1
|
Bonser SP, Gabriel V, Zeng K, Moles AT. The biocontrol paradox. Trends Ecol Evol 2025:S0169-5347(25)00081-3. [PMID: 40240245 DOI: 10.1016/j.tree.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/27/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
Biocontrol agents can significantly reduce the growth and performance of individual invasive plants but often have limited success in controlling invasions. Here, we suggest that some biocontrol failures may be understood by distinguishing between individual plant performance and the performance of groups growing in monoculture. The success of a group growing in monoculture can be maximised if individual plants limit their allocation of limited resources to competition. However, individual performance can be maximised by acquiring resources at the expense of neighbouring plants. Enemies such as herbivores can reduce the dominance of individual plants and limit resource allocation to competition. Thus, biocontrol could have the unexpected effect of increasing the performance of groups of invaders.
Collapse
Affiliation(s)
- Stephen P Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney 2052, Australia.
| | - Violaine Gabriel
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney 2052, Australia
| | - Karen Zeng
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney 2052, Australia
| | - Angela T Moles
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney 2052, Australia
| |
Collapse
|
2
|
Wang F, Shi L, Zhang R, Xu W, Bo Y. Effects of nitrogen addition and Bothriochloa ischaemum and Lespedeza davurica mixture on plant chlorophyll fluorescence and community production in semi-arid grassland. FRONTIERS IN PLANT SCIENCE 2024; 15:1400309. [PMID: 38984159 PMCID: PMC11232416 DOI: 10.3389/fpls.2024.1400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
Background Grass-legume mixture can effectively improve productivity and stimulate overyielding in artificial grasslands, but may be N-limited in semi-arid regions. This study investigated the effects of N addition on chlorophyll fluorescence and production in the grass-legume mixtures community. Methods An N addition experiment was conducted in the Bothriochloa ischaemum and Lespedeza davurica mixture community, with seven mixture ratios (B0L10, B2L8, B4L6, B5L5, B6L4, B8L2, and B10L0) according to the sowing abundance of B.ischaemum and L.davurica and four N addition levels, N0, N25, N50, and N75 (0,25,50,75kgNhm-2 a-1), respectively. We analyzed the response of chlorophyll fluorescence parameters of the two species, the rapid light-response curves of chlorophyll fluorescence, as well as aboveground biomass (AGB) and overyielding. Results Our results showed that the two species showed different photosynthetic strategies, with L.davurica having significantly higher initial fluorescence (Fo), effective photochemical quantum yield of PSII (ΦPSII), and coefficient of photochemical fluorescence quenching (qP) than B. ischaemum, consisting with results of rapid light-response curves. N addition and mixture ratio both had significant effects on chlorophyll fluorescence and AGB (p<0.001). The ΦPSII and qP of L.davurica were significantly lowest in B5L5 and B6L4 under N addition, and the effect of N varied with mixture ratio. The photosynthetic efficiency of B. ischaemum was higher in mixture than in monoculture (B10L0), and ΦPSII was significantly higher in N50 than in N25 and N50 at mixture communities except at B5L5. The community AGB was significantly higher in mixture communities than in two monocultures and highest at B6L4. In the same mixture ratio, the AGB was highest under the N50. The overyielding effects were significantly highest under the N75 and B6L4 treatments, mainly attributed to L.davurica. The partial least squares path models demonstrated that adding N increased soil nutrient content, and complementary utilization by B.ischaemum and L.davurica increased the photosynthetic efficiency. However, as the different photosynthetic strategies of these two species, the effect on AGB was offset, and the mixture ratio's effects were larger than N. Our results proposed the B6L4 and N50 treatments were the optimal combination, with the highest AGB and overyielding, moderate grass-legume ratio, optimal community structure, and forage values.
Collapse
Affiliation(s)
- Fugang Wang
- College of Life Science, Yulin University, Yulin, China
| | - Lei Shi
- College of Life Science, Yulin University, Yulin, China
| | - Ruiyi Zhang
- College of Life Science, Yulin University, Yulin, China
| | - Weizhou Xu
- College of Life Science, Yulin University, Yulin, China
- Shaanxi Engineering Research Center of Forage Plants of the Loess Plateau, Yulin University, Yulin, Shaanxi, China
| | - Yaojun Bo
- College of Life Science, Yulin University, Yulin, China
- Shaanxi Engineering Research Center of Forage Plants of the Loess Plateau, Yulin University, Yulin, Shaanxi, China
| |
Collapse
|
3
|
He M, Barry KE, Soons MB, Allan E, Cappelli SL, Craven D, Doležal J, Isbell F, Lanta V, Lepš J, Liang M, Mason N, Palmborg C, Pichon NA, da Silveira Pontes L, Reich PB, Roscher C, Hautier Y. Cumulative nitrogen enrichment alters the drivers of grassland overyielding. Commun Biol 2024; 7:309. [PMID: 38467761 PMCID: PMC10928195 DOI: 10.1038/s42003-024-05999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland biodiversity experiments with N addition, we found that N addition decreases complementarity effects and increases selection effects proportionately, resulting in no overall change in overyielding regardless of N addition rate. However, we observed a convex relationship between overyielding and cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests diminishing positive interactions and an increasing contribution of a few dominant species with increasing N accumulation. Recognizing the importance of cumulative N addition is vital for understanding its impacts on grassland overyielding, contributing essential insights for biodiversity conservation and ecosystem resilience in the face of increasing N deposition.
