1
|
Xu X, Dinesen C, Pioppi A, Kovács ÁT, Lozano-Andrade CN. Composing a microbial symphony: synthetic communities for promoting plant growth. Trends Microbiol 2025:S0966-842X(25)00006-X. [PMID: 39966007 DOI: 10.1016/j.tim.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Plant microbiomes are pivotal for host development, influencing growth, health, fitness, and evolution, and have emerged as promising resources for sustainable agriculture. However, leveraging these microbiomes to improve crop yield and resilience is challenging due to the huge diversity of plant-associated and soil microorganisms and their intricate interactions. Recently, synthetic microbial communities (SynComs) have been exploited as a reductionist approach to harness microbial benefits and to understand multispecies interactions. Additionally, the advanced functionality of SynComs promises to surpass classic single-strain-based biosolutions. Nevertheless, challenges remain in designing customized, robust, and predictable SynComs for agronomic use. Here, we synthesize and discuss the logical and implemented approaches used to design and assemble SynComs, highlighting important principles, challenges, and trends in utilizing SynComs as alternatives to agrochemicals.
Collapse
Affiliation(s)
- Xinming Xu
- Institute of Biology, Leiden University, 2333BE, Leiden, The Netherlands
| | - Caja Dinesen
- Institute of Biology, Leiden University, 2333BE, Leiden, The Netherlands; DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Adele Pioppi
- Institute of Biology, Leiden University, 2333BE, Leiden, The Netherlands; DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ákos T Kovács
- Institute of Biology, Leiden University, 2333BE, Leiden, The Netherlands; DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | | |
Collapse
|
2
|
Jing J, Garbeva P, Raaijmakers JM, Medema MH. Strategies for tailoring functional microbial synthetic communities. THE ISME JOURNAL 2024; 18:wrae049. [PMID: 38537571 PMCID: PMC11008692 DOI: 10.1093/ismejo/wrae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Indexed: 04/12/2024]
Abstract
Natural ecosystems harbor a huge reservoir of taxonomically diverse microbes that are important for plant growth and health. The vast diversity of soil microorganisms and their complex interactions make it challenging to pinpoint the main players important for the life support functions microbes can provide to plants, including enhanced tolerance to (a)biotic stress factors. Designing simplified microbial synthetic communities (SynComs) helps reduce this complexity to unravel the molecular and chemical basis and interplay of specific microbiome functions. While SynComs have been successfully employed to dissect microbial interactions or reproduce microbiome-associated phenotypes, the assembly and reconstitution of these communities have often been based on generic abundance patterns or taxonomic identities and co-occurrences but have only rarely been informed by functional traits. Here, we review recent studies on designing functional SynComs to reveal common principles and discuss multidimensional approaches for community design. We propose a strategy for tailoring the design of functional SynComs based on integration of high-throughput experimental assays with microbial strains and computational genomic analyses of their functional capabilities.
Collapse
Affiliation(s)
- Jiayi Jing
- Bioinformatics Group, Department of Plant Science, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Department of Plant Science, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
3
|
Kamalanathan V, Sevugapperumal N, Nallusamy S, Ashraf S, Kailasam K, Afzal M. Metagenomic Approach Deciphers the Role of Community Composition of Mycobiome Structured by Bacillus velezensis VB7 and Trichoderma koningiopsis TK in Tomato Rhizosphere to Suppress Root-Knot Nematode Infecting Tomato. Microorganisms 2023; 11:2467. [PMID: 37894125 PMCID: PMC10609121 DOI: 10.3390/microorganisms11102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
The soil microbiome is crucial for maintaining the sustainability of the agricultural environment. Concerning the role of diverse mycobiomes and their abundance toward the suppression of root-knot nematode (RKN) infection in vegetable crops, our understanding is unclear. To unveil this issue, we examined the fungal microbiome in tomato rhizosphere augmented with bioagents challenged against RKN at taxonomic and functional levels. Composition of the mycobiome in tomato rhizosphere treated with Bacillus velezensis VB7 and Trichoderma koningiopsis TK differed significantly from the infected tomato rhizosphere. The abundance and diversity of fungal species, however, were significantly higher in the combined treatments of bioagents than for individual treatments. Fungal microbiome diversity was negatively correlated in the RKN-associated soil. Network analysis of the fungal biome indicated a larger and complex network of fungal biome diversity in bioagent-treated soil than in nematode-associated tomato rhizosphere. The diversity index represented by that challenging the RKN by drenching with consortia of B. velezensis VB7 and T. koningiopsis TK, or applying them individually, constituted the maximum abundance and richness of the mycobiome compared to the untreated control. Thus, the increased diverse nature and relative abundance of the mycobiome in tomato rhizosphere was mediated through the application of either T. koningiopsis TK or B. velezensis VB7, individually or as a consortium comprising both fungal and bacterial antagonists, which facilitated engineering the community composition of fungal bioagents. This in turn inhibited the infestation of RKN in tomato. It would be interesting to explore further the possibility of combined applications of B. velezensis VB7 and T. koningiopsis TK to manage root-knot nematodes as an integrated approach for managing plant parasitic nematodes at the field level.
