1
|
Houghton DC, DeWalt RE. Updated checklist, habitat affinities, and changes over time of the Indiana (USA) caddisfly fauna (Insecta, Trichoptera). Zookeys 2024; 1216:201-218. [PMID: 39494107 PMCID: PMC11530762 DOI: 10.3897/zookeys.1216.129914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Based on recent collecting and a synthesis of ~100 years of historical data, 219 caddisfly species are reported from the state of Indiana. Seventeen species are reported herein from the state for the first time, including two previously thought to be endemic to the southeastern USA. Species records are also presented herein organized by drainage basin, ecoregion, glacial history, and waterbody type for two distinct time periods: before 1983 and after 2005. More species were reported from the state before 1983 than after 2005, despite collecting almost 3× the number of occurrence records during the latter period. Species occurrence records were greater for most families and functional feeding groups (FFGs) for the post-2005 time period, although the Limnephilidae, Phryganeidae, Molannidae, and Lepidostomatidae, particularly those in the shredder FFG, instead had greater records before 1983. This loss of shredders probably reflected the ongoing habitat degradation within the state. While species rarefaction predicts only a few more species to be found in Indiana, many regions still remain under-sampled and 44 species have not been collected in >40 years.
Collapse
Affiliation(s)
- David C. Houghton
- Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242, USAHillsdale CollegeHillsdaleUnited States of America
| | - R. Edward DeWalt
- Illinois Natural History Survey, 1816 South Oak Street, Champaign, IL 61820, USAIllinois Natural History SurveyChampaignUnited States of America
| |
Collapse
|
2
|
Haubrock PJ, Pilotto F, Haase P. Multidecadal data indicate increase of aquatic insects in Central European streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163017. [PMID: 36963681 DOI: 10.1016/j.scitotenv.2023.163017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
In recent years, declining insect biodiversity has sparked interest among scientists and drawn the attention of society and politicians. However, our understanding of the extent of this decline is incomplete, particularly for freshwater insects that provide a key trophic link between aquatic and terrestrial ecosystems, but that are also especially vulnerable to climate change. To investigate the response of freshwater insects to climate change, we quantified shifts in insect abundance and diversity across 7264 samples covering Central Europe during 1990-2018 and related these changes to annual data on temperature and precipitation. We observed both increases in richness (10.6 %) and abundance (9.5 %) of freshwater insects over the past three decades. These changes were related to increases in summer temperature and summer precipitation, which had negative effects on species richness, and to increases in winter temperature and precipitation, which had positive effects. Further we found that increased temperature was generally related to increased abundance, whereas increased precipitation was associated with declines, thus highlighting the particularly varying impacts on differing insect orders. Given that freshwater insects have been more severely affected by global change than marine and terrestrial species, the observed increases are a positive sign, but the overall situation of freshwater invertebrates is still critical.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait.
| | - Francesca Pilotto
- Environmental Archaeology Lab, Department of Historical, Philosophical and Religious Studies, Umeå University, Biblioteksgränd 3, 907 36 Umeå, Sweden
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of Duisburg-Essen, Faculty of Biology, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
3
|
Thomson RE. Catalog of the Hydroptilidae (Insecta, Trichoptera). Zookeys 2023; 1140:1-499. [PMID: 36760708 PMCID: PMC9871792 DOI: 10.3897/zookeys.1140.85712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/19/2022] [Indexed: 01/17/2023] Open
Abstract
The microcaddisfly (Trichoptera: Hydroptilidae) fauna is catalogued from a review of more than 1,300 literature citations through the end of 2020 to include 2,665 currently recognized, valid species in six subfamilies and 76 genera. Fourteen subspecies are included in the total as well as 23 fossil species and three fossil genera. The family Ptilocolepidae (Trichoptera), also covered in this catalogue, comprises 19 valid species in two genera; two subspecies and two fossil species are included in the total. The monotypic genus Eutonella, currently considered incertae sedis within Trichoptera, was formerly placed in Hydroptilidae and is also included in this catalogue. Genus-group and species-group synonyms are listed. Information on the type locality, type depository, sex of type, distribution by country, and other relevant taxonomic or biological information is included for each nominal species. Summary information on taxonomy, phylogeny, distribution, immature stages, and biology are provided for each subfamily, tribe, and genus where known. An index to all nominal taxa is provided to facilitate catalog use.
