1
|
Du J, Wang X, Tao T, Su Y, Zhang X, Shao J, Zhang Y, Yu L, Jin B, Qv W, Cao X, Wang L, Yang Y. Effects of nanoplastic exposure routes on leaf decomposition in streams. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124418. [PMID: 38908673 DOI: 10.1016/j.envpol.2024.124418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Polystyrene nanoparticles (PS NPs) released from plastic products have been demonstrated to pose a threat to leaf litter decomposition in streams. Given the multitrophic systems of species interactions, the effects of PS NPs through different exposure routes on ecosystem functioning remain unclear. Especially dietary exposure, a frequently overlooked pathway leading to toxicity, deserves more attention. A microcosm experiment was conducted in this study to assess the effects of waterborne and dietary exposure to PS NPs on the litter-based food chain involving leaves, microbial decomposers, and detritivores (river snails). Compared to waterborne contamination, dietary contamination resulted in lower microbial enzyme activities and a significantly higher decrease in the lipid content of leaves. For river snails, their antioxidant activity was significantly increased by 20.21%-69.93%, and their leaf consumption rate was significantly reduced by 16.60% through the dietary route due to the lower lipid content of leaves. Besides, the significantly decreased nutritional quality of river snails would negatively influence their palatability to predators. The findings of this study indicate that dietary exposure to PS NPs significantly impacts microbial and detritivore activities, thus affecting their functions in the detritus food chain as well as nutrient cycling.
Collapse
Affiliation(s)
- Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Zhengzhou, China.
| | - Xilin Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Tianying Tao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yan Su
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xueting Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jing Shao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yufan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Luyao Yu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Baodan Jin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Zhengzhou, China
| | - Wenrui Qv
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xia Cao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Zhengzhou, China
| | - Lan Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Zhengzhou, China
| | - Yanqin Yang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Zhengzhou, China
| |
Collapse
|
2
|
Sheridan JA, Kendrick MR. Relationships of primary productivity with anuran abundance, richness, and community composition in tropical streams. PLoS One 2024; 19:e0303886. [PMID: 38820528 PMCID: PMC11142703 DOI: 10.1371/journal.pone.0303886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/03/2024] [Indexed: 06/02/2024] Open
Abstract
The relationship between primary productivity and diversity has been demonstrated across taxa and spatial scales, but for organisms with biphasic life cycles, little research has examined whether productivity of larval and adult environments influence each life stage independently, or whether productivity of one life stage's environment outweighs the influence of the other. Experimental work demonstrates that tadpoles of stream-breeding anurans can exhibit a top-down influence on aquatic primary productivity (APP), but few studies have sought evidence of a bottom-up influence of primary productivity on anuran abundance, species richness and community composition, as seen in other organisms. We examined aquatic and terrestrial primary productivity in two forest types in Borneo, along with amphibian abundance, species richness, and community composition at larval and adult stages, to determine whether there is evidence for a bottom-up influence of APP on tadpole abundance and species richness across streams, and the relative importance of aquatic and terrestrial primary productivity on larval and adult phases of anurans. We predicted that adult richness, abundance, and community composition would be influenced by terrestrial primary productivity, but that tadpole richness, abundance, and community composition would be influenced by APP. Contrary to expectations, we did not find evidence that primary productivity, or variation thereof, predicts anuran richness at larval or adult stages. Further, no measure of primary productivity or its variation was a significant predictor of adult abundance, or of adult or tadpole community composition. For tadpoles, we found that in areas with low terrestrial primary productivity, abundance was positively related to APP, but in areas with high terrestrial primary productivity, abundance was negatively related to APP, suggesting a bottom-up influence of primary productivity on abundance in secondary forest, and a top-down influence of tadpoles on primary productivity in primary forest. Additional data are needed to better understand the ecological interactions between terrestrial primary productivity, aquatic primary productivity, and tadpole abundance.
