1
|
Pratt RB. Vegetation-type conversion of evergreen chaparral shrublands to savannahs dominated by exotic annual herbs: causes and consequences for ecosystem function. AMERICAN JOURNAL OF BOTANY 2022; 109:9-28. [PMID: 34636412 DOI: 10.1002/ajb2.1777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Woody, evergreen shrublands are the archetypal community in mediterranean-type ecosystems, and these communities are profoundly changed when they undergo vegetation-type conversion (VTC) to become annual, herb-dominated communities. Recently, VTC has occurred throughout southern California chaparral shrublands, likely with changes in important ecosystem functions. The mechanisms that lead to VTC and subsequent changes to ecosystem processes are important to understand as they have regional and global implications for ecosystem services, climate change, land management, and policy. The main drivers of VTC are altered fire regimes, aridity, and anthropogenic disturbance. Some changes to ecosystem function are certain to occur with VTC, but their magnitudes are unclear, whereas other changes are unpredictable. I present two hypotheses: (1) VTC leads to warming that creates a positive feedback promoting additional VTC, and (2) altered nitrogen dynamics create negative feedbacks and promote an alternative stable state in which communities are dominated by herbs. The patterns described for California are mostly relevant to the other mediterranean-type shrublands of the globe, which are biodiversity hotspots and threatened by VTC. This review examines the extent and causes of VTC, ecosystem effects, and future research priorities.
Collapse
Affiliation(s)
- R Brandon Pratt
- Department of Biology, California State University, Bakersfield, CA, USA
| |
Collapse
|
2
|
Simon ADF, Marx HE, Starzomski BM. Phylogenetic restriction of plant invasion in drought-stressed environments: Implications for insect-pollinated plant communities in water-limited ecosystems. Ecol Evol 2021; 11:10042-10053. [PMID: 34367557 PMCID: PMC8328464 DOI: 10.1002/ece3.7776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Plant-pollinator community diversity has been found to decrease under conditions of drought stress; however, research into the temporal dimensions of this phenomenon remains limited. In this study, we investigated the effect of seasonal drought on the temporal niche dynamics of entomophilous flowering plants in a water-limited ecosystem. We hypothesized that closely related native and exotic plants would tend to share similar life history and that peak flowering events would therefore coincide with phylogenetic clustering in plant communities based on expected phenological responses of plant functional types to limitations in soil moisture availability. LOCATION Galiano Island, British Columbia, Canada. METHODS Combining methods from pollinator research and phylogenetic community ecology, we tested the influence of environmental filtering over plant community phenology across gradients of landscape disturbance and soil moisture. Floral resource availability and community structure were quantified by counts of flowering shoots. We constructed a robust phylogeny to analyze spatial and temporal variation in phylogenetic patterns across the landscape, testing the significance of the observed patterns against a randomly generated community phylogeny. Phylogenetic metrics were then regressed against factors of disturbance and soil moisture availability. RESULTS Critical seasonal fluctuations in floral resources coincided with significant phylogenetic clustering in plant communities, with decreasing plant diversity observed under conditions of increasing drought stress. Exotic plant species in the Asteraceae became increasingly pervasive across the landscape, occupying a late season temporal niche in drought-stressed environments. MAIN CONCLUSION Results suggest that environmental filtering is the dominant assembly process structuring the temporal niche of plant communities in this water-limited ecosystem. Based on these results, and trends seen elsewhere, the overall diversity of plant-pollinator communities may be expected to decline with the increasing drought stress predicted under future climate scenarios.