Collapse
Affiliation(s)
- Vinothini Kamalanathan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Nakkeeran Sevugapperumal
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Suhail Ashraf
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Kumanan Kailasam
- Department of Horticulture, Agricultural College & Research Institute, Kudumiyanmalai, TNAU, Pudukottai 622104, Tamil Nadu, India;
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
4
|
Li J, Yang C, Jousset A, Yang K, Wang X, Xu Z, Yang T, Mei X, Zhong Z, Xu Y, Shen Q, Friman VP, Wei Z. Engineering multifunctional rhizosphere probiotics using consortia of Bacillus amyloliquefaciens transposon insertion mutants. eLife 2023; 12:e90726. [PMID: 37706503 PMCID: PMC10519709 DOI: 10.7554/elife.90726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
While bacterial diversity is beneficial for the functioning of rhizosphere microbiomes, multi-species bioinoculants often fail to promote plant growth. One potential reason for this is that competition between different species of inoculated consortia members creates conflicts for their survival and functioning. To circumvent this, we used transposon insertion mutagenesis to increase the functional diversity within Bacillus amyloliquefaciens bacterial species and tested if we could improve plant growth promotion by assembling consortia of highly clonal but phenotypically dissimilar mutants. While most insertion mutations were harmful, some significantly improved B. amyloliquefaciens plant growth promotion traits relative to the wild-type strain. Eight phenotypically distinct mutants were selected to test if their functioning could be improved by applying them as multifunctional consortia. We found that B. amyloliquefaciens consortium richness correlated positively with plant root colonization and protection from Ralstonia solanacearum phytopathogenic bacterium. Crucially, 8-mutant consortium consisting of phenotypically dissimilar mutants performed better than randomly assembled 8-mutant consortia, suggesting that improvements were likely driven by consortia multifunctionality instead of consortia richness. Together, our results suggest that increasing intra-species phenotypic diversity could be an effective way to improve probiotic consortium functioning and plant growth promotion in agricultural systems.
Collapse
Affiliation(s)
- Jingxuan Li
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Chunlan Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Alexandre Jousset
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Keming Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Xiaofang Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Zhihui Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Tianjie Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Xinlan Mei
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Zengtao Zhong
- College of Life Science, Nanjing Agricultural UniversityNanjingChina
| | - Yangchun Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Ville-Petri Friman
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
- Department of Microbiology, University of HelsinkiHelsinkiFinland
| | - Zhong Wei
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| |
Collapse
|
5
|
Becker MF, Klueken AM, Knief C. Effects of above ground pathogen infection and fungicide application on the root-associated microbiota of apple saplings. ENVIRONMENTAL MICROBIOME 2023; 18:43. [PMID: 37245023 DOI: 10.1186/s40793-023-00502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND The root-associated microbiome has been of keen research interest especially in the last decade due to the large potential for increasing overall plant performance in agricultural systems. Knowledge about the impact of above ground plant disturbances on the root-associated microbiome remains limited. We addressed this by focusing on two potential impacts, foliar pathogen infection alone and in combination with the application of a plant health protecting product. We hypothesized that these lead to plant-mediated responses in the rhizosphere microbiota. RESULTS The effects of an infection of greenhouse grown apple saplings with either Venturia inaequalis or Podosphaera leucotricha as foliar pathogen, as well as the combined effect of P. leucotricha infection and foliar application of the synthetic plant health protecting product Aliette (active ingredient: fosetyl-aluminum), were studied on the root-associated microbiota. The bacterial community structure of rhizospheric soil and endospheric root material was characterized post-infection, using 16S rRNA gene amplicon sequencing. With increasing disease severity both pathogens led to changes in the rhizosphere and endosphere bacterial communities in comparison to uninfected plants (explained variance up to 17.7%). While the preventive application of Aliette on healthy plants two weeks prior inoculation did not induce changes in the root-associated microbiota, a second later application on the diseased plants decreased disease severity and resulted in differences of the rhizosphere bacterial community between infected and several of the cured plants, though differences were overall not statistically significant. CONCLUSIONS Foliar pathogen infections can induce plant-mediated changes in the root-associated microbiota, indicating that above ground disturbances are reflected in the below-ground microbiome, even though these become evident only upon severe leaf infection. The application of the fungicide Aliette on healthy plants itself did not induce any changes, but the application to diseased plants helped the plant to regain the microbiota of a healthy plant. These findings indicate that above ground agronomic management practices have implications for the root-associated microbiome, which should be considered in the context of microbiome management strategies.
Collapse
Affiliation(s)
- Maximilian Fernando Becker
- Institute of Crop Science and Resource Conservation - Molecular Biology of the Rhizosphere, University of Bonn, Nussallee 13, 53115, Bonn, Germany
| | - A Michael Klueken
- Crop Science Division, Disease Control Biology, Bayer AG, Alfred-Nobel-Str. 50, 40789, Monheim am Rhein, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation - Molecular Biology of the Rhizosphere, University of Bonn, Nussallee 13, 53115, Bonn, Germany.
| |
Collapse
|
6
|
Jiang C, Sun X, Liu Y, Zhu S, Wu K, Li H, Shui W. Karst tiankeng shapes the differential composition and structure of bacterial and fungal communities in karst land. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32573-32584. [PMID: 36469271 DOI: 10.1007/s11356-022-24229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Karst tiankeng are important biodiversity conservation reservoirs. However, the unique habitats of karst tiankeng affect microbial community structure remained poorly understood. In this study, we collected soil samples from karst tiankeng (TK) and karst land (KL) and subjected to high-throughput sequencing. Based on the classification of the total, abundance, and rare taxa for bacteria and fungi, a multivariate statistical analysis was carried out. The results revealed that bacterial community Shannon diversity and Pielou's evenness were highest in TK. The rare taxa were ubiquitous in all soil samples, while the higher Shannon diversity of the abundant taxa of TK may be related to the habitat preferences of species and niche differentiation. The community composition of bacterial and fungal sub-communities exhibited significant dissimilarity between TK and KL. The redundancy analysis further demonstrated that abundant taxa were environmentally more constrained than rare taxa. The bacterial and fungal networks of KL were more complex than TK. The keystones of the network transforms may suggest their significant role in the ecological function of the karst tiankeng ecosystem. This study represents the first reports of the characteristics of bacterial and fungal communities in karst tiankeng.