Collapse
Affiliation(s)
- Jennifer A. Sheridan
- Section of Amphibians and Reptiles, Carnegie Museum of Natural History, Pittsburgh, PA, United States of America
| | - Michael R. Kendrick
- South Carolina Department of Natural Resources, Marine Resources Research Institute, Charleston, SC, United States of America
| |
Collapse
|
3
|
Giery ST, Sloan RK, Watson J, Groesbeck A, Davenport JM. Ecosystem effects of intraspecific variation in a colour polymorphic amphibian. Proc Biol Sci 2024; 291:20240016. [PMID: 38565157 PMCID: PMC10987232 DOI: 10.1098/rspb.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
An emerging consensus suggests that evolved intraspecific variation can be ecologically important. However, evidence that evolved trait variation within vertebrates can influence fundamental ecosystem-level processes remains sparse. In this study, we sought to assess the potential for evolved variation in the spotted salamander (Ambystoma maculatum) to affect aquatic ecosystem properties. Spotted salamanders exhibit a conspicuous polymorphism in the colour of jelly encasing their eggs-some females produce clear jelly, while others produce white jelly. Although the functional significance of jelly colour variation remains largely speculative, evidence for differences in fecundity and the morphology of larvae suggests that the colour morphs might differ in the strength or identity of ecological effects. Here, we assessed the potential for frequency variation in spotted salamander colour morphs to influence fundamental physiochemical and ecosystem properties-dissolved organic carbon, conductivity, acidity and primary production-with a mesocosm experiment. By manipulating colour morph frequency across a range of larval densities, we were able to demonstrate that larva density and colour morph variation were ecologically relevant: population density reduced dissolved organic carbon and increased primary production while mesocosms stocked with white morph larvae tended to have higher dissolved organic carbon and conductivity. Thus, while an adaptive significance of jelly coloration remains hypothetical, our results show that colour morphs differentially influence key ecosystem properties-dissolved organic carbon and conductivity.
Collapse
Affiliation(s)
- Sean T. Giery
- Department of Biology, Ohio University, Athens, OH 45701, USA
| | - Reese K. Sloan
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| | - James Watson
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| | - Autumn Groesbeck
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| | - Jon M. Davenport
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| |
Collapse
|
4
|
Zhang W, Li H, Cao H, Zhao X. Small ponds have stronger potential for net nitrogen removal: Insight from direct dissolved N 2 measurement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165765. [PMID: 37506899 DOI: 10.1016/j.scitotenv.2023.165765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Growing demands for watershed nitrogen (N) removal have called attention to abundant small bodies of water such as ponds, which have long been heralded as efficient storage and processing systems. Although pond conservation, restoration, and creation have been widely implemented to mitigate N pollution, information is limited regarding the impact of size-that is, whether N removal potential and efficiency are dependent upon pond size. We investigated the dynamics of N removal rates in 56 ponds from a hilly watershed by studying their bimonthly N2 concentrations and fluxes. Our results showed that smaller ponds performed better in net N removal. This can be discerned from the areal N2 fluxes, which were the highest in small ponds (< 4, 000 m2). The corresponding N2 fluxes (4.73 ± 4.53 mmol N2 m-2 d-1) were 2 to 14 times greater than those observed in larger ponds. The N removal efficiency, a metric used to describe the portions of the substrates released as N2, was also significantly higher in the small ponds (∼8.7 %) than in the larger ponds (∼5.0 %). Further regression analysis showed that both areal N2 flux and N removal efficiency were negatively correlated with pond area. The underlying mechanisms behind the size effects of N removal could be attributed to small ponds having larger sediment contact area to water volume ratios. Thus, smaller ponds allow more opportunities for N to interact with bioactive sediments than larger ponds. Overall, our findings contribute to the understanding of the distal role of pond size in affecting N removal. This research also provides a strong rationale for considering the effects of system size when implementing management practices dedicated to maximizing N removal.