Collapse
Affiliation(s)
| | - Hannah E. Marx
- Department of BiologyUniversity of New MexicoAlbuquerqueNMUSA
- Museum of Southwestern BiologyAlbuquerqueNMUSA
| | | |
Collapse
|
3
|
Howell A, Winkler DE, Phillips ML, McNellis B, Reed SC. Experimental Warming Changes Phenology and Shortens Growing Season of the Dominant Invasive Plant Bromus tectorum (Cheatgrass). FRONTIERS IN PLANT SCIENCE 2020; 11:570001. [PMID: 33178240 PMCID: PMC7593257 DOI: 10.3389/fpls.2020.570001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/16/2020] [Indexed: 05/31/2023]
Abstract
Bromus tectorum (cheatgrass) has successfully invaded and established throughout the western United States. Bromus tectorum grows early in the season and this early growth allows B. tectorum to outcompete native species, which has led to dramatic shifts in ecosystem function and plant community composition after B. tectorum invades. If the phenology of native species is unable to track changing climate as effectively as B. tectorum's phenology then climate change may facilitate further invasion. To better understand how B. tectorum phenology will respond to future climate, we tracked the timing of B. tectorum germination, flowering, and senescence over a decade in three in situ climate manipulation experiments with treatments that increased temperatures (2°C and 4°C above ambient), altered precipitation regimes, or applied a combination of each. Linear mixed-effects models were used to analyze treatment effects on the timing of germination, flowering, senescence, and on the length of the vegetative growing season (time from germination to flowering) in each experiment. Altered precipitation treatments were only applied in early years of the study and neither precipitation treatments nor the treatments' legacies significantly affected B. tectorum phenology. The timing of germination did not significantly vary between any warming treatments and their respective ambient plots. However, plots that were warmed had advances in the timing of B. tectorum flowering and senescence, as well as shorter vegetative growing seasons. The phenological advances caused by warming increased with increasing degrees of experimental warming. The greatest differences between warmed and ambient plots were seen in the length of the vegetative growing season, which was shortened by approximately 12 and 7 days in the +4°C and +2°C warming levels, respectively. The effects of experimental warming were small compared to the effects of interannual climate variation, suggesting that interactive controls and the timing of multiple climatic factors are important in determining B. tectorum phenology. Taken together, these results help elucidate how B. tectorum phenology may respond to future climate, increasing our predictive capacity for estimating when to time B. tectorum control efforts and how to more effectively manage this exotic annual grass.
Collapse
Affiliation(s)
- Armin Howell
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, United States
| | - Daniel E. Winkler
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, United States
| | - Michala L. Phillips
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, United States
| | - Brandon McNellis
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID, United States
| | - Sasha C. Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, United States
| |
Collapse
|
4
|
Hock M, Plos C, Sporbert M, Erfmeier A. Combined Effects of UV-B and Drought on Native and Exotic Populations of Verbascum thapsus L. PLANTS (BASEL, SWITZERLAND) 2020; 9:E269. [PMID: 32085564 PMCID: PMC7076424 DOI: 10.3390/plants9020269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/31/2022]
Abstract
During plant invasions, exotic species have to face new environmental challenges and are affected by interacting components of global change, which may include more stressful environmental conditions. We investigated an invasive species of New Zealand grasslands, commonly exposed to two concomitant and limiting abiotic factors-high levels of ultraviolet-B radiation and drought. The extent to which Verbascum thapsus may respond to these interacting stress factors via adaptive responses was assessed in a greenhouse experiment comprising native German plants and plants of exotic New Zealand origins. Plants from both origins were grown within four treatments resulting from the crossed combinations of two levels of UV-B and drought. Over twelve weeks, we recorded growth, morphological characteristics, physiological responses and productivity. The results showed that drought stress had the strongest effect on biomass, morphology and physiology. Significant effects of UV-B radiation were restricted to variables of leaf morphology and physiology. We found neither evidence for additive effects of UV-B and drought nor origin-dependent stress responses that would indicate local adaptation of native or exotic populations. We conclude that drought-resistant plant species might be predisposed to handle high UV-B levels, but emphasize the importance of setting comparable magnitudes in stress levels when testing experimentally for antagonistic interaction effects between two manipulated factors.
Collapse
Affiliation(s)
- Maria Hock
- Kiel University, Institute for Ecosystem Research/Geobotany, Olshausenstr. 75, 24118 Kiel, Germany;
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, 06108 Halle, Germany; (C.P.); (M.S.)
