populations in human-modified habitats show evidence for local adaptation, rarely does environmental change yield outright benefits for populations of conservation interest. Contrary to expectations, we report surprising benefits experienced by amphibian populations breeding and dwelling in proximity to roads. We show that roadside populations of the wood frog, Rana sylvatica, exhibit better locomotor performance and higher measures of traits related to fitness compared with frogs from less disturbed environments located further away from roads. These results contrast previous evidence for maladaptation in roadside populations of wood frogs studied elsewhere. Our results indicate that altered habitats might not be unequivocally detrimental and at times might contribute to metapopulation success. While the frequency of such beneficial outcomes remains unknown, their occurrence underscores the complexity of inferring consequences of environmental change.
Collapse
Affiliation(s)
- Steven P. Brady
- Biology DepartmentSouthern Connecticut State UniversityNew HavenConnecticut
| | - Francisco J. Zamora‐Camacho
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| | | | - Debora Goedert
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
| | - Mar Comas
- Estación Biológica de Doñana (EBD‐CSIC)SevilleSpain
| | - Ryan Calsbeek
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
| |
Collapse
|
4
|
Tennessen JB, Parks SE, Swierk L, Reinert LK, Holden WM, Rollins-Smith LA, Walsh KA, Langkilde T. Frogs adapt to physiologically costly anthropogenic noise. Proc Biol Sci 2018; 285:20182194. [PMID: 30464067 PMCID: PMC6253376 DOI: 10.1098/rspb.2018.2194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
Human activities impose novel pressures on amphibians, which are experiencing unprecedented global declines, yet population-level responses are poorly understood. A growing body of literature has revealed that noise is an anthropogenic stressor that impacts ecological processes spanning subcellular to ecosystem levels. These consequences can impose novel selective pressures on populations, yet whether populations can adapt to noise is unknown. We tested for adaptation to traffic noise, a widespread sensory 'pollutant'. We collected eggs of wood frogs (Rana sylvatica) from populations from different traffic noise regimes, reared hatchlings under the same conditions, and tested frogs for differences in sublethal fitness-relevant effects of noise. We show that prolonged noise impaired production of antimicrobial peptides associated with defence against disease. Additionally, noise and origin site interacted to impact immune and stress responses. Noise exposure altered leucocyte production and increased baseline levels of the stress-relevant glucocorticoid, corticosterone, in frogs from quiet sites, but noise-legacy populations were unaffected. These results suggest noise-legacy populations have adapted to avoid fitness-relevant physiological costs of traffic noise. These findings advance our understanding of the consequences of novel soundscapes and reveal a pathway by which anthropogenic disturbance can enable adaptation to novel environments.
Collapse
Affiliation(s)
- Jennifer B Tennessen
- Department of Biology, Center for Brain, Behavior and Cognition, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Susan E Parks
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Lindsey Swierk
- Department of Biology, Center for Brain, Behavior and Cognition, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
- School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, CT 06511, USA
| | - Laura K Reinert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, TN 37232, USA
| | - Whitney M Holden
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, TN 37232, USA
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, TN 37232, USA
| | - Koranda A Walsh
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Tracy Langkilde
- Department of Biology, Center for Brain, Behavior and Cognition, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| |
Collapse
|
5
|
|
6
|
Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030081] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines. These include the fungi Batrachochytrium dendrobatidis and B. salamandrivorans, and ranaviruses. In this review, we assess the effects of these three pathogens on amphibian hosts as found through experimental studies. Such studies offer valuable insights to the causal factors underpinning broad patterns reported through observational studies. We summarize key findings from experimental studies in the laboratory, in mesocosms, and from the field. We also summarize experiments that explore the interactive effects of these pathogens with other contributors of amphibian population declines. Though well-designed experimental studies are critical for understanding the impacts of disease, inconsistencies in experimental methodologies limit our ability to form comparisons and conclusions. Studies of the three pathogens we focus on show that host susceptibility varies with such factors as species, host age, life history stage, population and biotic (e.g., presence of competitors, predators) and abiotic conditions (e.g., temperature, presence of contaminants), as well as the strain and dose of the pathogen, to which hosts are exposed. Our findings suggest the importance of implementing standard protocols and reporting for experimental studies of amphibian disease.
