1
|
Venohr M, Beusch C, Goldhammer T, Nguyen HH, Podschun S, Schmalsch C, Wolter C. Spatial distribution of nicotine concentrations in Berlin's surface waters and their potential sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6784-6803. [PMID: 40014245 PMCID: PMC11928361 DOI: 10.1007/s11356-025-36124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Nicotine is a ubiquitous emergent pollutant that primarily enters the environment through inappropriate disposal of cigarette butts. In a 7-week monitoring program, we collected 56 water samples from 14 lakes, 9 ponds, 9 rivers, 8 canals, and 2 canalized brooks in Berlin. Nicotine was detected in all investigated surface waters. Observed concentrations ranged between 7 ng/l and 1469 ng/l (mean 73 ng/l, median 28 ng/l). Rainy weather conditions generally led to an increase in nicotine concentrations, particularly in canals where concentrations were up to 16 times higher after rain events. For water bodies receiving sewer discharge, mean nicotine concentrations were positively related to population density, while concentrations in surface waters without sewer connections were more related to the presence of public transport stops or recreational areas. Our results highlight the high spatiotemporal variability of nicotine concentrations in urban surface waters. We recommend a temporary systematic daily or event-based monitoring of nicotine concentrations to support our findings and to better understand and quantify emission sources and concentration decay phases. This would improve our still incomplete knowledge about ecological impacts arising from long-term below-lethal nicotine concentrations in urban surface waters.
Collapse
Affiliation(s)
- Markus Venohr
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Justus-von-Liebig-Str. 7, 12489, Berlin, Germany.
| | - Christine Beusch
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Justus-von-Liebig-Str. 7, 12489, Berlin, Germany
| | - Tobias Goldhammer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Justus-von-Liebig-Str. 7, 12489, Berlin, Germany
| | - Hanh Hong Nguyen
- Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 2, 45141, Essen, Germany
- University Alliance Ruhr, Research Center One Health Ruhr, Essen, Germany
| | - Simone Podschun
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Justus-von-Liebig-Str. 7, 12489, Berlin, Germany
| | - Claudia Schmalsch
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Justus-von-Liebig-Str. 7, 12489, Berlin, Germany
| | - Christian Wolter
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Fish Biology, Fisheries and Aquaculture, Müggelseedamm 310, 12587, Berlin, Germany
| |
Collapse
|
2
|
Xu Y, He Z, Rao Z, Li Z, Hu Y, Zhang Z, Zhou J, Zhou T, Wang H. The role of β2-AR/PI3K/AKT pathway in the proliferation, migration and invasion of THLE-2 cells induced by nicotine. Toxicology 2024; 508:153924. [PMID: 39147091 DOI: 10.1016/j.tox.2024.153924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Nicotine, the primary constituent of tobacco, is one of the important factors that induce the occurrence of hepatocellular carcinoma (HCC). The β2-adrenergic receptor (β2-AR) is implicated in the growth and advancement of tumors. However, the role of β2-AR and its mediated cascades in nicotine-induced HCC remains unclear. This present study aims to observe the effects of nicotine on the proliferation, migration, and invasion of immortalized human liver epithelial (THLE-2) cells, as well as to explore the underlying mechanisms of action. The results of cell counting kit-8 (CCK-8) assay showed that 0.3125 μM nicotine had the ability to promote the proliferation of THLE-2 cells with a significant time-dependent manner. Therefore, THLE-2 cells were mainly selected for chronic treatment with 0.3125 μM nicotine in the later stage to cause transformation. After 30 passages of THLE-2 cells with 0.3125 μM nicotine treatment, chronic exposure to nicotine significantly enhanced the proliferation, metastasis, and invasion of cells. Besides, it also upregulated the intracellular levels of β2-AR, phosphoinositide 3-kinase (PI3K), AKT, matrix metalloproteinase-2 (MMP-2) and Cyclin D1, as well as downregulated the expression of p53. More importantly, the β2-AR/PI3K/AKT pathway was found to mediate the expression of MMP-2, Cyclin D1, and p53 in THLE-2 cells, playing a crucial role in their proliferation, migration, and invasion after continuous exposure to nicotine. Simply put, it demonstrated the role of β2-AR/PI3K/AKT pathway in the transformation of THLE-2 cells induced by nicotine. This study could provide valuable insights into the relationship between nicotine and HCC. Additionally, it lays the groundwork for investigating potential anticancer treatments for liver cancer linked to tobacco consumption.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan He
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan Rao
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan Li
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Yuxin Hu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zhongwei Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Jianming Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Tong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Huai Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China.