Collapse
Affiliation(s)
- Miao He
- Ecology and Biodiversity group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Ave, St Paul, MN, 55108, USA.
| | - Kathryn E Barry
- Ecology and Biodiversity group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Merel B Soons
- Ecology and Biodiversity group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
- Centre for Development and Environment CDE, University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Seraina L Cappelli
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Ave, St Paul, MN, 55108, USA
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Dylan Craven
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile
- Data Observatory Foundation, ANID Technology Center No. DO210001, Eliodoro Yáñez 2990, 7510277, Providencia, Santiago, Chile
| | - Jiří Doležal
- Department of Functional Ecology, Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, 370 05, České Budějovice, Czech Republic
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Ave, St Paul, MN, 55108, USA
| | - Vojtěch Lanta
- Department of Functional Ecology, Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Jan Lepš
- Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, 370 05, České Budějovice, Czech Republic
| | - Maowei Liang
- Cedar Creek Ecosystem Science Reserve, University of Minnesota, 2660 Fawn Lake Dr NE, East Bethel, MN, 55005, USA
| | - Norman Mason
- Landcare Research, Private Bag 3127, Hamilton, 3240, New Zealand
| | - Cecilia Palmborg
- Department of Crop production Ecology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Noémie A Pichon
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Laíse da Silveira Pontes
- Rural Development Institute of Paraná - IAPAR-EMATER, Av. Euzébio de Queirós, s/n°, CP 129, CEP 84001-970, Ponta Grossa, PR, Brazil
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, 1479 Gortner Ave, St Paul, MN, 55108, USA
- Institute for Global Change Biology, and School for the Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, MI, 48109, USA
| | - Christiane Roscher
- UFZ, Helmholtz Centre for Environmental Research, Physiological Diversity, Permoserstrasse 15, 04318, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, 04103, Leipzig, Germany
| | - Yann Hautier
- Ecology and Biodiversity group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
4
|
Diversity matters in wheat mixtures: A genomic survey of the impact of genetic diversity on the performance of 12 way durum wheat mixtures grown in two contrasted and controlled environments. PLoS One 2022; 17:e0276223. [PMID: 36490260 PMCID: PMC9733896 DOI: 10.1371/journal.pone.0276223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/04/2022] [Indexed: 12/13/2022] Open
Abstract
In ecology, an increase in genetic diversity within a community in natural ecosystems increases its productivity, while in evolutionary biology, kinship selection predicts that relatedness on social traits improves fitness. Varietal mixtures, where different genotypes are grown together, show contrasting results, especially for grain yield where both positive and negative effects of mixtures have been reported. To understand the effect of diversity on field performance, we grew 96 independent mixtures each composed with 12 durum wheat (Triticum turgidum ssp. durum Thell.) inbred lines, under two contrasting environmental conditions for water availability. Using dense genotyping, we imputed allelic frequencies and a genetic diversity index on more than 96000 loci for each mixture. We then analyzed the effect of genetic diversity on agronomic performance using a genome-wide approach. We explored the stress gradient hypothesis, which proposes that the greater the unfavourable conditions, the more beneficial the effect of diversity on mixture performance. We found that diversity on average had a negative effect on yield and its components while it was beneficial on grain weight. There was little support for the stress gradient theory. We discuss how to use genomic data to improve the assembly of varietal mixtures.