Collapse
|
7
|
Cramp RL, Franklin CE. Exploring the link between ultraviolet B radiation and immune function in amphibians: implications for emerging infectious diseases. CONSERVATION PHYSIOLOGY 2018; 6:coy035. [PMID: 29992023 PMCID: PMC6022628 DOI: 10.1093/conphys/coy035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/27/2018] [Accepted: 06/07/2018] [Indexed: 05/07/2023]
Abstract
Amphibian populations the world over are under threat of extinction, with as many as 40% of assessed species listed as threatened under IUCN Red List criteria (a significantly higher proportion than other vertebrate group). Amongst the key threats to amphibian species is the emergence of novel infectious diseases, which have been implicated in the catastrophic amphibian population declines and extinctions seen in many parts of the world. The recent emergence of these diseases coincides with increased ambient levels of ultraviolet B radiation (UVBR) due to anthropogenic thinning of the Earth's protective ozone layer, raising questions about potential interactions between UVBR exposure and disease in amphibians. While reasonably well documented in other vertebrate groups (particularly mammals), the immunosuppressive capacity of UVBR and the potential for it to influence disease outcomes has been largely overlooked in amphibians. Herein, we review the evidence for UVBR-associated immune system disruption in amphibians and identify a number of direct and indirect pathways through which UVBR may influence immune function and disease susceptibility in amphibians. By exploring the physiological mechanisms through which UVBR may affect host immune function, we demonstrate how ambient UVBR could increase amphibian susceptibility to disease. We conclude by discussing the potential implications of elevated UVBR for inter and intraspecific differences in disease dynamics and discuss how future research in this field may be directed to improve our understanding of the role that UVBR plays in amphibian immune function.
Collapse
Affiliation(s)
- Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Goddard Building (8), St Lucia, Queensland, Australia
- Corresponding author: School of Biological Sciences, The University of Queensland, Goddard Building (8), St Lucia, Queensland 4072, Australia.
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Goddard Building (8), St Lucia, Queensland, Australia
| |
Collapse
|
8
|
Roux O, Vantaux A, Roche B, Yameogo KB, Dabiré KR, Diabaté A, Simard F, Lefèvre T. Evidence for carry-over effects of predator exposure on pathogen transmission potential. Proc Biol Sci 2017; 282:20152430. [PMID: 26674956 DOI: 10.1098/rspb.2015.2430] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Accumulating evidence indicates that species interactions such as competition and predation can indirectly alter interactions with other community members, including parasites. For example, presence of predators can induce behavioural defences in the prey, resulting in a change in susceptibility to parasites. Such predator-induced phenotypic changes may be especially pervasive in prey with discrete larval and adult stages, for which exposure to predators during larval development can have strong carry-over effects on adult phenotypes. To the best of our knowledge, no study to date has examined possible carry-over effects of predator exposure on pathogen transmission. We addressed this question using a natural food web consisting of the human malaria parasite Plasmodium falciparum, the mosquito vector Anopheles coluzzii and a backswimmer, an aquatic predator of mosquito larvae. Although predator exposure did not significantly alter mosquito susceptibility to P. falciparum, it incurred strong fitness costs on other key mosquito life-history traits, including larval development, adult size, fecundity and longevity. Using an epidemiological model, we show that larval predator exposure should overall significantly decrease malaria transmission. These results highlight the importance of taking into account the effect of environmental stressors on disease ecology and epidemiology.
Collapse
Affiliation(s)
- Olivier Roux
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290-UM, Montpellier, France Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Amélie Vantaux
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290-UM, Montpellier, France Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Benjamin Roche
- UMMISCO (Unité de Modélisation Mathématique et Informatique des Systèmes Complexes), UMI IRD/UPMC 209, Bondy, France
| | - Koudraogo B Yameogo
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Kounbobr R Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Frederic Simard
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290-UM, Montpellier, France
| | - Thierry Lefèvre
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290-UM, Montpellier, France Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
9
|
Reproductive Decisions in Anurans: A Review of How Predation and Competition Affects the Deposition of Eggs And Tadpoles. Bioscience 2016. [DOI: 10.1093/biosci/biw149] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
Bagwill AL, Lovern MB, Worthington TA, Smith LM, McMurry ST. Effects of Water Loss on New Mexico Spadefoot Toad (Spea multiplicata) Development, Spleen Cellularity, and Corticosterone Levels. ACTA ACUST UNITED AC 2016; 325:548-561. [PMID: 27714986 DOI: 10.1002/jez.2049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/22/2023]
Abstract
Amphibian metamorphosis is complex and larval morphology and physiology are completely restructured during this time. Amphibians that live in unpredictable environments are often exposed to stressors that can directly and indirectly alter physiological systems during development, with subsequent consequences (carryover effects) later in life. In this study, we investigated the effects of water level reduction on development rate, spleen size and cellularity, and examined the role of corticosterone levels in premetamorphic, metamorphic, and postmetamorphic New Mexico spadefoot toads (Spea multiplicata). Based on previous studies, we hypothesized that declining water level would increase tadpole developmental rate, but with the trade-off of increasing corticosterone to a level that would subsequently affect spleen size and cellularity, thus prolonging potential immunological suppression. Declining water levels increased developmental rate by 3 days; however, there were no significant body size effects. Corticosterone (CORT) was negatively correlated with total length, snout vent length, body weight, and spleen weight at metamorphosis, suggesting that size at metamorphosis and the immune system may be affected by excessive CORT levels. When compared to other studies, our results support the view that multiple factors may be acting as stressors in the field affecting amphibian responses, and simple pathways as tested in this study may not adequately represent field conditions.