| |
Collapse
|
3
|
He Z, Xu Y, Rao Z, Zhang Z, Zhou J, Zhou T, Wang H. The role of α7-nAChR-mediated PI3K/AKT pathway in lung cancer induced by nicotine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169604. [PMID: 38157907 DOI: 10.1016/j.scitotenv.2023.169604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Nicotine enters the environment mainly through human activity, as well as natural sources. This review article examines the increasing evidence implicating nicotine in the initiation and progression of lung cancer. Moreover, it primarily focuses on elucidating the activation mechanism of phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) signaling pathway, regulated by α7 subtype nicotinic acetylcholine receptor (α7-nAChR), in relation to the proliferation, invasion, and metastasis of lung cancer cells induced by nicotine, as well as nicotine-mediated anti-apoptotic effects. This process involves PI3K/AKT phosphorylated-B-cell lymphoma-2 (Bcl-2) family proteins, PI3K/AKT/mammalian target of rapamycin (mTOR), PI3K/AKT/nuclear factor-κB (NF-κB), hepatocyte growth factor (HGF)/cellular-mesenchymal epithelial transition factor (c-Met)-induced PI3K/AKT and PI3K/AKT activated-hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathways. In addition, we also deliberated on the related challenges and upcoming prospects within this field. These lay the foundation for further study on nicotine, lung tumorigenesis, and PI3K/AKT related molecular mechanisms. This work has the potential to significantly contribute to the treatment and prognosis of gastric cancer in smokers. Besides, the crucial significance of PI3K/AKT signaling pathway in multiple molecular pathways also suggests that its target antagonists may inhibit the development and progression of lung cancer, providing a possible new perspective for solving the problem of nicotine-promoted lung cancer. The emerging knowledge about the carcinogenic mechanisms of nicotine action should be considered during the environmental assessment of tobacco and other nicotine-containing products.
Collapse
Affiliation(s)
- Zihan He
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Yuqin Xu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan Rao
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zhongwei Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Jianming Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Tong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Huai Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China.
| |
Collapse
|
4
|
Hoa NT, Ngoc Van LT, Vo QV. Reactions of nicotine and the hydroxyl radical in the environment: Theoretical insights into the mechanism, kinetics and products. CHEMOSPHERE 2023; 314:137682. [PMID: 36586441 DOI: 10.1016/j.chemosphere.2022.137682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Nicotine (NCT) is a prevalent and highly poisonous tobacco alkaloid found in wastewater discharge. Advanced oxidative processes (AOP) are radical interactions between harmful pollutants and ambient free radicals that, theoretically, result in less toxic compounds. For a better understanding of the chemical transformations and long-term environmental effects of toxic discharges, the study of these processes is crucial. Here, quantum chemical calculations are used to investigate the AOP of the NCT in aqueous and lipidic environments. It was found that NCT interacted with HO• in polar and nonpolar media, with an overall rate constant koverall = 106 - 1010 M-1 s-1. The computed kinetic data are reasonably accurate as seen by the comparison with the experimental rate constant in water (pH = 7.0), which results in a kcalculated/kexperimetal ratio of 1.4. The hydrogen transfer (C7, C9, C12)-single electron transfer pathways are the main mechanisms for the HO• + NCT reaction in pentyl ethanoate solvent to form the cations as the primary products of the two-step reaction. However, in aqueous environments, the degradation of NCT by HO• radicals increases with increasing pH levels. It is predicted that oxidation products are less toxic than nicotine itself, especially in an aqueous environment with a pH < 7.0.