Collapse
Affiliation(s)
- Robin E. Thomson
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Avenue, St. Paul, Minnesota, 55108, USAUniversity of MinnesotaSt. PaulUnited States of America
| |
Collapse
|
4
|
Houghton DC. Comparison of caddisfly (Insecta, Trichoptera) assemblages from lake and river habitats of the Huron Mountains of Michigan (USA). Zookeys 2022; 1111:267-286. [PMID: 36760856 PMCID: PMC9848978 DOI: 10.3897/zookeys.1111.70195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/19/2021] [Indexed: 11/12/2022] Open
Abstract
The caddisfly assemblages of six lakes and 12 1st-4th order streams of the Huron Mountains of northern Upper Michigan (USA) were sampled monthly with ultraviolet lights during June-September 2019. A total of 169 species representing 63 genera and 19 families was collected, including five species not found elsewhere in Michigan and two species endemic to the state. Species assemblages between lotic and lentic habitats were distinct from each other, with 11 species indicating lakes and 23 indicating rivers. Despite the taxonomic differences, biomass of functional feeding groups (FFGs) was similar between lakes and rivers, except for higher biomass of predators in the former and higher biomass of filtering collectors in the latter. The FFG biomass of both habitat types was dominated (50-70%) by shredders. Considering the undisturbed condition of the habitats, the caddisfly assemblages and FFG biomass of the Huron Mountains can serve as regional biological monitoring reference conditions.
Collapse
Affiliation(s)
- David C. Houghton
- Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242, USAHillsdale CollegeHillsdaleUnited States of America
| |
Collapse
|
5
|
Baranov V, Jourdan J, Pilotto F, Wagner R, Haase P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:1241-1251. [PMID: 32022305 DOI: 10.1111/cobi.13477] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/24/2020] [Indexed: 05/12/2023]
Abstract
The ongoing biodiversity crisis becomes evident in the widely observed decline in abundance and diversity of species, profound changes in community structure, and shifts in species' phenology. Insects are among the most affected groups, with documented decreases in abundance up to 76% in the last 25-30 years in some terrestrial ecosystems. Identifying the underlying drivers is a major obstacle as most ecosystems are affected by multiple stressors simultaneously and in situ measurements of environmental variables are often missing. In our study, we investigated a headwater stream belonging to the most common stream type in Germany located in a nature reserve with no major anthropogenic impacts except climate change. We used the most comprehensive quantitative long-term data set on aquatic insects available, which includes weekly measurements of species-level insect abundance, daily water temperature and stream discharge as well as measurements of additional physicochemical variables for a 42-year period (1969-2010). Overall, water temperature increased by 1.88 °C and discharge patterns changed significantly. These changes were accompanied by an 81.6% decline in insect abundance, but an increase in richness (+8.5%), Shannon diversity (+22.7%), evenness (+22.4%), and interannual turnover (+34%). Moreover, the community's trophic structure and phenology changed: the duration of emergence increased by 15.2 days, whereas the peak of emergence moved 13.4 days earlier. Additionally, we observed short-term fluctuations (<5 years) in almost all metrics as well as complex and nonlinear responses of the community toward climate change that would have been missed by simply using snapshot data or shorter time series. Our results indicate that climate change has already altered biotic communities severely even in protected areas, where no other interacting stressors (pollution, habitat fragmentation, etc.) are present. This is a striking example of the scientific value of comprehensive long-term data in capturing the complex responses of communities toward climate change.
Collapse
Affiliation(s)
- Viktor Baranov
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Department of Biology II, LMU Munich Biocenter, Planegg-Martinsried, 82152, Germany
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Department of Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University of Frankfurt, Max-von-Laue-Str. 13, Frankfurt, 60438, Germany
| | - Francesca Pilotto
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Environmental Archaeology Lab, Department of Historical, Philosophical and Religious studies, University of Umeå, Umeå, 90187, Sweden
| | - Rüdiger Wagner
- FB 10 Nat. Sci., Biology, Zoology, University of Kassel, Heinrich-Plett-Straße 40, Kassel, 34132, Germany
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Faculty of Biology, University of Duisburg-Essen, Essen, 45141, Germany
| |
Collapse
|
6
|
Rhodes CJ. Are insect species imperilled? Critical factors and prevailing evidence for a potential global loss of the entomofauna: A current commentary. Sci Prog 2019; 102:181-196. [PMID: 31829843 PMCID: PMC10424532 DOI: 10.1177/0036850419854291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
|
7
|
Houghton DC, DeWalt RE, Pytel AJ, Brandin CM, Rogers SE, Ruiter DE, Bright E, Hudson PL, Armitage BJ. Updated checklist of the Michigan (USA) caddisflies, with regional and habitat affinities. Zookeys 2018:57-74. [PMID: 29416396 PMCID: PMC5799788 DOI: 10.3897/zookeys.730.21776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/06/2017] [Indexed: 11/12/2022] Open
Abstract
Based on examination of ~180,000 specimens from 695 collections of 443 localities collected from the 1930s to 2015 we report 295 species of caddisflies from Michigan. Of these, 41 are reported from the state for the first time. Another 18 species previously reported from Michigan are listed as doubtful. The 11 most abundant species collectively represented over half of all specimens collected. Conversely, 80 species were known from <10 specimens, and 27 species from a single specimen. The Michigan fauna is similar to those of Minnesota and Ohio, adjacent states with comparable recent collecting effort. Regional and habitat affinities for each Michigan species are reported herein. Due to the high level of species discovery over the last few years, despite a >80-year collecting history, it is likely that additional species remain undiscovered in the state.