Collapse
Affiliation(s)
- Wangshou Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hengpeng Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Heng Cao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaofan Zhao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
5
|
Qiu L, Ji F, Qiu Y, Xie H, Li G, Shen J. Water-Level Fluctuation Control of the Trophic Structure of a Yangtze River Oxbow. BIOLOGY 2023; 12:1359. [PMID: 37887069 PMCID: PMC10604508 DOI: 10.3390/biology12101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Seasonal water-level fluctuations can profoundly impact nutrient dynamics in aquatic ecosystems, influencing trophic structures and overall ecosystem functions. The Tian-e-Zhou Oxbow of the Yangtze River is China's first ex situ reserve and the world's first successful case of ex situ conservation for cetaceans. In order to better protect the Yangtze finless porpoise, the effects of water-level fluctuations on the trophic structure in this oxbow cannot be ignored. Therefore, we employed stable isotope analysis to investigate the changes in the trophic position, trophic niche, and contribution of basal food sources to fish during the wet and dry seasons of 2021-2022. The research results indicate that based on stable isotope analysis of the trophic levels of different dietary fish species, fish trophic levels during the wet season were generally higher than those during the dry season, but the difference was not significant (p > 0.05). Fish communities in the Tian-e-Zhou Oxbow exhibited broader trophic niche space and lower trophic redundancy during the wet season (p < 0.05), indicating a more complex and stable food web structure. In both the wet and dry seasons, fish in the oxbow primarily relied on endogenous carbon sources, but there were significant differences in the way they were utilized between the two seasons (p < 0.05). In light of the changes in the trophic structure of the fish during the wet and dry seasons, and to ensure the stable development of the Yangtze finless porpoise population, we recommend strengthening the connectivity between the Tian-e-Zhou Oxbow and the Yangtze River.
Collapse
Affiliation(s)
- Longhui Qiu
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.Q.)
| | - Fenfen Ji
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Yuhui Qiu
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.Q.)
| | - Hongyu Xie
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.Q.)
| | - Guangyu Li
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.Q.)
| | - Jianzhong Shen
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.Q.)
| |
Collapse
|
6
|
Lyu T, Zhu J, Yang X, Yang W, Zheng Z. Responses of Gut Microbial Community Composition and Function of the Freshwater Gastropod Bellamya aeruginosa to Cyanobacterial Bloom. Front Microbiol 2022; 13:906278. [PMID: 35633671 PMCID: PMC9136413 DOI: 10.3389/fmicb.2022.906278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Freshwater gastropods are widely distributed and play an important role in aquatic ecosystems. Symbiotic microorganisms represented by gut microbes can affect the physiological and biochemical activities of their hosts. However, few studies have investigated the response of the gut microbial community of snails to environmental stress. In this study, the dynamics of the gut microbiota of the gastropod Bellamya aeruginosa were tracked to explore their responses in terms of their composition and function to cyanobacterial bloom. Differences in gut microbial community structures during periods of non-cyanobacterial bloom and cyanobacterial bloom were determined. Results showed that the alpha diversity of the gut microbiota exposed to cyanobacterial bloom was lower than that of the gut microbiota exposed to non-cyanobacterial bloom. The main genera differentiating the two periods were Faecalibacterium, Subdoligranulum, Ralstonia, and Pelomonas. Microcystins (MCs) and water temperature (WT) were the primary factors influencing the gut microbial community of B. aeruginosa; between them, the influence of MCs was greater than that of WT. Fourteen pathways (level 2) were notably different between the two periods. The pathways of carbohydrate metabolism, immune system, environmental adaptation, and xenobiotics biodegradation and metabolism in these differential pathways exhibited a strong linear regression relationship with MCs and WT. Changes in the functions of the gut microbiota may help B. aeruginosa meet its immunity and energy needs during cyanobacterial bloom stress. These results provide key information for understanding the response pattern of freshwater snail intestinal flora to cyanobacterial blooms and reveal the underlying environmental adaptation mechanism of gastropods from the perspective of intestinal flora.