Collapse
Affiliation(s)
- Nguyen Thi Hoa
- The University of Danang - University of Technology and Education, Danang, 550000, Viet Nam
| | | | - Quan V Vo
- The University of Danang - University of Technology and Education, Danang, 550000, Viet Nam.
| |
Collapse
|
5
|
Urbaniak M, Chinthakindi S, Martinez A, Hornbuckle KC, Kannan K. Occurrence of primary aromatic amines and nicotine in sediments collected from the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158102. [PMID: 35987249 PMCID: PMC10116586 DOI: 10.1016/j.scitotenv.2022.158102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Despite extensive use of primary aromatic amines (AAs) in consumer products, little is known about their occurrence in the environment. In this study, we investigated the occurrence of 14 AAs and nicotine in 75 sediment samples collected from seven estuarine and freshwater ecosystems in the Unites States. Additionally, risk quotients (RQs) were calculated to assess potential risks of these chemicals to aquatic organisms. Of the 14 AAs analyzed, seven of them were found in sediments. The sum concentrations of seven AAs in sediments were in the range of 10.2 to 1810 ng/g, dry wt (mean: 388 ng/g). Aniline was the most abundant compound, accounting for, on average, 53 % of the total concentrations. Nicotine was found in sediments at a concentration range of <LOQ to 1340 ng/g, dry wt (mean: 119 ng/g). Among the seven sampling locations studied, AAs and nicotine concentrations were the highest in sediment from Altavista wastewater lagoon in Virginia (AV, mean: 1700 ng/g) followed in descending order by Chicago Sanitary and Ship Canal (CSSC, mean: 807 ng/g), Indiana Harbor and Ship Canal (IHSC, mean: 698 ng/g) and New Bedford Harbor (NBH, mean: 482 ng/g). Sediments from the upper Mississippi River (MISS, mean: 63.4 ng/g) and Tittabawassee River (TBR, mean: 52.3 ng/g) contained the lowest concentrations. The RQ values for AAs in sediment ranged from 0 to 733 and that for nicotine ranged from 0 to 2060. Among AAs, the highest RQ value was found for 4-chloroaniline. Nicotine exhibited notable RQ values, which suggested risk from this chemical to aquatic organisms. This is the first study to report the occurrence of AAs in sediments and our results suggest the need for further investigations on the sources and ecological impacts of these chemicals in aquatic ecosystems.
Collapse
Affiliation(s)
- Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Sridhar Chinthakindi
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Andres Martinez
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, USA
| | - Keri C Hornbuckle
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
6
|
Cheng YD, Bai YX, Jia M, Chen Y, Wang D, Wu T, Wang G, Yang HW. Potential risks of nicotine on the germination, growth, and nutritional properties of broad bean. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111797. [PMID: 33340958 DOI: 10.1016/j.ecoenv.2020.111797] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
This study evaluated the allelopathy, uptake and accumulation, and potential agricultural and food safety risks of nicotine in broad bean (Vicia faba L.) during seed germination and seedling growth. Nicotine stress has an allelopathic inhibitory effect on seeds and a hormesis effect on germinated seeds and seedlings, which has an enhancement effect (<50 mg kg-1) and an inhibition effect (>100 mg kg-1) on the germinated seeds and an enhancement effect (<100 mg kg-1) and an inhibition effect (>200 mg kg-1) on the seedlings. Exogenous nicotine can be absorbed by broad bean roots from nicotine-contaminated soil and accumulated in the main organs of the seedlings, especially the leaves, which exceeded the maximum residue level (0.03 mg kg-1 DW) at 50 mg kg-1. Moreover, nicotine resulted in a bitter taste in the edible broad bean leaves, disrupting the balance of basic nutritional properties, decreasing sucrose, and increasing bitter substances such as choline and procyanidin. These results demonstrated that residual nicotine in the soil not only poses potential risks to sustainable agricultural development but also a food safety risk for consumers. The present study provides insight into the potential risks of nicotine in agroecosystems.