Collapse
Affiliation(s)
- Cong Jiang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Xiang Sun
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Yuanmeng Liu
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Sufeng Zhu
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100871, People's Republic of China
| | - Kexing Wu
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Hui Li
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Wei Shui
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China.
| |
Collapse
|
7
|
Hansen ML, Wibowo M, Jarmusch SA, Larsen TO, Jelsbak L. Sequential interspecies interactions affect production of antimicrobial secondary metabolites in Pseudomonas protegens DTU9.1. THE ISME JOURNAL 2022; 16:2680-2690. [PMID: 36123523 PMCID: PMC9666462 DOI: 10.1038/s41396-022-01322-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Soil and rhizosphere microbiomes play important roles in suppression of plant pathogens through production of antagonistic secondary metabolites, yet mechanisms that determine the strength of pathogen control are not well understood. Many Pseudomonas species are associated with soil and rhizosphere microbiomes, and their ability to suppress pathogens is well documented. Here, we investigate how interactions within the Pseudomonas genus affect their production of antimicrobial metabolites. From a biosensor-based screen, we identify P. capeferrum species as capable of modulating secondary metabolite production in P. protegens. We show that P. capeferrum alters production of pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) in P. protegens via two distinct and sequential mechanisms that depends on spatial proximity of the two species. Specifically, P. capeferrum secretes a diffusible signal that induce pyoluteorin production up to 100-fold in neighboring P. protegens colonies. In contrast, the interaction results in reduced DAPG production, but only within mixed-species colonies. Additionally, we found that increased pyoluteorin production and cell lysis of P. capeferrum is required for inhibition of DAPG production, suggesting that pyoluteorin-facilitated antibiosis of P. protegens on P. capeferrum leads to release of cell-associated metabolites and subsequent inhibition of DAPG production in P. protegens. As the interaction modulates in vitro bioactivity of the species, genus-specific interactions may assist in improving efficacy of biocontrol strains and consortia.
Collapse
Affiliation(s)
- Morten Lindqvist Hansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Scott Alexander Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark.
| |
Collapse
|
8
|
McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. The interplay of fungal and bacterial microbiomes on rainforest frogs following a disease outbreak. Ecosphere 2022. [DOI: 10.1002/ecs2.4037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Donald T. McKnight
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Roger Huerlimann
- College of Science and Engineering James Cook University Townsville Queensland Australia
- Marine Climate Change Unit Okinawa Institute of Science and Technology Onnason Okinawa Japan
| | - Deborah S. Bower
- College of Science and Engineering James Cook University Townsville Queensland Australia
- School of Environmental and Rural Science University of New England Armidale New South Wales Australia
| | - Lin Schwarzkopf
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Ross A. Alford
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Kyall R. Zenger
- College of Science and Engineering James Cook University Townsville Queensland Australia
| |
Collapse
|
9
|
Herms CH, Hennessy RC, Bak F, Dresbøll DB, Nicolaisen MH. Back to our roots: exploring the role of root morphology as a mediator of beneficial plant-microbe interactions. Environ Microbiol 2022; 24:3264-3272. [PMID: 35106901 PMCID: PMC9543362 DOI: 10.1111/1462-2920.15926] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
Plant breeding for belowground traits that have a positive impact on the rhizosphere microbiome is a promising strategy to sustainably improve crop yields. Root architecture and morphology are understudied plant breeding targets despite their potential to significantly shape microbial community structure and function in the rhizosphere. In this review, we explore the relationship between various root architectural and morphological traits and rhizosphere interactions, focusing on the potential of root diameter to impact the rhizosphere microbiome structure and function while discussing the potential biological and ecological mechanisms underpinning this process. In addition, we propose three future research avenues to drive this research area in an effort to unravel the effect of belowground traits on rhizosphere microbiology. This knowledge will pave the way for new plant breeding strategies that can be exploited for sustainable and high‐yielding crop cultivars.
Collapse
Affiliation(s)
- Courtney Horn Herms
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Rosanna Catherine Hennessy
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Frederik Bak
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Dorte Bodin Dresbøll
- Section for Crop Sciences, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 30, Taastrup, 2630, Denmark
| | - Mette Haubjerg Nicolaisen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
10
|
Sullam KE, Musa T. Ecological Dynamics and Microbial Treatments against Oomycete Plant Pathogens. PLANTS 2021; 10:plants10122697. [PMID: 34961168 PMCID: PMC8707103 DOI: 10.3390/plants10122697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
In this review, we explore how ecological concepts may help assist with applying microbial biocontrol agents to oomycete pathogens. Oomycetes cause a variety of agricultural diseases, including potato late blight, apple replant diseases, and downy mildew of grapevine, which also can lead to significant economic damage in their respective crops. The use of microbial biocontrol agents is increasingly gaining interest due to pressure from governments and society to reduce chemical plant protection products. The success of a biocontrol agent is dependent on many ecological processes, including the establishment on the host, persistence in the environment, and expression of traits that may be dependent on the microbiome. This review examines recent literature and trends in research that incorporate ecological aspects, especially microbiome, host, and environmental interactions, into biological control development and applications. We explore ecological factors that may influence microbial biocontrol agents’ efficacy and discuss key research avenues forward.
Collapse
|
11
|
Multi-Trait Wheat Rhizobacteria from Calcareous Soil with Biocontrol Activity Promote Plant Growth and Mitigate Salinity Stress. Microorganisms 2021; 9:microorganisms9081588. [PMID: 34442666 PMCID: PMC8400701 DOI: 10.3390/microorganisms9081588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) can be functional microbial fertilizers and/or biological control agents, contributing to an eco-spirit and safe solution for chemical replacement. Therefore, we have isolated rhizospheric arylsulfatase (ARS)-producing bacteria, belonging to Pseudomonas and Bacillus genus, from durum wheat crop grown on calcareous soil. These isolates harbouring plant growth promoting (PGP) traits were further evaluated in vitro for additional PGP traits, including indole compounds production and biocontrol activity against phytopathogens, limiting the group of multi-trait strains to eight. The selected bacterial strains were further evaluated for PGP attributes associated with biofilm formation, compatibility, salt tolerance ability and effect on plant growth. In vitro studies demonstrated that the multi-trait isolates, Bacillus (1.SG.7, 5.SG.3) and Pseudomonas (2.SG.20, 2.C.19) strains, enhanced the lateral roots abundance and shoots biomass, mitigated salinity stress, suggesting the utility of beneficial ARS-producing bacteria as potential microbial fertilizers. Furthermore, in vitro studies demonstrated that compatible combinations of multi-trait isolates, Bacillus sp. 1.SG.7 in a mixture coupled with 5.SG.3, and 2.C.19 with 5.SG.3 belonging to Bacillus and Pseudomonas, respectively, may enhance plant growth as compared to single inoculants.