Collapse
Affiliation(s)
- April L Bagwill
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma. .,ECS Federal, LLC, Fairfax, Virginia.
| | - Matthew B Lovern
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma
| | - Thomas A Worthington
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Loren M Smith
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma
| | - Scott T McMurry
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
11
|
Calhoun DM, Woodhams D, Howard C, LaFonte BE, Gregory JR, Johnson PTJ. Role of Antimicrobial Peptides in Amphibian Defense Against Trematode Infection. ECOHEALTH 2016; 13:383-91. [PMID: 26911920 PMCID: PMC4996749 DOI: 10.1007/s10393-016-1102-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 05/18/2023]
Abstract
Antimicrobial peptides (AMPs) contribute to the immune defenses of many vertebrates, including amphibians. As larvae, amphibians are often exposed to the infectious stages of trematode parasites, many of which must penetrate the host's skin, potentially interacting with host AMPs. We tested the effects of the natural AMPs repertoires on both the survival of trematode infectious stages as well as their ability to infect larval amphibians. All five trematode species exhibited decreased survival of cercariae in response to higher concentrations of adult bullfrog AMPs, but no effect when exposed to AMPs from larval bullfrogs. Similarly, the use of norepinephrine to remove AMPs from larval bullfrogs, Pacific chorus frogs, and gray treefrogs had only weak (gray treefrogs) or non-significant (other tested species) effects on infection success by Ribeiroia ondatrae. We nonetheless observed strong differences in parasite infection as a function of both host stage (first- versus second-year bullfrogs) and host species (Pacific chorus frogs versus gray treefrogs) that were apparently unrelated to AMPs. Taken together, our results suggest that AMPs do not play a significant role in defending larval amphibians against trematode cercariae, but that they could be one mechanism helping to prevent infection of post-metamorphic amphibians, particularly for highly aquatic species.
Collapse
Affiliation(s)
- Dana M Calhoun
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Ramaley N122 CB334, Boulder, CO, 80309, USA.
| | - Doug Woodhams
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, 02125, USA
| | - Cierra Howard
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Ramaley N122 CB334, Boulder, CO, 80309, USA
| | - Bryan E LaFonte
- George Washington University Law School, George Washington University, 2000 H St NW, Washington, DC, 20052, USA
| | - Jacklyn R Gregory
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Ramaley N122 CB334, Boulder, CO, 80309, USA
| | - Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Ramaley N122 CB334, Boulder, CO, 80309, USA
| |
Collapse
|
12
|
Young HS, Dirzo R, Helgen KM, McCauley DJ, Nunn CL, Snyder P, Veblen KE, Zhao S, Ezenwa VO. Large wildlife removal drives immune defence increases in rodents. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hillary S. Young
- University of California Santa Barbara Santa Barbara California 93106 USA
- Division of Mammals National Museum of Natural History Smithsonian Institution Washington District of Columbia 20013 USA
- Mpala Research Centre Box 555 Nanyuki Kenya
| | - Rodolfo Dirzo
- Department of Biology Stanford University Stanford California 94305 USA
| | - Kristofer M. Helgen
- Division of Mammals National Museum of Natural History Smithsonian Institution Washington District of Columbia 20013 USA
| | - Douglas J. McCauley
- University of California Santa Barbara Santa Barbara California 93106 USA
- Mpala Research Centre Box 555 Nanyuki Kenya
| | - Charles L. Nunn
- Department of Evolutionary Anthropology Duke University Durham North Carolina 27708 USA
- Duke Global Health Institute Duke University Durham North Carolina 27708 USA
| | - Paul Snyder
- Odum School of Ecology and Department of Infectious Diseases College of Veterinary Medicine University of Georgia Athens Georgia 30602 USA
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331 USA
| | - Kari E. Veblen
- Mpala Research Centre Box 555 Nanyuki Kenya
- Department of Wildland Resources and Ecology Center Utah State University Logan Utah 84322 USA
| | - Serena Zhao
- Division of Mammals National Museum of Natural History Smithsonian Institution Washington District of Columbia 20013 USA
- Mpala Research Centre Box 555 Nanyuki Kenya
| | - Vanessa O. Ezenwa
- Mpala Research Centre Box 555 Nanyuki Kenya
- Odum School of Ecology and Department of Infectious Diseases College of Veterinary Medicine University of Georgia Athens Georgia 30602 USA
| |
Collapse
|
13
|