Collapse
Affiliation(s)
- Ya-Dong Cheng
- College of Tobacco Science, Yunnan Agricultural University, Kunming 650231, China
| | - Yu-Xiang Bai
- College of Tobacco Science, Yunnan Agricultural University, Kunming 650231, China
| | - Meng Jia
- College of Tobacco Science, Yunnan Agricultural University, Kunming 650231, China
| | - Yan Chen
- College of Tobacco Science, Yunnan Agricultural University, Kunming 650231, China
| | - Duo Wang
- Kunming Branch of Yunnan Tobacco Company, Kunming 650000, China
| | - Tao Wu
- Technology Center of China Tobacco Yunnan Industrial Co., LTD. Kunming 650231, China
| | - Ge Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming 650231, China.
| | - Huan-Wen Yang
- College of Tobacco Science, Yunnan Agricultural University, Kunming 650231, China.
| |
Collapse
|
7
|
Dunjana N, Zengeni R, Pisa C, Wuta M, Muchaonyerwa P. Nutrient uptake, yield and taste of oilseed rape (Brassica napus L.) and soil chemical properties following amendment with uncomposted and composted tobacco waste and cattle manure. S AFR J SCI 2020. [DOI: 10.17159/sajs.2020/7846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The inadequacy of the nutrient supply of most tropical and sub-tropical soils may be curbed through organic material recycling, thus reducing the need for mineral fertiliser use. To promote tobacco waste recycling in a smallholder food-cash crop production system, nutrient uptake, dry biomass yield and taste of oilseed rape (Brassica napus L.) and soil chemical properties were determined on a sandy loam soil under field conditions. The experiment was a randomised complete block design with three blocks and eight treatments, namely, control (no amendment), mineral fertiliser (121, 30.8, 24.6 kg/ha N, P and K, respectively), uncomposted tobacco leaf scrap (TSC) and compost of TSC and cattle manure (TSC-CM) at 5, 20 and 40 t/ha. N, P and K uptake and dry biomass yield of oilseed rape were higher (p<0.05) than control with 40 t/ha TSC-CM and mineral fertiliser application at 3 weeks after transplanting (WAT), while significant improvements with TSC were observed from 5 WAT. Mineral N, extractable P and exchangeable K were higher than control with TSC-CM at 20 t/ha and 40 t/ha at 3 WAT, and higher with TSC at 9 WAT. Soil organic carbon was more improved with TSC application than TSC-CM at 9 WAT. Organoleptic testing revealed an intensely bitter taste in oilseed rape with mineral fertiliser, 20 t/ha and 40 t/ha TSC at 3 WAT, although it diminished with time. A trade-off of nutrient uptake, yield, taste of oilseed rape and soil properties improvement is attainable with application of TSC-CM at 40 t/ha, while if composting is not feasible, TSC application at 20 t/ha is a viable alternative. Thus, judicious utilisation of tobacco waste offers a viable solution to the problem of low soil fertility on sandy soils and can reduce the need for mineral fertiliser use, while promising sustainable soil management.