Collapse
|
12
|
Yin C, Casa Vargas JM, Schlatter DC, Hagerty CH, Hulbert SH, Paulitz TC. Rhizosphere community selection reveals bacteria associated with reduced root disease. MICROBIOME 2021; 9:86. [PMID: 33836842 PMCID: PMC8035742 DOI: 10.1186/s40168-020-00997-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/29/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Microbes benefit plants by increasing nutrient availability, producing plant growth hormones, and protecting against pathogens. However, it is largely unknown how plants change root microbial communities. RESULTS In this study, we used a multi-cycle selection system and infection by the soilborne fungal pathogen Rhizoctonia solani AG8 (hereafter AG8) to examine how plants impact the rhizosphere bacterial community and recruit beneficial microorganisms to suppress soilborne fungal pathogens and promote plant growth. Successive plantings dramatically enhanced disease suppression on susceptible wheat cultivars to AG8 in the greenhouse. Accordingly, analysis of the rhizosphere soil microbial community using deep sequencing of 16S rRNA genes revealed distinct bacterial community profiles assembled over successive wheat plantings. Moreover, the cluster of bacterial communities formed from the AG8-infected rhizosphere was distinct from those without AG8 infection. Interestingly, the bacterial communities from the rhizosphere with the lowest wheat root disease gradually separated from those with the worst wheat root disease over planting cycles. Successive monocultures and application of AG8 increased the abundance of some bacterial genera which have potential antagonistic activities, such as Chitinophaga, Pseudomonas, Chryseobacterium, and Flavobacterium, and a group of plant growth-promoting (PGP) and nitrogen-fixing microbes, including Pedobacter, Variovorax, and Rhizobium. Furthermore, 47 bacteria isolates belong to 35 species were isolated. Among them, eleven and five exhibited antagonistic activities to AG8 and Rhizoctonia oryzae in vitro, respectively. Notably, Janthinobacterium displayed broad antagonism against the soilborne pathogens Pythium ultimum, AG8, and R. oryzae in vitro, and disease suppressive activity to AG8 in soil. CONCLUSIONS Our results demonstrated that successive wheat plantings and pathogen infection can shape the rhizosphere microbial communities and specifically accumulate a group of beneficial microbes. Our findings suggest that soil community selection may offer the potential for addressing agronomic concerns associated with plant diseases and crop productivity. Video Abstract.
Collapse
Affiliation(s)
- Chuntao Yin
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Juan M Casa Vargas
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Daniel C Schlatter
- USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, WA, 99164-6430, USA
| | - Christina H Hagerty
- Columbia Basin Agricultural Research Center, Oregon State University, Adams, OR, 97810, USA
| | - Scot H Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Timothy C Paulitz
- USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, WA, 99164-6430, USA.
| |
Collapse
|
13
|
Wang Y, Liu Y, Li X, Han X, Zhang Z, Ma X, Li J. Potentilla anserina L. developmental changes affect the rhizosphere prokaryotic community. Sci Rep 2021; 11:2838. [PMID: 33531629 PMCID: PMC7854623 DOI: 10.1038/s41598-021-82610-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/22/2021] [Indexed: 11/23/2022] Open
Abstract
Plant roots and soil prokaryotes primarily interact with each other in the rhizosphere. Changes in the rhizosphere prokaryotic structure are influenced by several factors. In this study, the community structure of the Potentilla anserina L. rhizosphere prokaryotes was identified and evaluated by high-throughput sequencing technology in different continuous cropping fields and developmental stages of the plant. In total, 2 archaeal (Euryarchaeota and Thaumarchaeota) and 26 bacterial phyla were identified in the P. anserina rhizosphere. The bacterial community was mainly composed of Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria, and Verrucomicrobia. Moreover, the prokaryotic community structure of the rhizosphere varied significantly during plant development. Our results provide new insights into the dynamics of the P. anserina rhizosphere prokaryotic community and may provide useful information for enhancing the growth and development of P. anserina through artificial control of the soil prokaryotes.
Collapse
Affiliation(s)
- Yaqiong Wang
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China. .,Qinghai Provincial Key Laboratory of High-Value Utilization of Characteristic Economic Plants, Xining, 810007, China. .,Qinghai Provincial Biotechnology and Analytical Test Key Laboratory, Tibetan Plateau Juema Research Centre, Xining, 810007, China.
| | - Yuxi Liu
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China
| | - Xue Li
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China
| | - Xiaoyan Han
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China
| | - Zhen Zhang
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China
| | - Xiaoling Ma
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China
| | - Junqiao Li
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China. .,Qinghai Provincial Key Laboratory of High-Value Utilization of Characteristic Economic Plants, Xining, 810007, China. .,Qinghai Provincial Biotechnology and Analytical Test Key Laboratory, Tibetan Plateau Juema Research Centre, Xining, 810007, China.