Collapse
|
5
|
Mafakheri M, Bakhshipour M, Omrani M, Gholizadeh H, Rahimi N, Mobaraki A, Rahimi M. The impact of environmental and climatic variables on genetic diversity and plant functional traits of the endangered tuberous orchid (Orchis mascula L.). Sci Rep 2022; 12:19765. [PMID: 36396718 PMCID: PMC9672365 DOI: 10.1038/s41598-022-19864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding how environmental factors shape patterns of genetic and phenotypic variations in a species is necessary for conservation and plant breeding. However, these factors have not yet been completely understood in tuberous orchid species used to make 'Salep', an important ingredient in traditional medicine and beverages in middle eastern countries and India. In many areas, increasing demand has pushed species to the brink of extinction. In this study, 198 genotypes from 18 populations of the endangered species Orchis mascula L. spanning a large-scale climatic gradient in northern Iran were used to investigate patterns of genetic diversity and plant functional traits. Populations were sampled from three land cover types (woodland, shrubland, and pastureland/grassland). Plant height, stem length, number of flowers, bulb fresh and dry weight, glucomannan, and starch concentrations showed high variation among populations and were significantly related to land cover type. In general, genetic diversity was high, particularly in those from eastern Hyrcanian; additionally, populations showed a high level of genetic differentiation (G'st = 0.35) with low gene flow (Nm = 0.46). The majority of genetic differentiation occurred within populations (49%) and land cover types (20%). The population structural analysis using the AFLP marker data in K = 4 showed a high geographical affinity for 198 O. mascula genotypes, with some genotypes having mixed ancestry. Temperature and precipitation were found to shape genetic and phenotypic variation profoundly. Significant isolation by the environment was observed, confirming the strong effect of environmental variables on phenotypic and genetic variation. Marker-trait association studies based on MLM1 and MLM2 models revealed significant associations of P-TGG + M-CTT-33 and E-AGG + M-CGT-22 markers with plant height and glucomannan content. Overall, a combination of large-scale climatic variables and land cover types significantly shaped genetic diversity and functional trait variation in O. mascula populations.
Collapse
Affiliation(s)
- Mohammad Mafakheri
- grid.27860.3b0000 0004 1936 9684Department of Plant Sciences, University of California - Davis, Davis, CA 95616 USA
| | - Mehdi Bakhshipour
- grid.411872.90000 0001 2087 2250Department of Horticultural Sciences, Faculty of Agricultural Sciences, University of Guilan, P.O. Box, Rasht, 41635-1314 Iran
| | - Mina Omrani
- grid.1020.30000 0004 1936 7371School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351 Australia
| | - Hamid Gholizadeh
- grid.411622.20000 0000 9618 7703Department of Plant Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran Iran
| | - Najmeh Rahimi
- grid.24805.3b0000 0001 0687 2182Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM USA
| | - Ali Mobaraki
- grid.411872.90000 0001 2087 2250Department of Horticultural Sciences, Faculty of Agricultural Sciences, University of Guilan, P.O. Box, Rasht, 41635-1314 Iran
| | - Mehdi Rahimi
- grid.448905.40000 0004 4910 146XDepartment of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
6
|
Stasinski L, White DM, Nelson PR, Ree RH, Meireles JE. Reading light: leaf spectra capture fine-scale diversity of closely related, hybridizing arctic shrubs. THE NEW PHYTOLOGIST 2021; 232:2283-2294. [PMID: 34510452 PMCID: PMC9297881 DOI: 10.1111/nph.17731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/06/2021] [Indexed: 05/26/2023]
Abstract
Leaf reflectance spectroscopy is emerging as an effective tool for assessing plant diversity and function. However, the ability of leaf spectra to detect fine-scale plant evolutionary diversity in complicated biological scenarios is not well understood. We test if reflectance spectra (400-2400 nm) can distinguish species and detect fine-scale population structure and phylogenetic divergence - estimated from genomic data - in two co-occurring, hybridizing, ecotypically differentiated species of Dryas. We also analyze the correlation among taxonomically diagnostic leaf traits to understand the challenges hybrids pose to classification models based on leaf spectra. Classification models based on leaf spectra identified two species of Dryas with 99.7% overall accuracy and genetic populations with 98.9% overall accuracy. All regions of the spectrum carried significant phylogenetic signal. Hybrids were classified with an average overall accuracy of 80%, and our morphological analysis revealed weak trait correlations within hybrids compared to parent species. Reflectance spectra captured genetic variation and accurately distinguished fine-scale population structure and hybrids of morphologically similar, closely related species growing in their home environment. Our findings suggest that fine-scale evolutionary diversity is captured by reflectance spectra and should be considered as spectrally-based biodiversity assessments become more prevalent.