Rumschlag SL, Boone MD. How Time of Exposure to the Amphibian Chytrid Fungus AffectsHyla chrysoscelisin the Presence of an Insecticide1. HERPETOLOGICA 2015. [DOI: 10.1655/herpetologica-d-13-00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Pérez-Iglesias JM, Soloneski S, Nikoloff N, Natale GS, Larramendy ML. Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 119:15-24. [PMID: 25966333 DOI: 10.1016/j.ecoenv.2015.04.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Acute lethal and sublethal toxicity of the imidazolinone imazethapyr (IMZT)-based commercial formulation herbicide Pivot H® (10.59% IMZT) was evaluated on Hypsiboas pulchellus tadpoles. Whereas mortality was used as the end point for lethality, frequency of micronuclei (MNs) and other nuclear abnormalities as well as DNA single-strand breaks evaluated by the single cell gel electrophoresis assay were employed to test genotoxicity. Behavioral, growth, developmental, and morphological abnormalities were also employed as sublethal end points. Mortality studies revealed equivalent LC50 (96h) values of 1.49mg/L (confidence limit, 1.09-1.63) and 1.55mg/L (confidence limit, 1.51-1.60) IMZT for Gosner stage (GS) 25 and GS36, respectively. Behavioral changes, i.e., irregular swimming and immobility, as well as a decreased frequency of keratodonts were observed. The herbicide increased the frequency of MNs in circulating erythrocytes of tadpoles exposed for 48h to the highest concentration assayed (1.17mg/L). However, regardless of the concentration of the herbicide assayed, an enhanced frequency of MNs was observed in tadpoles exposed for 96h. The herbicide was able to induce other nuclear abnormalities, i.e., blebbed and notched nuclei, only when tadpoles were exposed for 96h. In addition, we observed that exposure to IMZT within the 0.39-1.17mg/L range increased the genetic damage index in treatments lasting for both 48 and 96h. This study represents the first evidence of acute lethal and sublethal effects exerted by IMZT on amphibians. Finally, our findings highlight the properties of this herbicide that jeopardize nontarget living species exposed to IMZT.
Collapse
Affiliation(s)
- J M Pérez-Iglesias
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - S Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - N Nikoloff
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - G S Natale
- Centro de Investigaciones del Medio Ambiente (CIMA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Buck JC, Hua J, Brogan WR, Dang TD, Urbina J, Bendis RJ, Stoler AB, Blaustein AR, Relyea RA. Effects of Pesticide Mixtures on Host-Pathogen Dynamics of the Amphibian Chytrid Fungus. PLoS One 2015; 10:e0132832. [PMID: 26181492 PMCID: PMC4504700 DOI: 10.1371/journal.pone.0132832] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/19/2015] [Indexed: 01/22/2023] Open
Abstract
Anthropogenic and natural stressors often interact to affect organisms. Amphibian populations are undergoing unprecedented declines and extinctions with pesticides and emerging infectious diseases implicated as causal factors. Although these factors often co-occur, their effects on amphibians are usually examined in isolation. We hypothesized that exposure of larval and metamorphic amphibians to ecologically relevant concentrations of pesticide mixtures would increase their post-metamorphic susceptibility to the fungus Batrachochytrium dendrobatidis (Bd), a pathogen that has contributed to amphibian population declines worldwide. We exposed five anuran species (Pacific treefrog, Pseudacris regilla; spring peeper, Pseudacris crucifer; Cascades frog, Rana cascadae; northern leopard frog, Lithobates pipiens; and western toad, Anaxyrus boreas) from three families to mixtures of four common insecticides (chlorpyrifos, carbaryl, permethrin, and endosulfan) or herbicides (glyphosate, acetochlor, atrazine, and 2,4-D) or a control treatment, either as tadpoles or as newly metamorphic individuals (metamorphs). Subsequently, we exposed animals to Bd or a control inoculate after metamorphosis and compared survival and Bd load. Bd exposure significantly increased mortality in Pacific treefrogs, spring peepers, and western toads, but not in Cascades frogs or northern leopard frogs. However, the effects of pesticide exposure on mortality were negligible, regardless of the timing of exposure. Bd load varied considerably across species; Pacific treefrogs, spring peepers, and western toads had the highest loads, whereas Cascades frogs and northern leopard frogs had the lowest loads. The influence of pesticide exposure on Bd load depended on the amphibian species, timing of pesticide exposure, and the particular pesticide treatment. Our results suggest that exposure to realistic pesticide concentrations has minimal effects on Bd-induced mortality, but can alter Bd load. This result could have broad implications for risk assessment of amphibians; the outcome of exposure to multiple stressors may be unpredictable and can differ between species and life stages.