| |
Collapse
|
14
|
Niu B, Wang W, Yuan Z, Sederoff RR, Sederoff H, Chiang VL, Borriss R. Microbial Interactions Within Multiple-Strain Biological Control Agents Impact Soil-Borne Plant Disease. Front Microbiol 2020; 11:585404. [PMID: 33162962 PMCID: PMC7581727 DOI: 10.3389/fmicb.2020.585404] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Major losses of crop yield and quality caused by soil-borne plant diseases have long threatened the ecology and economy of agriculture and forestry. Biological control using beneficial microorganisms has become more popular for management of soil-borne pathogens as an environmentally friendly method for protecting plants. Two major barriers limiting the disease-suppressive functions of biocontrol microbes are inadequate colonization of hosts and inefficient inhibition of soil-borne pathogen growth, due to biotic and abiotic factors acting in complex rhizosphere environments. Use of a consortium of microbial strains with disease inhibitory activity may improve the biocontrol efficacy of the disease-inhibiting microbes. The mechanisms of biological control are not fully understood. In this review, we focus on bacterial and fungal biocontrol agents to summarize the current state of the use of single strain and multi-strain biological control consortia in the management of soil-borne diseases. We discuss potential mechanisms used by microbial components to improve the disease suppressing efficacy. We emphasize the interaction-related factors to be considered when constructing multiple-strain biological control consortia and propose a workflow for assembling them by applying a reductionist synthetic community approach.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Weixiong Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Rainer Borriss
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| |
Collapse
|
15
|
Gu Z, Wang M, Wang Y, Zhu L, Mur LAJ, Hu J, Guo S. Nitrate Stabilizes the Rhizospheric Fungal Community to Suppress Fusarium Wilt Disease in Cucumber. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:590-599. [PMID: 32073377 DOI: 10.1094/mpmi-07-19-0198-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nitrogen forms can regulate soil-borne Fusarium wilt suppression, but the related mechanisms are largely unknown, especially possible action via the rhizospheric microbial community. Soil analysis, MiSeq high-throughput sequencing analysis, community diversity, and network analysis were used to characterize the impact of different nitrogen forms (nitrate and ammonium) on rhizospheric fungal communities and the contribution of nitrate to the suppression to Fusarium oxysporum f. sp. cucumerinum compared with ammonium. Nitrate-grown cucumber showed a lower disease index and F. oxysporum f. sp. cucumerinum abundance in the rhizosphere. In comparisons with ammonium nutrients, nitrate-fed plants maintained a higher soil rhizosphere pH, microbial biomass carbon content, microbial biomass nitrogen content, as well as fungal community richness and diversity following F. oxysporum f. sp. cucumerinum incubation. All these factors were negatively related with disease index. Network analysis showed fewer nodes and edges in the ammonium treatments compared with nitrate treatments. The relative abundance of Pathotroph-Saprotroph, Pathotroph-Saprotroph-Symbiotroph, and Saprotroph fungi explained 82% of the variability of rhizosphere F. oxysporum f. sp. cucumerinum abundance. In conclusion, after pathogen inoculation under nitrate nutrition, the less-affected microbial composition, community diversity, and community internal relations, which resulted from the more diverse and robust microbial population, potentially contributed to greater Fusarium wilt suppression.
Collapse
Affiliation(s)
- Zechen Gu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ying Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Linxing Zhu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| | - Jun Hu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Chaney L, Baucom RS. The soil microbial community alters patterns of selection on flowering time and fitness-related traits in Ipomoea purpurea. AMERICAN JOURNAL OF BOTANY 2020; 107:186-194. [PMID: 32052423 PMCID: PMC7065020 DOI: 10.1002/ajb2.1426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/21/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Plant flowering time plays an important role in plant fitness and thus evolutionary processes. Soil microbial communities are diverse and have a large impact, both positive and negative, on the host plant. However, owing to few available studies, how the soil microbial community may influence the evolutionary response of plant populations is not well understood. Here we sought to uncover whether belowground microbial communities act as an agent of selection on flowering and growth traits in the common morning glory, Ipomoea purpurea. METHODS We performed a controlled greenhouse experiment in which genetic lines of I. purpurea were planted into either sterilized soils or in soils that were sterilized and inoculated with the microbial community from original field soil. We could thus directly test the influence of alterations to the microbial community on plant growth, flowering, and fitness and assess patterns of selection in both soil microbial environments. RESULTS A more complex soil microbial community resulted in larger plants that produced more flowers. Selection strongly favored earlier flowering when plants were grown in the complex microbial environment than compared to sterilized soil. We also uncovered a pattern of negative correlational selection on growth rate and flowering time, indicating that selection favored different combinations of growth and flowering traits in the simplified versus complex soil community. CONCLUSIONS Together, these results suggest the soil microbial community is a selective agent on flowering time and ultimately that soil microbial community influences important plant evolutionary processes.
Collapse
Affiliation(s)
| | - Regina S. Baucom
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
17
|
Saleem M, Hu J, Jousset A. More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110617-062605] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms drive several processes needed for robust plant growth and health. Harnessing microbial functions is thus key to productive and sustainable food production. Molecular methods have led to a greater understanding of the soil microbiome composition. However, translating species or gene composition into microbiome functionality remains a challenge. Community ecology concepts such as the biodiversity–ecosystem functioning framework may help predict the assembly and function of plant-associated soil microbiomes. Higher diversity can increase the number and resilience of plant-beneficial functions that can be coexpressed and unlock the expression of plant-beneficial traits that are hard to obtain from any species in isolation. We combine well-established community ecology concepts with molecular microbiology into a workable framework that may enable us to predict and enhance soil microbiome functionality to promote robust plant growth in a global change context.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, Alabama 36104, USA
| | - Jie Hu
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Alexandre Jousset
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
18
|
Li X, Jousset A, de Boer W, Carrión VJ, Zhang T, Wang X, Kuramae EE. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME JOURNAL 2018; 13:738-751. [PMID: 30368524 PMCID: PMC6461838 DOI: 10.1038/s41396-018-0300-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/25/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023]
Abstract
Microorganisms associated with roots are thought to be part of the so-called extended plant phenotypes with roles in the acquisition of nutrients, production of growth hormones, and defense against diseases. Since the crops selectively enrich most rhizosphere microbes out of the bulk soil, we hypothesized that changes in the composition of bulk soil communities caused by agricultural management affect the extended plant phenotype. In the current study, we performed shotgun metagenome sequencing of the rhizosphere microbiome of the peanut (Arachis hypogaea) and metatranscriptome analysis of the roots of peanut plants grown in the soil with different management histories, peanut monocropping and crop rotation. We found that the past planting record had a significant effect on the assembly of the microbial community in the peanut rhizosphere, indicating a soil memory effect. Monocropping resulted in a reduction of the rhizosphere microbial diversity, an enrichment of several rare species, and a reduced representation of traits related to plant performance, such as nutrients metabolism and phytohormone biosynthesis. Furthermore, peanut plants in monocropped soil exhibited a significant reduction in growth coinciding with a down-regulation of genes related to hormone production, mainly auxin and cytokinin, and up-regulation of genes related to the abscisic acid, salicylic acid, jasmonic acid, and ethylene pathways. These findings suggest that land use history affects crop rhizosphere microbiomes and plant physiology.