Collapse
Affiliation(s)
- Lance Stasinski
- School of Biology and EcologyUniversity of MaineOronoME04469USA
| | - Dawson M. White
- Department of Science and EducationField MuseumChicagoIL60605USA
| | - Peter R. Nelson
- Schoodic InstituteWinter HarborME04693USA
- School of Forest ResourcesUniversity of MaineOronoME04469USA
| | - Richard H. Ree
- Department of Science and EducationField MuseumChicagoIL60605USA
| | - José Eduardo Meireles
- School of Biology and EcologyUniversity of MaineOronoME04469USA
- Maine Center for Genetics in the EnvironmentUniversity of MaineOronoME04469USA
| |
Collapse
|
7
|
Semchenko M, Xue P, Leigh T. Functional diversity and identity of plant genotypes regulate rhizodeposition and soil microbial activity. THE NEW PHYTOLOGIST 2021; 232:776-787. [PMID: 34235741 DOI: 10.1111/nph.17604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Our understanding of the linkages between plant diversity and soil carbon and nutrient cycling is primarily derived from studies at the species level, while the importance and mechanisms of diversity effects at the genotype level are poorly understood. Here we examine how genotypic diversity and identity, and associated variation in functional traits, within a common grass species, Anthoxanthum odoratum, modified rhizodeposition, soil microbial activity and litter decomposition. Root litter quality was not significantly affected by plant genotypic diversity, but decomposition was enhanced in soils with the legacy of higher genotypic diversity. Plant genotypic diversity and identity modified rhizodeposition and associated microbial activity via two independent pathways. Plant genotypic diversity enhanced soil functioning via positive effects on variation in specific leaf area and total rhizodeposition. Genotype identity affected both rhizodeposit quantity and quality, and these effects were mediated by differences in mean specific leaf area, shoot mass and plant height. Rhizodeposition was more strongly predicted by aboveground than belowground traits, suggesting strong linkages between photosynthesis and root exudation. Our study demonstrates that functional diversity and identity of plant genotypes modulates belowground carbon supply and quality, representing an important but overlooked pathway by which biodiversity affects ecosystem functioning.
Collapse
Affiliation(s)
- Marina Semchenko
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Piao Xue
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo, 153-8902, Japan
| | - Tomas Leigh
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
8
|
Hierro JL, Callaway RM. The Ecological Importance of Allelopathy. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-051120-030619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allelopathy (i.e., chemical interaction among species) was originally conceived as inclusive of positive and negative effects of plants on other plants, and we adopt this view. Most studies of allelopathy have been phenomenological, but we focus on studies that have explored the ecological significance of this interaction. The literature suggests that studies of allelopathy have been particularly important for three foci in ecology: species distribution, conditionality of interactions, and maintenance of species diversity. There is evidence that allelopathy influences local distributions of plant species around the world. Allelopathic conditionality appears to arise through coevolution, and this is a mechanism for plant invasions. Finally, allelopathy promotes species coexistence via intransitive competition, modifications of direct interactions, and (co)evolution. Recent advances additionally suggest that coexistence might be favored through biochemical recognition. The preponderance of phenomenological studies notwithstanding, allelopathy has broad ecological consequences. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- José L. Hierro
- Laboratorio de Ecología, Biogeografía y Evolución Vegetal (LEByEV), Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)–Universidad Nacional de La Pampa (UNLPam), 6300 Santa Rosa, La Pampa, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, UNLPam, 6300 Santa Rosa, La Pampa, Argentina
| | - Ragan M. Callaway
- Division of Biological Sciences and the Institute on Ecosystems, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
9
|
Experimental drought reduces genetic diversity in the grassland foundation species Bouteloua eriopoda. Oecologia 2019; 189:1107-1120. [PMID: 30850884 DOI: 10.1007/s00442-019-04371-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
Understanding the resistance and resilience of foundation plant species to climate change is a critical issue because the loss of these species would fundamentally reshape communities and ecosystem processes. High levels of population genetic diversity may buffer foundation species against climate disruptions, but the strong selective pressures associated with climatic shifts may also rapidly reduce such diversity. We characterized genetic diversity and its responsiveness to experimental drought in the foundation plant, black grama grass (Bouteloua eriopoda), which dominates many western North American grasslands and shrublands. Previous studies suggested that in arid ecosystems, black grama reproduces largely asexually via stolons, and thus is likely to have low genetic variability, which might limit its potential to respond to climate disruptions. Using genotyping-by-sequencing, we demonstrated unexpectedly high genetic variability among black grama plants in a 1 ha site within the Sevilleta National Wildlife Refuge in central New Mexico, suggesting some level of sexual reproduction. Three years of experimental, growing season drought reduced black grama survival and biomass (the latter by 96%), with clear genetic differentiation (higher FST) between plants succumbing to drought and those remaining alive. Reduced genetic variability in the surviving plants in drought plots indicated that the experimental drought had forced black grama populations through selection bottlenecks. These results suggest that foundation grass species, such as black grama, may experience rapid evolutionary change if future climates include more severe droughts.