Collapse
Affiliation(s)
- Julia C. Buck
- Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, Texas, United States of America
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jessica Hua
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William R. Brogan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Trang D. Dang
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jenny Urbina
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Randall J. Bendis
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron B. Stoler
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andrew R. Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Rick A. Relyea
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
16
|
Krynak KL, Burke DJ, Benard MF. Larval Environment Alters Amphibian Immune Defenses Differentially across Life Stages and Populations. PLoS One 2015; 10:e0130383. [PMID: 26107644 PMCID: PMC4479591 DOI: 10.1371/journal.pone.0130383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/20/2015] [Indexed: 02/02/2023] Open
Abstract
Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana), a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1) skin-associated microbial communities and 2) post-metamorphic antimicrobial peptide (AMP) production and 3) AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd). While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading) can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be related to variability in the larval environment and calls for research into the relative influence of potentially less benign anthropogenic environmental changes on innate immune defense traits.
Collapse
Affiliation(s)
- Katherine L. Krynak
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David J. Burke
- Research Department, The Holden Arboretum, Kirtland, Ohio, United States of America
| | - Michael F. Benard
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
17
|
Lailvaux SP, Husak JF. The life history of whole-organism performance. QUARTERLY REVIEW OF BIOLOGY 2015; 89:285-318. [PMID: 25510077 DOI: 10.1086/678567] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For almost 40 years, studies of whole-organism performance have formed a cornerstone of evolutionary physiology. Although its utility as a heuristic guide is beyond question, and we have learned much about morphological evolution from its application, the ecomorphological paradigm has frequently been applied to performance evolution in ways that range from unsatisfactory to inappropriate. More importantly, the standard ecomorphological paradigm does not account for tradeoffs among performance and other traits, nor between performance traits that are mediated by resource allocation. A revised paradigm that includes such tradeoffs, and the possible ways that performance and fitness-enhancing traits might affect each other, could potentially revivify the study of phenotypic evolution and make important inroads into understanding the relationships between morphology and performance and between performance and Darwinian fitness. We describe such a paradigm, and discuss the various ways that performance and key life-history traits might interact with and affect each other. We emphasize both the proximate mechanisms potentially linking such traits, and the likely ultimate factors driving those linkages, as well as the evolutionary implications for the overall, multivariate phenotype. Finally, we highlight several research directions that will shed light on the evolution and ecology of whole-organism performance and related life-history traits.
Collapse
|
18
|
Zanette LY, Clinchy M, Suraci JP. Diagnosing predation risk effects on demography: can measuring physiology provide the means? Oecologia 2014; 176:637-51. [PMID: 25234371 DOI: 10.1007/s00442-014-3057-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/18/2014] [Indexed: 11/30/2022]
Abstract
Predators kill prey thereby affecting prey survival and, in the traditional top-down view of predator limitation, that is their sole effect. Bottom-up food limitation alters the physiological condition of individuals affecting both fecundity and survival. Predators of course also scare prey inducing anti-predator defences that may carry physiological costs powerful enough to reduce prey fecundity and survival. Here, we consider whether measuring physiology can be used as a tool to unambiguously diagnose predation risk effects. We begin by providing a review of recent papers reporting physiological effects of predation risk. We then present a conceptual framework describing the pathways by which predators and food can affect prey populations and give an overview of predation risk effects on demography in various taxa. Because scared prey typically eat less the principal challenge we see will be to identify measures that permit us to avoid mistaking predator-induced reductions in food intake for absolute food shortage. To construct an effective diagnostic toolkit we advocate collecting multiple physiological measures and utilizing multivariate statistical procedures. We recommend conducting two-factor predation risk × food manipulations to identify those physiological effects least likely to be mistaken for responses to bottom-up food limitation. We suggest there is a critical need to develop a diagnostic tool that can be used when it is infeasible to experimentally test for predation risk effects on demography, as may often be the case in wildlife conservation, since failing to consider predation risk effects may cause the total impact of predators to be dramatically underestimated.