Collapse
Affiliation(s)
- Xiaogang Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
| | - Alexandre Jousset
- Institute for Environmental Biology, Ecology & Biodiversity, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, 6708 PB, The Netherlands.,Soil Biology Group, Wageningen University, Wageningen, 6708 PB, The Netherlands
| | - Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
| | - Taolin Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. .,Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, 335211, China.
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
19
|
Chen S, Yu H, Zhou X, Wu F. Cucumber ( Cucumis sativus L.) Seedling Rhizosphere Trichoderma and Fusarium spp. Communities Altered by Vanillic Acid. Front Microbiol 2018; 9:2195. [PMID: 30283420 PMCID: PMC6157394 DOI: 10.3389/fmicb.2018.02195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Root exudates mediate soil microbiome composition and diversity, which might further influence plant development and health. Vanillic acid from root exudates is usually referred as autotoxin of cucumber, however, how vanillic acid affect soil microbial community diversities and abundances remains unclear. In this study, vanillic acid (VA; 0.02, 0.05, 0.1, and 0.2 μmol g-1 soil) was applied to soil every other day for a total of five applications. We used Illumina MiSeq sequencing, quantitative PCR (qPCR) and PCR-denaturing gradient gel electrophoresis (PCR-DGGE) to test the effects of VA on the total fungi community composition as well as the Trichoderma and Fusarium spp. community abundances and structures in the cucumber rhizosphere. Illumina MiSeq sequencing showed that VA (0.05 μmol g-1 soil) increased the relative abundance of the fungal phylum Basidiomycota while decreasing the relative abundance of Ascomycota (P < 0.05), and not altered the diversity of the soil fungal community. VA (0.05 μmol g-1 soil) also increased the relative abundances of the fungal genera with plant pathogens, such as Conocybe and Spizellomyces spp.(P < 0.05). A qPCR analysis showed that VA (0.05 to 0.2 μmol g-1 soil) exerted promoting effects on Trichoderma spp. community abundance and stimulated Fusarium spp. abundance at low concentrations (0.02 to 0.05 μmol g-1 soil) but inhibited it at high concentrations (0.1 to 0.2 μmol g-1 soil). The PCR-DGGE analysis showed that all concentrations of VA altered the community structures of Trichoderma spp. and that the application of VA (0.02 and 0.05 μmol g-1 soil) changed the band number and the Shannon-Wiener index of the Fusarium spp. community. This study demonstrated that VA changed the total fungal community in the cucumber seedling rhizosphere and that the Trichoderma and Fusarium spp. communities showed different responses to VA.
Collapse
Affiliation(s)
- Shaocan Chen
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Hongjie Yu
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xingang Zhou
- Department of Horticulture, Northeast Agricultural University, Harbin, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| |
Collapse
|
20
|
Bell SC, Garland S, Alford RA. Increased Numbers of Culturable Inhibitory Bacterial Taxa May Mitigate the Effects of Batrachochytrium dendrobatidis in Australian Wet Tropics Frogs. Front Microbiol 2018; 9:1604. [PMID: 30072970 PMCID: PMC6058028 DOI: 10.3389/fmicb.2018.01604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/27/2018] [Indexed: 11/20/2022] Open
Abstract
Symbiotic bacterial communities resident on amphibian skin can benefit their hosts. For example, antibiotic production by community members can control the pathogen Batrachochytrium dendrobatidis (Bd) and it is possible for these community members to be used as probiotics to reduce infection levels. In the early 1990s, the emergence of Bd caused declines and disappearances of frogs in the Australian Wet Tropics; the severity of its effects varied among species and sites. Some species have since recolonized despite enzootic Bd within their populations. This variation in history among species and sites provided an opportunity to investigate the role of anti-fungal cutaneous bacteria in protecting frogs against Bd infection. We collected cutaneous swab samples from three species of frogs at two upland and two lowland sites in the Wet Tropics, and used in vitro challenge assays to identify culturable Bd-inhibitory bacterial isolates for further analysis. We sequenced DNA from cultured inhibitory isolates to identify taxa, resulting in the classification of 16 Bd-inhibitory OTUs, and determined whether inhibitory taxa were associated with frog species, site, or intensity of infection. We present preliminary results showing that the upper limit of Bd infection intensity was negatively correlated with number of inhibitory OTUs present per frog indicating that increased numbers of Bd-inhibiting taxa may play a role in reducing the intensity of Bd infections, facilitating frog coexistence with enzootic Bd. One upland site had a significantly lower prevalence of Bd infection, a significantly higher proportion of frogs with one or more culturable Bd-inhibitory OTUs, a greater number of inhibitory bacterial genera present per frog, and statistically significant clustering of individual frogs with similar Bd-inhibitory signatures when compared to all other sites. This suggests that Bd-inhibitory taxa are likely to be particularly important to frogs at this site and may have played a role in their ability to recolonize following population declines. Our findings suggest that the use of multi-taxon Bd-inhibitory probiotics to support at-risk amphibian populations may be more effective than single-taxon alternatives.