Collapse
Affiliation(s)
- Nothandoa Dunjana
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Rebecca Zengeni
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Charity Pisa
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Department of Natural Resources Management, Marondera University of Agricultural Sciences and Technology, Marondera, Zimbabwe
| | - Menas Wuta
- Department of Soil Science and Agricultural Engineering, University of Zimbabwe, Harare, Zimbabwe
| | - Pardon Muchaonyerwa
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
8
|
Lian L, Yan S, Yao B, Chan SA, Song W. Photochemical Transformation of Nicotine in Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11718-11730. [PMID: 28942634 DOI: 10.1021/acs.est.7b03223] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nicotine is a highly toxic tobacco alkaloid that is ubiquitous in wastewater effluent. For the first time, we report the identification of the products and the pathways for the photodegradation of nicotine in an effluent matrix under simulated solar irradiation. Nicotine was found to be degraded by triplet-state organic matter (3OM*), thus indicating that electron transfer is a preferred reaction mechanism. Using the multivariate statistical strategies orthogonal projection to latent structures discriminant analysis (OPLS-DA) and hierarchical clustering, 49 potential transformation products (TPs) of nicotine were successfully extracted from the water matrix via high-resolution ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Overall, 30 TPs, including 4 groups of nonseparated isomeric photo TPs, were identified with various levels of confidence based on the tandem mass spectrometry information on standard compounds and the isotope-labeling method (using rac-nicotine-2',3',3'-D3, rac-nicotine-13CD3, and rac-nicotine-D4) under air-saturated conditions. The pyrrolidine ring of nicotine was found to be the reactive site under sunlight irradiation. Pseudooxynicotine was the main primary TP from nicotine, with a maximum transformation ratio of 64%. Nicotinic acid, cotinine, 3'-hydroxycotinine, and myosmine were the final stable TPs after 72 h of solar irradiation, with yields of 13%, 3%, 5%, and 5%, respectively.
Collapse
Affiliation(s)
- Lushi Lian
- Department of Environmental Science and Engineering, Fudan University , Shanghai 200433, China
| | - Shuwen Yan
- Department of Environmental Science and Engineering, Fudan University , Shanghai 200433, China
| | - Bo Yao
- Department of Environmental Science and Engineering, Fudan University , Shanghai 200433, China
| | - Shen-An Chan
- Agilent Technology, Inc. , 1350 North Sichuan Road, Shanghai 200080, PR China
| | - Weihua Song
- Department of Environmental Science and Engineering, Fudan University , Shanghai 200433, China
| |
Collapse
|
9
|
Characterization of a Novel Nicotine Hydroxylase from Pseudomonas sp. ZZ-5 That Catalyzes the Conversion of 6-Hydroxy-3-Succinoylpyridine into 2,5-Dihydroxypyridine. Catalysts 2017. [DOI: 10.3390/catal7090257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Oropesa AL, Floro AM, Palma P. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16605-16616. [PMID: 28474259 DOI: 10.1007/s11356-017-9084-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/21/2017] [Indexed: 04/15/2023]
Abstract
Nicotine is a "life-style compound" widely consumed by human populations and, consequently, often found in surface waters. This fact presents a concern for possible effects in the aquatic ecosystems. The objective of this study was to assess the potential lethal and sublethal toxicity of nicotine in aquatic organisms from different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata, Thamnocephalus platyurus, and Daphnia magna). The bioassays were performed by exposing the organisms to concentrations of nicotine in a range of 0.5-1000 μg/L. Results showed that nicotine, at tested concentration, was not acutely toxic to V. fischeri and T. platyurus. On the contrary, this substance exhibited toxicity to P. subcapitata and Daphnia magna. Thus, concentrations of nicotine of 100 and 200 μg/L promoted an inhibition in the growth of P. subcapitata. In addition, a concentration of 100 μg/L nicotine acted on the reproduction of the crustacean D. magna, by decreasing the number of juveniles produced by female. On the other hand, the results showed that concentrations equal to or greater than 10 μg/L induced the production of daphnids male offspring, which may indicate that nicotine is a weak juvenoid compound of the D. magna endocrine system. Furthermore, the result showed that concentrations tested of this chemical have the capacity to revert the effect of fenoxycarb, a strong juvenoid chemical insecticide. The results of the study revealed that nicotine can induce several changes in some of the most important key groups of the aquatic compartment, which can compromise, in a short time, the balance of aquatic ecosystem. Finally, a preliminary environmental risk assessment of this stimulant was performed from the highest measured concentration in surface water and the no observable effect concentration value in the most sensitive species, i.e., D. magna. This process revealed that nicotine can produce an important risk to aquatic organisms.