Collapse
Affiliation(s)
- David C Houghton
- Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242, USA
| | - R Edward DeWalt
- Illinois Natural History Survey, 1816 South Oak Street, Champaign IL 61820, USA
| | - Angelica J Pytel
- Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242, USA
| | - Constance M Brandin
- Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242, USA
| | - Sarah E Rogers
- Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242, USA
| | | | - Ethan Bright
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Patrick L Hudson
- Great Lakes Science Center, US Geological Survey, 1451 Green Road, Ann Arbor, MI 48105, USA
| | - Brian J Armitage
- Instituto Conmemorativo Gorgas de Estudio de la Salud, Ave. Justo Arosemena y Calle 35, Apartado Postal No 0816-02593, Ciudad de Panamá, Republic of Panamá
| |
Collapse
|
8
|
Houghton DC, Shoup L. Seasonal changes in the critical thermal maxima of four species of aquatic insects (Ephemeroptera, Trichoptera). ENVIRONMENTAL ENTOMOLOGY 2014; 43:1059-1066. [PMID: 25182620 DOI: 10.1603/en13344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Seasonal changes in the critical thermal maxima (CTmax) of four species of aquatic insects were determined from February 2012 to February 2013 from a first-order stream in northern Lower Michigan. Three of these species: Stenonema femoratum (Ephemeroptera: Heptageniidae), Hydropsyche slossonae (Trichoptera: Hydropsychidae), and Dolophilodes distinctus (Trichoptera: Philopotamidae) exhibited seasonal changes in CTmax, increasing through the spring and summer and then decreasing into the subsequent fall and winter. CTmax of these species correlated strongly with both the seasonal ambient stream temperature and with a series of different laboratory acclimation temperatures, suggesting that organisms adapt to laboratory acclimation in a similar manner as they adapt to seasonal changes. In contrast, the CTmax of Parapsyche apicalis (Trichoptera: Arctopsychidae) remained constant regardless of ambient or acclimation temperature. All species exhibited greater thermal sensitivity relative to ambient temperature during the summer than the winter. Our study indicates that thermal tolerance patterns can be different among species in the same environment. It also provides the first winter and year-round thermal tolerance data for aquatic insects.
Collapse
Affiliation(s)
- David C Houghton
- Department of Biology, Hillsdale College, 33 East College St., Hillsdale, MI 49242, USA
| | | |
Collapse
|
9
|
Houghton DC. Biological diversity of the Minnesota caddisflies (Insecta, Trichoptera). Zookeys 2012:1-389. [PMID: 22615539 PMCID: PMC3345922 DOI: 10.3897/zookeys.189.2043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 03/08/2012] [Indexed: 11/28/2022] Open
Abstract
The caddisfly fauna of Minnesota contains at least 277 species within 21 families and 75 genera. These species are based on examination of 312,884 specimens from 2,166 collections of 937 Minnesota aquatic habitats from 1890 to 2007. Included in these totals is my own quantitative sampling of 4 representative habitat types: small streams, medium rivers, large rivers, and lakes, from each of the 58 major Minnesota watersheds from June through September during 1999–2001. All species are illustrated herein, and their known Minnesota abundances, distributions, adult flight periodicities, and habitat affinities presented. Four species: Lepidostoma griseum (Lepidostomatidae), Psilotreta indecisa (Odontoceridae), and Phryganea sayi and Ptilostomis angustipennis (Phryganeidae) are added to the known fauna. An additional 31 dubious species records are removed for various reasons. Of the 5 determined caddisfly regions of the state, species richness per watershed was highest in the Lake Superior and Northern Regions, intermediate in the Southeastern, and lowest in the Northwestern and Southern. Of the 48 individual collections that yielded >40 species, all but 1 were from the Northern Region. Many species, especially within the families Limnephilidae and Phryganeidae, have appeared to decrease in distribution and abundance during the past 75 years, particularly those once common within the Northwestern and Southern Regions. Many species now appear regionally extirpated, and a few have disappeared from the entire state. The loss of species in the Northwestern and Southern Regions, and probably elsewhere, is almost certainly related to the conversion of many habitats to large-scale agriculture during the mid-20th century.
Collapse
Affiliation(s)
- David C Houghton
- Department of Entomology, 1980 Folwell Ave., University of Minnesota, Saint Paul, MN 55108
| |
Collapse
|