Collapse
Affiliation(s)
- Sara C. Bell
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Stephen Garland
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Ross A. Alford
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
21
|
Piovia-Scott J, Rejmanek D, Woodhams DC, Worth SJ, Kenny H, McKenzie V, Lawler SP, Foley JE. Greater Species Richness of Bacterial Skin Symbionts Better Suppresses the Amphibian Fungal Pathogen Batrachochytrium Dendrobatidis. MICROBIAL ECOLOGY 2017; 74:217-226. [PMID: 28064360 DOI: 10.1007/s00248-016-0916-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
The symbiotic microbes that grow in and on many organisms can play important roles in protecting their hosts from pathogen infection. While species diversity has been shown to influence community function in many other natural systems, the question of how species diversity of host-associated symbiotic microbes contributes to pathogen resistance is just beginning to be explored. Understanding diversity effects on pathogen resistance could be particularly helpful in combating the fungal pathogen Batrachochytrium dendrobatidis (Bd) which has caused dramatic population declines in many amphibian species and is a major concern for amphibian conservation. Our study investigates the ability of host-associated bacteria to inhibit the proliferation of Bd when grown in experimentally assembled biofilm communities that differ in species number and composition. Six bacterial species isolated from the skin of Cascades frogs (Rana cascadae) were used to assemble bacterial biofilm communities containing 1, 2, 3, or all 6 bacterial species. Biofilm communities were grown with Bd for 7 days following inoculation. More speciose bacterial communities reduced Bd abundance more effectively. This relationship between bacterial species richness and Bd suppression appeared to be driven by dominance effects-the bacterial species that were most effective at inhibiting Bd dominated multi-species communities-and complementarity: multi-species communities inhibited Bd growth more than monocultures of constituent species. These results underscore the notion that pathogen resistance is an emergent property of microbial communities, a consideration that should be taken into account when designing probiotic treatments to reduce the impacts of infectious disease.
Collapse
Affiliation(s)
- Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Avenue, Vancouver, WA, 98686, USA.
| | - Daniel Rejmanek
- Department of Veterinary Medicine and Epidemiology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - S Joy Worth
- Department of Veterinary Medicine and Epidemiology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Heather Kenny
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Avenue, Vancouver, WA, 98686, USA
| | - Valerie McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Sharon P Lawler
- Department of Entomology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Janet E Foley
- Department of Veterinary Medicine and Epidemiology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
22
|
Lombardi L, Zoppo M, Rizzato C, Egan CG, Scarpato R, Tavanti A. Use of Amplification Fragment Length Polymorphism to Genotype Pseudomonas stutzeri Strains Following Exposure to Ultraviolet Light A. Pol J Microbiol 2017; 66:107-111. [PMID: 29359695 DOI: 10.5604/17331331.1234998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Changes in ultraviolet light radiation can act as a selective force on the genetic and physiological traits of a microbial community. Two strains of the common soil bacterium Pseudomonas stutzeri, isolated from aquifer cores and from human spinal fluid were exposed to ultraviolet light. Amplification length polymorphism analysis (AFLP) was used to genotype this bacterial species and evaluate the effect of UVA-exposure on genomic DNA extracted from 18 survival colonies of the two strains compared to unexposed controls. AFLP showed a high discriminatory power, confirming the existence of different genotypes within the species and presence of DNA polymorphisms in UVA-exposed colonies.
Collapse
Affiliation(s)
- Lisa Lombardi
- Department of Biology, Genetic Unit, University of Pisa, Italy
| | - Marina Zoppo
- Department of Biology, Genetic Unit, University of Pisa, Italy
| | - Cosmeri Rizzato
- Department of Biology, Genetic Unit, University of Pisa, Italy
| | | | | | - Arianna Tavanti
- Department of Biology, Genetic Unit, University of Pisa, Italy
| |
Collapse
|
23
|
Yang T, Wei Z, Friman V, Xu Y, Shen Q, Kowalchuk GA, Jousset A. Resource availability modulates biodiversity‐invasion relationships by altering competitive interactions. Environ Microbiol 2017; 19:2984-2991. [DOI: 10.1111/1462-2920.13708] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Tianjie Yang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based FertilizersJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University210095Nanjing People's Republic of China
- Institute for Environmental Biology, Ecology & BiodiversityUtrecht UniversityPadualaan 8, 3584 CH Utrecht The Netherlands
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based FertilizersJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University210095Nanjing People's Republic of China
| | | | - Yangchun Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based FertilizersJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University210095Nanjing People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based FertilizersJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University210095Nanjing People's Republic of China
| | - George A. Kowalchuk
- Institute for Environmental Biology, Ecology & BiodiversityUtrecht UniversityPadualaan 8, 3584 CH Utrecht The Netherlands
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based FertilizersJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University210095Nanjing People's Republic of China
- Institute for Environmental Biology, Ecology & BiodiversityUtrecht UniversityPadualaan 8, 3584 CH Utrecht The Netherlands
| |
Collapse
|
24
|
Abstract
Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications. The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future.
Collapse
|
25
|
Pseudomonas spp. diversity is negatively associated with suppression of the wheat take-all pathogen. Sci Rep 2016; 6:29905. [PMID: 27549739 PMCID: PMC4993996 DOI: 10.1038/srep29905] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/24/2016] [Indexed: 11/25/2022] Open
Abstract
Biodiversity and ecosystem functioning research typically shows positive diversity- productivity relationships. However, local increases in species richness can increase competition within trophic levels, reducing the efficacy of intertrophic level population control. Pseudomonas spp. are a dominant group of soil bacteria that play key roles in plant growth promotion and control of crop fungal pathogens. Here we show that Pseudomonas spp. richness is positively correlated with take-all disease in wheat and with yield losses of ~3 t/ha in the field. We modeled the interactions between Pseudomonas and the take-all pathogen in abstract experimental microcosms, and show that increased bacterial genotypic richness escalates bacterial antagonism and decreases the ability of the bacterial community to inhibit growth of the take-all pathogen. Future work is required to determine the generality of these negative biodiversity effects on different media and directly at infection zones on root surfaces. However, the increase in competition between bacteria at high genotypic richness and the potential loss of fungal biocontrol activity highlights an important mechanism to explain the negative Pseudomonas diversity-wheat yield relationship we observed in the field. Together our results suggest that the effect of biodiversity on ecosystem functioning can depend on both the function and trophic level of interest.