Collapse
Affiliation(s)
- Ana Lourdes Oropesa
- Unidad de Toxicología, Departamento de Sanidad Animal, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain.
- INBIO G+C - Instituto Universitario de Investigación en Biotecnología Ganadera y Cinegética, Universidad de Extremadura, 10003, Cáceres, Spain.
| | - António Miguel Floro
- Departamento de Tecnologias e Ciências Aplicadas, Escola Superior Agrária de Beja, 7801-295, Beja, Portugal
| | - Patrícia Palma
- Departamento de Tecnologias e Ciências Aplicadas, Escola Superior Agrária de Beja, 7801-295, Beja, Portugal
- CIMA-Centro de Investigação Marinha e Ambiental, CIMA, FCT, Universidade do Algarve, 8005-139, Faro, Portugal
| |
Collapse
|
11
|
Nathiga Nambi KS, Abdul Majeed S, Taju G, Sivasubbu S, Sarath Babu V, Sahul Hameed AS. Effects of nicotine on zebrafish: A comparative response between a newly established gill cell line and whole gills. Comp Biochem Physiol C Toxicol Pharmacol 2017; 195:68-77. [PMID: 28257922 DOI: 10.1016/j.cbpc.2017.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/15/2017] [Accepted: 02/23/2017] [Indexed: 12/23/2022]
Abstract
A novel cell line, Danio rerio gill (DrG), derived from the gill tissue of zebrafish, was established and characterized. The cells were able to grow at a wide range of temperatures from 25°C to 32°C in Leibovitz's L-15 medium. The DrG cell line consists of epithelial-like cells with a diameter of 18-22μm. The cell line was characterized by mitochondrial 12S rRNA gene. Acute toxicity tests were conducted on D. rerio by exposing them to nicotine for 96h under static conditions. In vitro cytotoxicity of nicotine was assessed in DrG cell line using multiple endpoints such as 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), Neutral Red assay, Alamar Blue assay and Coomassie Blue protein assay. Linear correlations between each in vitro cytotoxicity assay and the in vivo mortality data were highly significant. Nicotine induced intracellular reactive oxygen species generation in DrG cell line in a concentration dependent manner. DrG cell line and zebrafish exposed to nicotine significantly increased the elevation of lipid peroxidation (LPO) while depletion of reduced glutathione (GSH), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione S-transferase (GST) and glutathione peroxidise(GPx1a) was observed. In nicotine treated fish and cells a negative correlation between reduced glutathione and LPO was observed. In addition, the production of ROS and the resulting oxidative stress resulted in increased expression of apoptosis related genes p53 and cas3.Collectively, our result suggests that nicotine has the potential to induce reactive oxygen species (ROS) production, oxidative stress and apoptosis in DrG cell line and zebrafish.
Collapse
Affiliation(s)
- K S Nathiga Nambi
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam - 632 509, Vellore District, Tamil Nadu, India; Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - S Abdul Majeed
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam - 632 509, Vellore District, Tamil Nadu, India
| | - G Taju
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam - 632 509, Vellore District, Tamil Nadu, India
| | - Sridhar Sivasubbu
- Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - V Sarath Babu
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam - 632 509, Vellore District, Tamil Nadu, India
| | - A S Sahul Hameed
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam - 632 509, Vellore District, Tamil Nadu, India.