Collapse
|
7
|
Burrow A, Maerz J. How plants affect amphibian populations. Biol Rev Camb Philos Soc 2022; 97:1749-1767. [PMID: 35441800 DOI: 10.1111/brv.12861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
Descriptions of amphibian habitat, both aquatic and terrestrial, often include plants as characteristics but seldom is it understood whether and how those plants affect amphibian ecology. Understanding how plants affect amphibian populations is needed to develop strategies to combat declines of some amphibian populations. Using a systematic approach, we reviewed and synthesized available literature on the effects of plants on pond-breeding amphibians during the aquatic and terrestrial stages of their life cycle. Our review highlights that plant communities can strongly influence the distribution, abundance, and performance of amphibians in multiple direct and indirect ways. We found three broad themes of plants' influence on amphibians: plants can affect amphibians through effects on abiotic conditions including the thermal, hydric, and chemical aspects of an amphibian's environment; plants can have large effects on aquatic life stages through effects on resource quality and abundance; and plants can modify the nature and strength of interspecific interactions between amphibians and other species - notably predators. We synthesized insights gained from the literature to discuss how plant community management fits within efforts to manage amphibian populations and to guide future research efforts. While some topical areas are well researched, we found a general lack of mechanistic and trait-based work which is needed to advance our understanding of the drivers through which plants influence amphibian ecology. Our literature review reveals the substantial role that plants can have on amphibian ecology and the need for integrating plant and amphibian ecology to improve research and management outcomes for amphibians.
Collapse
Affiliation(s)
- Angela Burrow
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA, 30602-2152, U.S.A
| | - John Maerz
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA, 30602-2152, U.S.A
| |
Collapse
|
8
|
Hill MJ, Greaves HM, Sayer CD, Hassall C, Milin M, Milner VS, Marazzi L, Hall R, Harper LR, Thornhill I, Walton R, Biggs J, Ewald N, Law A, Willby N, White JC, Briers RA, Mathers KL, Jeffries MJ, Wood PJ. Pond ecology and conservation: research priorities and knowledge gaps. Ecosphere 2021. [DOI: 10.1002/ecs2.3853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Matthew J. Hill
- School of Applied Sciences University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Helen M. Greaves
- Pond Restoration Group Environmental Change Research Centre Department of Geography University College London Gower Street London WC1E 6BT UK
| | - Carl D. Sayer
- Pond Restoration Group Environmental Change Research Centre Department of Geography University College London Gower Street London WC1E 6BT UK
| | - Christopher Hassall
- School of Biology Faculty of Biological Sciences University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Mélanie Milin
- School of Applied Sciences University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Victoria S. Milner
- School of Applied Sciences University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Luca Marazzi
- Institute of Environment Florida International University Miami FL 33199 USA
| | - Ruth Hall
- Natural England Mail Hub, Natural England Worcester County Hall Spetchley Road Worcester WR5 2NP UK
| | - Lynsey R. Harper
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool L3 3AF UK
| | - Ian Thornhill
- School of Sciences Bath Spa University Newton St. Loe Bath BA2 9BN UK
| | - Richard Walton
- School of Geography, Politics and Sociology Newcastle University King’s Gate Newcastle upon Tyne NE1 7RU UK
| | - Jeremy Biggs
- Freshwater Habitats Trust Bury Knowle House Headington, Oxford OX3 9HY UK
| | - Naomi Ewald
- Freshwater Habitats Trust Bury Knowle House Headington, Oxford OX3 9HY UK
| | - Alan Law
- Biological and Environmental Sciences University of Stirling Stirling FK9 4LA UK
| | - Nigel Willby
- Biological and Environmental Sciences University of Stirling Stirling FK9 4LA UK
| | - James C. White
- River Restoration Centre Cranfield University Cranfield Bedfordshire MK43 0AL UK
| | - Robert A. Briers
- School of Applied Sciences Edinburgh Napier University Edinburgh EH11 4BN UK
| | - Kate L. Mathers
- Department of Surface Waters Research and Management Kastanienbaum 6047 Switzerland
- Centre for Hydrological and Ecosystem Science Department of Geography Loughborough University Loughborough Leicestershire LE11 3TU UK
| | - Michael J. Jeffries
- Department of Geography and Environmental Sciences Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Paul J. Wood
- Centre for Hydrological and Ecosystem Science Department of Geography Loughborough University Loughborough Leicestershire LE11 3TU UK
| |
Collapse
|
9
|