Collapse
|
10
|
Menge DNL, MacPherson AC, Bytnerowicz TA, Quebbeman AW, Schwartz NB, Taylor BN, Wolf AA. Logarithmic scales in ecological data presentation may cause misinterpretation. Nat Ecol Evol 2018; 2:1393-1402. [DOI: 10.1038/s41559-018-0610-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/18/2018] [Indexed: 11/09/2022]
|
11
|
Semchenko M, Saar S, Lepik A. Intraspecific genetic diversity modulates plant-soil feedback and nutrient cycling. THE NEW PHYTOLOGIST 2017; 216:90-98. [PMID: 28608591 DOI: 10.1111/nph.14653] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
Plant genetic diversity can affect ecosystem functioning by enhancing productivity, litter decomposition and resistance to natural enemies. However, the mechanisms underlying these effects remain poorly understood. We hypothesized that genetic diversity may influence ecosystem processes by eliciting functional plasticity among individuals encountering kin or genetically diverse neighbourhoods. We used soil conditioned by groups of closely related (siblings) and diverse genotypes of Deschampsia cespitosa - a species known to exhibit kin recognition via root exudation - to investigate the consequences of kin interactions for root litter decomposition and negative feedback between plants and soil biota. Genetically diverse groups produced root litter that had higher nitrogen (N) content, decomposed faster and resulted in greater N uptake by the next generation of seedlings compared with litter produced by sibling groups. However, a similar degree of negative soil feedback on plant productivity was observed in soil conditioned by siblings and genetically diverse groups. This suggests that characteristics of roots produced by sibling groups slow down N cycling but moderate the expected negative impact of soil pathogens in low-diversity stands. These findings highlight interactions between neighbouring genotypes as an overlooked mechanism by which genetic diversity can affect biotic soil feedback and nutrient cycling.
Collapse
Affiliation(s)
- Marina Semchenko
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Sirgi Saar
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Anu Lepik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
12
|
|
13
|
Luo W, Callaway RM, Atwater DZ. Intraspecific diversity buffers the inhibitory effects of soil biota. Ecology 2016; 97:1913-1918. [DOI: 10.1002/ecy.1469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/12/2016] [Accepted: 05/05/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Wenbo Luo
- School of Environment/Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection; Northeast Normal University; Changchun 130117 China
- Division of Biological Sciences; The University of Montana; Missoula Montana 59812 USA
| | - Ragan M. Callaway
- Division of Biological Sciences; The University of Montana; Missoula Montana 59812 USA
| | - Daniel Z. Atwater
- Department of Plant Pathology, Physiology and Weed Science; Virginia Tech; Blacksburg Virginia 24061 USA
| |
Collapse
|
14
|
Yang L, Callaway RM, Atwater DZ. Root contact responses and the positive relationship between intraspecific diversity and ecosystem productivity. AOB PLANTS 2015; 7:plv053. [PMID: 25990363 PMCID: PMC4501516 DOI: 10.1093/aobpla/plv053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/22/2015] [Indexed: 05/27/2023]
Abstract
High species and functional group richness often has positive effects on ecosystem function including increasing productivity. Recently, intraspecific diversity has been found to have similar effects, but because traits vary far less within a species than among species we have a much poorer understanding of the mechanisms by which intraspecific diversity affects ecosystem function. We explored the potential for identity recognition among the roots of different Pseudoroegneria spicata accessions to contribute to previously demonstrated overyielding in plots with high intraspecific richness of this species relative to monocultures. First, we found that when plants from different populations were planted together in pots the total biomass yield was 30 % more than in pots with two plants from the same population. Second, we found that the elongation rates of roots of Pseudoroegneria plants decreased more after contact with roots from another plant from the same population than after contact with roots from a plant from a different population. These results suggest the possibility of some form of detection and avoidance mechanism among more closely related Pseudoroegneria plants. If decreased growth after contact results in reduced root overlap, and reduced root overlap corresponds with reduced growth and productivity, then variation in detection and avoidance among related and unrelated accessions may contribute to how ecotypic diversity in Pseudoroegneria increases productivity.
Collapse
Affiliation(s)
- Lixue Yang
- Division of Biological Sciences and the Institute on Ecosystems, The University of Montana, Missoula, MT 59812, USA School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ragan M Callaway
- Division of Biological Sciences and the Institute on Ecosystems, The University of Montana, Missoula, MT 59812, USA
| | - Daniel Z Atwater
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech University, Blacksburg, VA 24061, USA
| |
Collapse
|