| |
Collapse
|
12
|
Hiki K, Nakajima F, Tobino T. Causes of highway road dust toxicity to an estuarine amphipod: Evaluating the effects of nicotine. CHEMOSPHERE 2017; 168:1365-1374. [PMID: 27919536 DOI: 10.1016/j.chemosphere.2016.11.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/05/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Urban road dust can potentially have adverse effects on ecosystems if it is discharged into receiving waters. This study investigated the causes of highway road dust toxicity by performing sediment toxicity identification evaluation (TIE) tests with an estuarine amphipod, Grandidierella japonica. In addition to metals and polycyclic aromatic hydrocarbons, which are traditionally considered to be the major toxicants in road runoff, we focused on dissolved nicotine as a causative toxicant. The sediment TIE results suggested that organic contaminants contributed to the majority of toxicity, and that the contribution of unionized nicotine to the toxicity was the highest among the chemicals considered. However, additional mortality tests with 48-h pulsed nicotine exposure demonstrated that exposure to nicotine at the same concentration as the baseline level in TIE tests did not cause significant 10-day amphipod mortality. Thus, the road dust toxicity could not be explained only by unionized nicotine, thereby suggesting contributions from joint effects of the measured toxicants and the presence of other unmeasured factors.
Collapse
Affiliation(s)
- Kyoshiro Hiki
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Fumiyuki Nakajima
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohiro Tobino
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Faillace MP, Bernabeu RO. Conditioned Place Preference and Behavioral Analysis to Evaluate Nicotine Reinforcement Properties in Zebrafish. NICOTINIC ACETYLCHOLINE RECEPTOR TECHNOLOGIES 2016. [DOI: 10.1007/978-1-4939-3768-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Wang MZ, He HZ, Zheng X, Feng HJ, Lv ZM, Shen DS. Effect of Pseudomonas sp. HF-1 inoculum on construction of a bioaugmented system for tobacco wastewater treatment: analysis from quorum sensing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7945-55. [PMID: 24659407 DOI: 10.1007/s11356-014-2760-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
To better construct a bioaugmented system for tobacco wastewater treatment, activated sludge was inoculated with different concentrations of the nicotine-degrading bacterium Pseudomonas sp. HF-1. The results showed that inoculum concentrations of 0.55 ± 0.01 and 1.10 ± 0.03 mg/g (dry weight of strain HF-1/dry weight of activated sludge) were best to ensure strain HF-1 survival and successful bioaugmentation. The release pattern of autoinducer (AI) for quorum sensing in the bioaugmented system was also investigated. During the period of HF-1 inoculation, compared with failed bioaugmented systems, AI-2 was significantly increased in the successful systems, suggesting that AI-2-mediated bacterial communication played an important role in the colonization of HF-1. When inoculation of strain HF-1 was stopped, the amount of AI-2 decreased and leveled out in all systems. Notably, there was a greater than threefold increase of short-chain AHLs in failed bioaugmented systems, but no increase in successful ones, implying that the fluctuation of short-chain AHLs could be an indicator of the failure of bioaugmentation. Thus, AI-2-mediated quorum sensing could be implemented to facilitate HF-1 colonization.
Collapse
|
15
|
Effects of Inoculum Amount, Initial pH, and Nicotine Load on the Set-Up of Bioaugmented System with PseudomonasSp. HF-1 to Treat Tobacco Wastewater. J CHEM-NY 2014. [DOI: 10.1155/2014/212596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study evaluated and optimized the influence of inoculum amount, initial pH, and nicotine load on the construction ofPseudomonassp. HF-1 bioaugmented system for tobacco wastewater treatment. The results demonstrated that the optimum condition for the set-up of strain HF-1 bioaugmented system was 1.10 mg/g (dry weight of strain HF-1/dry weight of activated sludge) of inoculum amount, initial pH 7.0, and 250–1000 mg/L nicotine load. Higher than 1.10 mg/g could lead to noncolonization of strain HF-1 in activated sludge and failure of set-up of this bioaugmented system. Higher than pH 8.0 could restrain the colonization of strain HF-1 in activated sludge. Even though strain HF-1 colonizes in the activated sludge when pH was above 8.0, the removal of nicotine and total organic carbon (TOC) was suppressed due to low activities of bacteria in the activated sludge. Nicotine load did not show inhibition effect on set-up of bioaugmented system, but the ability of TOC removal was restrained when the nicotine load was above 1000 mg/L. This work could offer vital parameters for the set-up of bioaugmented system to treat tobacco wastewater in engineering.