Chiapella AM, Kainz MJ, Strecker AL. Fatty acid stable isotopes add clarity, but also complexity, to tracing energy pathways in aquatic food webs. Ecosphere 2021; 12:e03360. [PMID: 34900386 PMCID: PMC8641385 DOI: 10.1002/ecs2.3360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Tracing the flow of dietary energy sources, especially in systems with a high degree of omnivory, is an ongoing challenge in ecology. In aquatic systems, one of the persistent challenges is in differentiating between autochthonous and allochthonous energy sources to top consumers. Bulk carbon stable isotope values of aquatic and terrestrial prey often overlap, making it difficult to delineate dietary energy pathways in food webs with high allochthonous prey subsidies, such as in many northern temperate waterbodies. We conducted a feeding experiment to explore how fatty acid stable isotopes may overcome the challenge of partitioning autochthonous and allochthonous energy pathways in aquatic consumers. We fed hatchery-reared Arctic Char (Salvelinus alpinus) diets of either benthic invertebrates, terrestrial earthworms, or a mixture of both. We then compared how the stable carbon isotopes of fatty acids (δ13CFA) distinguished between diet items and respective treatments in S. alpinus liver and muscle tissues, relative to bulk stable isotopes and fatty acid profiles. Although a high degree of variability of fatty acid stable carbon isotope values was present in all three measures, our results suggest that the ability of this method to overcome the challenges of bulk stable isotopes may be overstated. Finally, our study highlights the importance of further experimental investigation, and consideration of physiological and biochemical processes when employing this emerging method.
Collapse
Affiliation(s)
- Ariana M. Chiapella
- Department of Environmental Science and ManagementPortland State UniversityPortlandOregon97201USA
- Present address:
Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVermont05401USA
| | - Martin J. Kainz
- WasserCluster Lunz—Inter‐University Centre for Aquatic Ecosystem ResearchLunz am SeeA‐3293Austria
- Department of Biomedical ResearchDanube University KremsKrems an der DonauAustria
| | - Angela L. Strecker
- Department of Environmental Science and ManagementPortland State UniversityPortlandOregon97201USA
- Institute for Watershed StudiesHuxley College of the EnvironmentWestern Washington UniversityBellinghamWashington98225USA
- Department of Environmental SciencesHuxley College of the EnvironmentWestern Washington UniversityBellinghamWashington98225USA
| |
Collapse
|
10
|
de Necker L, Manfrin A, Ikenaka Y, Ishizuka M, Brendonck L, van Vuren JHJ, Sures B, Wepener V, Smit NJ. Using stable δ13C and δ15N isotopes to assess foodweb structures in an African subtropical temporary pool. AFRICAN ZOOLOGY 2020. [DOI: 10.1080/15627020.2020.1731331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- L de Necker
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - A Manfrin
- Environmental Campus Birkenfeld, University of Applied Sciences Tier, Standort Umwelt-Campus Birkenfeld, Germany
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Y Ikenaka
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - M Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - L Brendonck
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Animal Ecology, Global Change and Sustainable Development, Department of Biology, University of Leuven, Leuven, Belgium
| | - JHJ van Vuren
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - B Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - V Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - NJ Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Stoler AB, Relyea RA. Reviewing the role of plant litter inputs to forested wetland ecosystems: leafing through the literature. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aaron B. Stoler
- Department of Biological Sciences Darrin Fresh Water Institute Rensselaer Polytechnic Institute Troy New York 12180 USA
| | - Rick A. Relyea
- Department of Biological Sciences Darrin Fresh Water Institute Rensselaer Polytechnic Institute Troy New York 12180 USA
| |
Collapse
|
12
|
Peyghan R, Rahnama R, Tulaby Dezfuly Z, Shokoohmand M. Achlya infection in an Oscar ( Astronotus ocellatus) with typical symptoms of saprolegniosis. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:89-92. [PMID: 31183022 PMCID: PMC6522188 DOI: 10.30466/vrf.2019.34315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/29/2018] [Indexed: 11/29/2022]
Abstract
Saprolegniosis is one of the most frequent diseases in the ornamental fish industry that may cause by Achlya spp. There is no report of fungal infection caused by Achlya spp. in Oscar (Astronotus ocellatus) in Iran. An Oscar fish was referred to the Veterinary Hospital, Shahid Chamran University of Ahvaz, Ahvaz, Iran with saprolegniosis symptoms including loss of appetite and yellow to gray cottony mass on the skin of flank and caudal peduncle. The infected area of the fish body was investigated by wet smear. After observing broad aseptate hyphae (approximate width 10-15 μm), the infected skin was inoculated on Sabouraud dextrose agar and incubated at 30 ˚C for seven days. The large fungi colony was appeared on the agar and the isolated fungi were detected as Achlya spp. after examination by wet and stained dry smears according to the morphology of hypha, spores, and zoosporangium. It is the first report of cutaneous saprolegniosis in Oscar caused by Achlya spp. in Iran.