Collapse
Affiliation(s)
- Liana Y Zanette
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada,
| | | | | |
Collapse
|
19
|
Katzenback BA, Holden HA, Falardeau J, Childers C, Hadj-Moussa H, Avis TJ, Storey KB. Regulation of the Rana sylvatica brevinin-1SY antimicrobial peptide during development and in dorsal and ventral skin in response to freezing, anoxia and dehydration. ACTA ACUST UNITED AC 2014; 217:1392-401. [PMID: 24436376 DOI: 10.1242/jeb.092288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Brevinin-1SY is the only described antimicrobial peptide (AMP) of Rana sylvatica. As AMPs are important innate immune molecules that inhibit microbes, this study examined brevinin-1SY regulation during development and in adult frogs in response to environmental stress. The brevinin-1SY nucleotide sequence was identified and used for protein modeling. Brevinin-1SY was predicted to be an amphipathic, hydrophobic, alpha helical peptide that inserts into a lipid bilayer. Brevinin-1SY transcripts were detected in tadpoles and were significantly increased during the later stages of development. Effects of environmental stress (24 h anoxia, 40% dehydration or 24 h frozen) on the mRNA levels of brevinin-1SY in the dorsal and ventral skin were examined. The brevinin-1SY mRNA levels were increased in dorsal and ventral skin of dehydrated frogs, and in ventral skin of anoxic frogs, compared with controls (non-stressed). Brevinin-1SY protein levels in peptide extracts of dorsal skin showed a similar, but not significant, trend to that of brevinin-1SY mRNA levels. Antimicrobial activity of skin extracts from control and stressed animals were assessed for Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Botrytis cinerea, Rhizopus stolonifer and Pythium sulcatum using disk diffusion assays. Peptide extracts of dorsal skin from anoxic, frozen and dehydrated animals showed significantly higher inhibition of E. coli and P. sulcatum than from control animals. In ventral skin peptide extracts, significant growth inhibition was observed in frozen animals for E. coli and P. sulcatum, and in anoxic animals for B. cinerea, compared with controls. Environmental regulation of brevinin-1SY may have important implications for defense against pathogens.
Collapse
|
20
|
Groner ML, Rollins-Smith LA, Reinert LK, Hempel J, Bier ME, Relyea RA. Interactive effects of competition and predator cues on immune responses of leopard frogs at metamorphosis. ACTA ACUST UNITED AC 2013; 217:351-8. [PMID: 24115058 DOI: 10.1242/jeb.091611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent hypotheses suggest that immunosuppression, resulting from altered environmental conditions, may contribute to the increased incidence of amphibian disease around the world. Antimicrobial peptides (AMPs) in amphibian skin are an important innate immune defense against fungal, viral and bacterial pathogens. Their release is tightly coupled with release of the stress hormone noradrenaline (norepinephrine). During metamorphosis, AMPs may constitute the primary immune response in the skin of some species because acquired immune functions are temporarily suppressed in order to prevent autoimmunity against new adult antigens. Suppression of AMPs during this transitional stage may impact disease rates. We exposed leopard frog tadpoles (Lithobates pipiens) to a factorial combination of competitor and caged-predator environments and measured their development, growth and production of hydrophobic skin peptides after metamorphosis. In the absence of predator cues, or if the exposure to predator cues was late in ontogeny, competition caused more than a 250% increase in mass-standardized hydrophobic skin peptides. Predator cues caused a decrease in mass-standardized hydrophobic skin peptides when the exposure was late in ontogeny under low competition, but otherwise had no effect. Liquid chromatography tandem mass spectrometry of the skin peptides showed that they include six AMPs in the brevinin and temporin families and at least three of these peptides are previously uncharacterized. Both of these peptide families have previously been shown to inhibit harmful microbes including Batrachochytrium dendrobatidis, the fungal pathogen associated with global amphibian declines. Our study shows that amphibians may be able to adjust their skin peptide defenses in response to stressors that are experienced early in ontogeny and that these effects extend through an important life-history transition.
Collapse
Affiliation(s)
- Maya L Groner
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada, C1A 4P3
| | | | | | | | | | | |
Collapse
|