Collapse
|
16
|
Cloning of a novel nicotine oxidase gene from Pseudomonas sp. strain HZN6 whose product nonenantioselectively degrades nicotine to pseudooxynicotine. Appl Environ Microbiol 2013; 79:2164-71. [PMID: 23335761 DOI: 10.1128/aem.03824-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain HZN6 utilizes nicotine as its sole source of carbon, nitrogen, and energy. However, its catabolic mechanism has not been elucidated. In this study, self-formed adaptor PCR was performed to amplify the upstream sequence of the pseudooxynicotine amine oxidase gene. A 1,437-bp open reading frame (designated nox) was found to encode a nicotine oxidase (NOX) that shows 30% amino acid sequence identity with 6-hydroxy-l-nicotine oxidase from Arthrobacter nicotinovorans. The nox gene was cloned into a broad-host-range cloning vector and transferred into the non-nicotine-degrading bacteria Escherichia coli DH5α (DH-nox) and Pseudomonas putida KT2440 (KT-nox). The transconjugant KT-nox obtained nicotine degradation ability and yielded an equimolar amount of pseudooxynicotine, while DH-nox did not. Reverse transcription-PCR showed that the nox gene is expressed in both DH5α and KT2440, suggesting that additional factors required for nicotine degradation are present in a Pseudomonas strain(s), but not in E. coli. The mutant of strain HZN6 with nox disrupted lost the ability to degrade nicotine, but not pseudooxynicotine. These results suggested that the nox gene is responsible for the first step of nicotine degradation. The (RS)-nicotine degradation results showed that the two enantiomers were degraded at approximately the same rate, indicating that NOX does not show chiral selectivity. Site-directed mutagenesis revealed that both the conserved flavin adenine dinucleotide (FAD)-binding GXGXXG motif and His456 are essential for nicotine degradation activity.
Collapse
|
17
|
Zarrelli A, DellaGreca M, Parolisi A, Iesce MR, Cermola F, Temussi F, Isidori M, Lavorgna M, Passananti M, Previtera L. Chemical fate and genotoxic risk associated with hypochlorite treatment of nicotine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 426:132-138. [PMID: 22521104 DOI: 10.1016/j.scitotenv.2012.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 05/31/2023]
Abstract
Nicotine, the main alkaloid of tobacco, is a non- prescription drug to which all members of a tobacco-smoking society are exposed either through direct smoke inhalation or through second-hand passive 'smoking'. Nicotine is also commercially available in some pharmaceutical products and is used worldwide as a botanical insecticide in agriculture. Nicotine dynamics in indoor and outdoor environments as well as the human excretions and the manufacturing process are responsible for its entry in the environment through municipal and industrial wastewater discharges. The presence of nicotine in surface and ground waters points out that it survives a conventional treatment process and persists in potable-water supplies. Complete removal of nicotine is instead reported when additional chlorination steps are used. In this paper a simulation of STP chlorination of nicotine and a genotoxic evaluation of its main degradation products are reported. Under laboratory conditions removal of nicotine seems not to be due to mineralization but to transformation in oxidized and chlorinated products. The by-products have been isolated after fractionation by diverse chromatographic procedures and their structures determined using mass spectrometry and (1)H and (13)C NMR spectroscopy. Preliminary genotoxic SOS Chromotests with Escherichia coli PQ37 evidence no toxicity of the products.
Collapse
Affiliation(s)
- Armando Zarrelli
- UdR Napoli 4 Consorzio INCA, IC-REACH, Department of Organic Chemistry and Biochemistry, University Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|