Collapse
Affiliation(s)
- Rahim Peyghan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roya Rahnama
- Graduated student of Aquatic Animal Health, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Tulaby Dezfuly
- PhD Candidate of Aquatic Animal Health, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maryam Shokoohmand
- PhD Candidate of Aquatic Animal Health, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
13
|
Goldspiel HB, Newhouse AE, Powell WA, Gibbs JP. Effects of transgenic American chestnut leaf litter on growth and survival of wood frog larvae. Restor Ecol 2018. [DOI: 10.1111/rec.12879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Harrison B. Goldspiel
- Department of Environmental and Forest Biology State University of New York College of Environmental Science and Forestry 1 Forestry Drive, Syracuse NY 13210 U.S.A
| | - Andrew E. Newhouse
- Department of Environmental and Forest Biology State University of New York College of Environmental Science and Forestry 1 Forestry Drive, Syracuse NY 13210 U.S.A
| | - William A. Powell
- Department of Environmental and Forest Biology State University of New York College of Environmental Science and Forestry 1 Forestry Drive, Syracuse NY 13210 U.S.A
| | - James P. Gibbs
- Department of Environmental and Forest Biology State University of New York College of Environmental Science and Forestry 1 Forestry Drive, Syracuse NY 13210 U.S.A
| |
Collapse
|
14
|
Stoler AB, Mattes BM, Hintz WD, Jones DK, Lind L, Schuler MS, Relyea RA. Effects of a common insecticide on wetland communities with varying quality of leaf litter inputs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:452-462. [PMID: 28431762 DOI: 10.1016/j.envpol.2017.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/27/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
Chemical contamination of aquatic systems often co-occurs with dramatic changes in surrounding terrestrial vegetation. Plant leaf litter serves as a crucial resource input to many freshwater systems, and changes in litter species composition can alter the attributes of freshwater communities. However, little is known how variation in litter inputs interacts with chemical contaminants. We investigated the ecological effects resulting from changes in tree leaf litter inputs to freshwater communities, and how those changes might interact with the timing of insecticide contamination. Using the common insecticide malathion, we hypothesized that inputs of nutrient-rich and labile leaf litter (e.g., elm [Ulmus spp.] or maple [Acer spp.]) would reduce the negative effects of insecticides on wetland communities relative to inputs of recalcitrant litter (e.g., oak [Quercus spp.]). We exposed artificial wetland communities to a factorial combination of three litter species treatments (elm, maple, and oak) and four insecticide treatments (no insecticide, small weekly doses of 10 μg L-1, and either early or late large doses of 50 μg L-1). Communities consisted of microbes, algae, snails, amphipods, zooplankton, and two species of tadpoles. After two months, we found that maple and elm litter generally induced greater primary and secondary production. Insecticides induced a reduction in the abundance of amphipods and some zooplankton species, and increased phytoplankton. In addition, we found interactive effects of litter species and insecticide treatments on amphibian responses, although specific effects depended on application regime. Specifically, with the addition of insecticide, elm and maple litter induced a reduction in gray tree frog survival, oak and elm litter delayed tree frog metamorphosis, and oak and maple litter reduced green frog tadpole mass. Our results suggest that attention to local forest composition, as well as the timing of pesticide application might help ameliorate the harmful effects of pesticides observed in freshwater systems.
Collapse
Affiliation(s)
- A B Stoler
- Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - B M Mattes
- Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - W D Hintz
- Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - D K Jones
- Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - L Lind
- Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - M S Schuler
- Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - R A Relyea
- Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
15
|
|