| | - Carolin Plos
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, 06108 Halle, Germany; (C.P.); (M.S.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103 Leipzig, Germany
| | - Maria Sporbert
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, 06108 Halle, Germany; (C.P.); (M.S.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103 Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Ecology and Evolution/Plant Biodiversity, Philosophenweg 16, 07743 Jena, Germany
| | - Alexandra Erfmeier
- Kiel University, Institute for Ecosystem Research/Geobotany, Olshausenstr. 75, 24118 Kiel, Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Wang Z, Mckenna TP, Schellenberg MP, Tang S, Zhang Y, Ta N, Na R, Wang H. Soil respiration response to alterations in precipitation and nitrogen addition in a desert steppe in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:231-242. [PMID: 31229820 DOI: 10.1016/j.scitotenv.2019.05.419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Global climate change is expected to significantly influence soil respiration. When limited, rainfall and nitrogen (N) deposition strongly modify soil respiration in a broad range of biomes, but uncertainty remains with regards to the influence of the interactions of seasonal rainfall distribution and N deposition on soil respiration in an arid steppe. In the present study, we manipulated precipitation using V-shaped plexiglass gutters (minus 50%, control, and plus 50% treatments) and tested various N additions (control and plus 35 kg N ha-1 yr-1) to evaluate their impact on soil respiration, measured using a Li-Cor 8100, in a desert steppe in China. Increased precipitation stimulated soil respiration by 26.1%, while decreased precipitation significantly reduced soil respiration by 10.8%. There was a significant increase in soil respiration under N addition at 11.5%. Statistical assessment of their interactions demonstrated that N supplementation strengthened the stimulation of soil respiration under increased precipitation, whereas decreased precipitation offset the positive impact of N addition and led to a reduction in soil respiration. Contrasting interannual precipitation patterns strongly influenced the temporal changes in soil respiration as well as its response to N addition, indicating that the desert steppe plant community was co-limited by water and N. Net primary productivity (aboveground and belowground) predominantly drove soil respiration under altered precipitation and N addition. As grasses are better equipped for water deficit due to their previous exposure to long periods without water, there could be a shift from forb to grass communities under drier conditions. These findings highlight the importance of assessing the differential impacts of plant traits and soil physiochemical properties on soil respiration under altered precipitation and N addition.
Collapse
Affiliation(s)
- Zhen Wang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Thomas P Mckenna
- Department of Ecology and Evolutionary Biology, The Kansas Biological Survey University of Kansas, Lawrence, KS 66047, United States of America
| | - Michael P Schellenberg
- Swift Current Research and Development Centre (SCRDC), AAFC-AAC, Box 1030, Swift Current, Saskatchewan S9H 3X2, Canada
| | - Shiming Tang
- Department of Ecology, School of Ecology and Environment, Inner Mongolia University, No. 235 West College Road, 010021 Hohhot, China
| | - Yujuan Zhang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Na Ta
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Risu Na
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China.
| | - Hai Wang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China.
| |
Collapse
|
6
|
Phillips ML, McNellis BE, Allen MF, Allen EB. Differences in root phenology and water depletion by an invasive grass explains persistence in a Mediterranean ecosystem. AMERICAN JOURNAL OF BOTANY 2019; 106:1210-1218. [PMID: 31502242 DOI: 10.1002/ajb2.1344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Flexible phenological responses of invasive plants under climate change may increase their ability to establish and persist. A key aspect of plant phenology is the timing of root production, how it coincides with canopy development and subsequent water-use. The timing of these events within species and across communities could influence the invasion process. We examined above- and belowground phenology of two species in southern California, the native shrub, Adenostoma fasciculatum, and the invasive perennial grass, Ehrharta calycina to investigate relative differences in phenology and water use. METHODS We used normalized difference vegetation index (NDVI) to track whole-canopy activity across the landscape and sap flux sensors on individual chaparral shrubs to assess differences in aboveground phenology of both species. To determine differences in belowground activity, we used soil moisture sensors, minirhizotron imagery, and stable isotopes. RESULTS The invasive grass depleted soil moisture earlier in the spring and produced longer roots at multiple depths earlier in the growing season than the native shrub. However, Adenostoma fasciculatum produced longer roots in the top 10 cm of soil profile in May. Aboveground activity of the two species peaked at the same time. CONCLUSIONS The fact that Ehrharta calycina possessed longer roots earlier in the season suggests that invasive plants may gain a competitive edge over native plants through early activity, while also depleting soil moisture earlier in the season. Depletion of soil moisture earlier by E. calycina suggests that invasive grasses could accelerate the onset of the summer drought in chaparral systems, assuring their persistence following invasion.