Collapse
|
26
|
Schulz-Bohm K, Zweers H, de Boer W, Garbeva P. A fragrant neighborhood: volatile mediated bacterial interactions in soil. Front Microbiol 2015; 6:1212. [PMID: 26579111 PMCID: PMC4631045 DOI: 10.3389/fmicb.2015.01212] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence that volatile organic compounds (VOCs) play essential roles in communication and competition between soil microorganisms. Here we assessed volatile-mediated interactions of a synthetic microbial community in a model system that mimics the natural conditions in the heterogeneous soil environment along the rhizosphere. Phylogenetic different soil bacterial isolates (Burkholderia sp., Dyella sp., Janthinobacterium sp., Pseudomonas sp., and Paenibacillus sp.) were inoculated as mixtures or monoculture in organic-poor, sandy soil containing artificial root exudates (ARE) and the volatile profile and growth were analyzed. Additionally, a two-compartment system was used to test if volatiles produced by inter-specific interactions in the rhizosphere can stimulate the activity of starving bacteria in the surrounding, nutrient-depleted soil. The obtained results revealed that both microbial interactions and shifts in microbial community composition had a strong effect on the volatile emission. Interestingly, the presence of a slow-growing, low abundant Paenibacillus strain significantly affected the volatile production by the other abundant members of the bacterial community as well as the growth of the interacting strains. Furthermore, volatiles released by mixtures of root-exudates consuming bacteria stimulated the activity and growth of starved bacteria. Besides growth stimulation, also an inhibition in growth was observed for starving bacteria exposed to microbial volatiles. The current work suggests that volatiles produced during microbial interactions in the rhizosphere have a significant long distance effect on microorganisms in the surrounding, nutrient-depleted soil.
Collapse
Affiliation(s)
- Kristin Schulz-Bohm
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Hans Zweers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands ; Department of Soil Quality, Wageningen University Wageningen, Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| |
Collapse
|
27
|
Hol WHG, Garbeva P, Hordijk C, Hundscheid PJ, Gunnewiek PJAK, Van Agtmaal M, Kuramae EE, De Boer W. Non-random species loss in bacterial communities reduces antifungal volatile production. Ecology 2015; 96:2042-8. [PMID: 26405729 DOI: 10.1890/14-2359.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The contribution of low-abundance microbial species to soil ecosystems is easily overlooked because there is considerable overlap between metabolic abilities (functional redundancy) of dominant and subordinate microbial species. Here we studied how loss of less abundant soil bacteria affected the production of antifungal volatiles, an important factor in the natural control of soil-borne pathogenic fungi. We provide novel empirical evidence that the loss of soil bacterial species leads to a decline in the production of volatiles that suppress root pathogens. By using dilution-to-extinction for seven different soils we created bacterial communities with a decreasing number of species and grew them under carbon-limited conditions. Communities with high bacterial species richness produced volatiles that strongly reduced the hyphal growth of the pathogen Fusarium oxysporum. For most soil origins loss of bacterial species resulted in loss of antifungal volatile production. Analysis of the volatiles revealed that several known antifungal compounds were only produced in the more diverse bacterial communities. Our results suggest that less abundant bacterial species play an important role in antifungal volatile production by soil bacterial communities and, consequently, in the natural suppression of soil-borne pathogens.
Collapse
|
28
|
Junker RR, Keller A. Microhabitat heterogeneity across leaves and flower organs promotes bacterial diversity. FEMS Microbiol Ecol 2015; 91:fiv097. [DOI: 10.1093/femsec/fiv097] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2015] [Indexed: 01/05/2023] Open
|
29
|
Weidner S, Koller R, Latz E, Kowalchuk G, Bonkowski M, Scheu S, Jousset A. Bacterial diversity amplifies nutrient‐based plant–soil feedbacks. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12445] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simone Weidner
- Institute of Environmental Biology Utrecht University Padualaan 83584 CH Utrecht The Netherlands
- JF Blumenbach Institute of Zoology and Anthropology Georg August University Göttingen Berliner Str. 28 37073 Göttingen Germany
| | - Robert Koller
- Department of Terrestrial Ecology Institute of Zoology University of Cologne Zülpicher Str. 47b 50674 Cologne Germany
- Forschungszentrum Jülich Institute of Bio‐ and Geosciences IBG‐2: Plant Sciences 52425 Jülich Germany
| | - Ellen Latz
- JF Blumenbach Institute of Zoology and Anthropology Georg August University Göttingen Berliner Str. 28 37073 Göttingen Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e04103 Leipzig Germany
- Institute of Ecology Friedrich Schiller University Jena Dornburger‐Str.159 07743 Jena Germany
| | - George Kowalchuk
- Institute of Environmental Biology Utrecht University Padualaan 83584 CH Utrecht The Netherlands
| | - Michael Bonkowski
- Department of Terrestrial Ecology Institute of Zoology University of Cologne Zülpicher Str. 47b 50674 Cologne Germany
| | - Stefan Scheu
- JF Blumenbach Institute of Zoology and Anthropology Georg August University Göttingen Berliner Str. 28 37073 Göttingen Germany
| | - Alexandre Jousset
- Institute of Environmental Biology Utrecht University Padualaan 83584 CH Utrecht The Netherlands
- JF Blumenbach Institute of Zoology and Anthropology Georg August University Göttingen Berliner Str. 28 37073 Göttingen Germany
| |
Collapse
|
30
|
Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0977-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
31
|
Knelman JE, Nemergut DR. Changes in community assembly may shift the relationship between biodiversity and ecosystem function. Front Microbiol 2014; 5:424. [PMID: 25165465 PMCID: PMC4131499 DOI: 10.3389/fmicb.2014.00424] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/27/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Joseph E Knelman
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, CO, USA ; Institute for Arctic and Alpine Research, University of Colorado Boulder, CO, USA
| | - Diana R Nemergut
- Institute for Arctic and Alpine Research, University of Colorado Boulder, CO, USA ; Environmental Studies Program, University of Colorado Boulder, CO, USA ; Department of Biology, Duke University Durham, NC, USA
| |
Collapse
|