Collapse
Affiliation(s)
- Michala L Phillips
- Department of Botany and Plant Sciences, University of California Riverside, 900 University Ave., Riverside, California, 92521, USA
| | - Brandon E McNellis
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Michael F Allen
- Department of Microbiology and Plant Pathology, University of California Riverside, 900 University Ave., Riverside, California, 92521, USA
| | - Edith B Allen
- Department of Botany and Plant Sciences, University of California Riverside, 900 University Ave., Riverside, California, 92521, USA
| |
Collapse
|
7
|
|
8
|
Pérez Castro S, Cleland EE, Wagner R, Sawad RA, Lipson DA. Soil microbial responses to drought and exotic plants shift carbon metabolism. THE ISME JOURNAL 2019; 13:1776-1787. [PMID: 30872806 PMCID: PMC6776022 DOI: 10.1038/s41396-019-0389-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 06/29/2018] [Accepted: 02/05/2019] [Indexed: 01/11/2023]
Abstract
Significant gaps in our understanding of how global change drivers interact to affect the resistance and functioning of microbial communities hinders our ability to model ecosystem responses and feedbacks to co-occurring global stressors. Here, we investigated the effects of extreme drought and exotic plants, two of the most significant threats to Mediterranean-type ecosystems, on soil microbial community composition and carbon metabolic genes within a four-year field rainfall manipulation experiment. We combined measurements of bulk microbial and soil properties with high-throughput microbial community analyses to elucidate microbial responses and microbial-mediated alterations to carbon cycling. While microbial responses to experimental droughts were weak, scant rainfall periods resulted in decreased microbial biomass and activity, and relative abundances of bacterial groups such as Proteobacteria, Verrucomicrobia, and Acidobacteria decreased concomitantly with increases in Actinobacteria, Chloroflexi, and Firmicutes abundance. Soils under exotic plants had increased temperatures, enhanced infiltration during rainfall events, and decreased water retention and labile carbon in comparison to soils under native plants. Higher peaks and more seasonally variable microbial activity were found under exotic plants and, like drought periods, the microbial community shifted towards osmotic stress life-strategies. Relationships found between microbial taxonomic groups and carbon metabolic genes support the interpretation that exotic plants change microbial carbon cycling by altering the soil microclimate and supplying easily decomposed high-quality litter. Soil microbial community responses to drought and exotic plants could potentially impact ecosystem C storage by producing a smaller, more vulnerable C pool of microbial biomass that is prone to increased pulses of heterotrophic respiration.
Collapse
Affiliation(s)
- Sherlynette Pérez Castro
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA.
| | - Elsa E Cleland
- Division of Biological Sciences, Ecology, Behavior & Evolution Section, University of California San Diego, 9500 Gilman Dr. #0116, La Jolla, CA, 92093-0116, USA
| | - Robert Wagner
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| | - Risha Al Sawad
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| | - David A Lipson
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| |
Collapse
|
9
|
Fiedler S, Perring MP, Tietjen B. Integrating trait-based empirical and modeling research to improve ecological restoration. Ecol Evol 2018; 8:6369-6380. [PMID: 29988431 PMCID: PMC6024147 DOI: 10.1002/ece3.4043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/15/2018] [Accepted: 03/09/2018] [Indexed: 11/26/2022] Open
Abstract
A global ecological restoration agenda has led to ambitious programs in environmental policy to mitigate declines in biodiversity and ecosystem services. Current restoration programs can incompletely return desired ecosystem service levels, while resilience of restored ecosystems to future threats is unknown. It is therefore essential to advance understanding and better utilize knowledge from ecological literature in restoration approaches. We identified an incomplete linkage between global change ecology, ecosystem function research, and restoration ecology. This gap impedes a full understanding of the interactive effects of changing environmental factors on the long-term provision of ecosystem functions and a quantification of trade-offs and synergies among multiple services. Approaches that account for the effects of multiple changing factors on the composition of plant traits and their direct and indirect impact on the provision of ecosystem functions and services can close this gap. However, studies on this multilayered relationship are currently missing. We therefore propose an integrated restoration agenda complementing trait-based empirical studies with simulation modeling. We introduce an ongoing case study to demonstrate how this framework could allow systematic assessment of the impacts of interacting environmental factors on long-term service provisioning. Our proposed agenda will benefit restoration programs by suggesting plant species compositions with specific traits that maximize the supply of multiple ecosystem services in the long term. Once the suggested compositions have been implemented in actual restoration projects, these assemblages should be monitored to assess whether they are resilient as well as to improve model parameterization. Additionally, the integration of empirical and simulation modeling research can improve global outcomes by raising the awareness of which restoration goals can be achieved, due to the quantification of trade-offs and synergies among ecosystem services under a wide range of environmental conditions.
Collapse
Affiliation(s)
- Sebastian Fiedler
- Biodiversity/Theoretical EcologyInstitute of BiologyFreie Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Michael P. Perring
- Forest and Nature LabGhent UniversityGontrode‐MelleBelgium
- Ecosystem Restoration and Intervention Ecology Research GroupSchool of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Britta Tietjen
- Biodiversity/Theoretical EcologyInstitute of BiologyFreie Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| |
Collapse
|
10
|
Inderjit, Pergl J, van Kleunen M, Hejda M, Babu CR, Majumdar S, Singh P, Singh SP, Salamma S, Rao BRP, Pyšek P. Naturalized alien flora of the Indian states: biogeographic patterns, taxonomic structure and drivers of species richness. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1622-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|