1
|
Jesus F, Mesquita F, Serpa D, Virumbrales Aldama E, Magalhães L, Ré A, Campos I, Abrantes N, Pereira JL, Gonçalves FJM, Nogueira AJA, Gonçalves AMM. Effects of wildfire ash on the fatty acid and sugar profiles of bivalves - A comparative study of a freshwater and a marine species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125540. [PMID: 39694314 DOI: 10.1016/j.envpol.2024.125540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Wildfires can impact both freshwater and marine ecosystems through post-fire runoff, but its effects on bivalves, particularly those living in marine habitats, remain largely overlooked. While evidence exists that wildfire ash can alter the fatty acid (FA) and sugar profiles of aquatic biota, its influence on the biochemical profiles of bivalves have not been addressed to date. This study aimed to assess the effects of ash exposure on the FA and sugar profiles of two bivalve species used for human consumption: a freshwater clam (Corbicula fluminea) and a marine bivalve (Cerastoderma edule), additionally evaluating potential effects on their nutritional value. Both species were exposed to environmentally relevant concentrations of aqueous extracts of Eucalypt ash (AEAs) for 96 h. Results showed species-specific responses to ash extracts exposure, with more pronounced effects on C. edule. This species exhibited a trend for reduced FA content, statistically significant for C17:0 but also evident for unsaturated FAs, which is relevant for human health as they represent a decrease in the nutritional value. Conversely, an increase in the sugar content of this species was observed with increasing AEA concentrations, despite only statistically significant for galactose and xylose. In contrast, the clams exhibited only minor effects, showing a trend for increased FA and decreased sugar contents, but only significant for the monounsaturated FA content. This study suggests a higher sensitivity of marine bivalves to wildfire ash compared to their freshwater counterparts. Moreover, it highlights, for the first time, the potential of post-fire runoff to alter the biochemical profiles of bivalve species, raising concerns about broader impacts on aquatic trophic webs and human health, an issue that becomes particularly relevant given the forecasted increase in wildfire's frequency and extension due to global warming.
Collapse
Affiliation(s)
- Fátima Jesus
- CESAM, Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Filipa Mesquita
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Dalila Serpa
- CESAM, Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Elisa Virumbrales Aldama
- Faculty of Veterinary and Experimental Sciences, Catholic University of Valencia, Calle Guillem de Castro 94, 46001, Valencia, Spain
| | - Luísa Magalhães
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana Ré
- CESAM, Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Isabel Campos
- CESAM, Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana L Pereira
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - António J A Nogueira
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana M M Gonçalves
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; CFE, Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
2
|
Prestes JG, Carneiro L, Miiller NOR, Neundorf AKA, Pedroso CR, Braga RR, Sousa R, Vitule JRS. A systematic review of invasive non-native freshwater bivalves. Biol Rev Camb Philos Soc 2024; 99:2082-2107. [PMID: 38973333 DOI: 10.1111/brv.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
The introduction of invasive species has become an increasing environmental problem in freshwater ecosystems due to the high economic and ecological impacts it has generated. This systematic review covers publications from 2010 to 2020, focusing on non-native invasive freshwater bivalves, a particularly relevant and widespread introduced taxonomic group in fresh waters. We collected information on the most studied species, the main objectives of the studies, their geographical location, study duration, and type of research. Furthermore, we focused on assessing the levels of ecological evidence presented, the type of interactions of non-native bivalves with other organisms and the classification of their impacts. A total of 397 publications were retrieved. The studies addressed a total of 17 species of non-native freshwater bivalves; however, most publications focused on the species Corbicula fluminea and Dreissena polymorpha, which are recognised for their widespread distribution and extensive negative impacts. Many other non-native invasive bivalve species have been poorly studied. A high geographical bias was also present, with a considerable lack of studies in developing countries. The most frequent studies had shorter temporal periods, smaller spatial extents, and more observational data, were field-based, and usually evaluated possible ecological impacts at the individual and population levels. There were 94 publications documenting discernible impacts according to the Environmental Impact Classification for Alien Taxa (EICAT). However, 41 of these publications did not provide sufficient data to determine an impact. The most common effects of invasive bivalves on ecosystems were structural alterations, and chemical and physical changes, which are anticipated due to their role as ecosystem engineers. Despite a considerable number of studies in the field and advances in our understanding of some species over the past decade, long-term data and large-scale studies are still needed to understand better the impacts, particularly at the community and ecosystem levels and in less-studied geographic regions. The widespread distribution of several non-native freshwater bivalves, their ongoing introductions, and high ecological and economic impacts demand continued research. Systematic reviews such as this are essential for identifying knowledge gaps and guiding future research to enable a more complete understanding of the ecological implications of invasive bivalves, and the development of effective management strategies.
Collapse
Affiliation(s)
- Juliani Giselli Prestes
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Laís Carneiro
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Natali Oliva Roman Miiller
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Ananda Karla Alves Neundorf
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Laboratory of Adaptive Biology, Department of Cell Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Clemerson Richard Pedroso
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Raul Rennó Braga
- Department of Animal and Plant Biology, State University of Londrina, Londrina, 86057-970, Brazil
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| | - Jean Ricardo Simões Vitule
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
| |
Collapse
|
3
|
Toxicity and Starvation Induce Major Trophic Isotope Variation in Daphnia Individuals: A Diet Switch Experiment Using Eight Phytoplankton Species of Differing Nutritional Quality. BIOLOGY 2022; 11:biology11121816. [PMID: 36552325 PMCID: PMC9775432 DOI: 10.3390/biology11121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Stable isotope values can express resource usage by organisms, but their precise interpretation is predicated using a controlled experiment-based validation process. Here, we develop a stable isotope tracking approach towards exploring resource shifts in a key primary consumer species Daphnia magna. We used a diet switch experiment and model fitting to quantify the stable carbon (δ13C) and nitrogen (δ15N) isotope turnover rates and discrimination factors for eight dietary sources of the plankton species that differ in their cellular organization (unicellular or filamentous), pigment and nutrient compositions (sterols and polyunsaturated fatty acids), and secondary metabolite production rates. We also conduct a starvation experiment. We evaluate nine tissue turnover models using Akaike's information criterion and estimate the repetitive trophic discrimination factors. Using the parameter estimates, we calculate the hourly stable isotope turnover rates. We report an exceedingly faster turnover value following dietary switching (72 to 96 h) and a measurable variation in trophic discrimination factors. The results show that toxic stress and the dietary quantity and quality induce trophic isotope variation in Daphnia individuals. This study provides insight into the physiological processes that underpin stable isotope patterns. We explicitly test multiple alternative dietary sources and fasting and discuss the parameters that are fundamental for field- and laboratory-based stable isotope studies.
Collapse
|
4
|
Sun Y, Yu X, Yao W, Wu Z. Research progress in relationships between freshwater bivalves and algae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113665. [PMID: 35617904 DOI: 10.1016/j.ecoenv.2022.113665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Eutrophication in freshwater has become increasingly severe around the world, resulting in phytoplankton overgrowth and benthic algae reduction. Bivalves can change the density, dominant species and community structure of phytoplankton, increase available light levels, and provide physical habitats and growth conditions for benthic algae. The nutritional composition, density, community structure, and toxin of algae affect the growth, feeding, digestion, metabolism, immunity of bivalves in return. Interactions of bivalves and algae and effects of environmental factors on these interactions need a synthesis of studies, when using bivalves as a biomanipulation tool to control eutrophication. Whether bivalves can effectively suppress phytoplankton and promote benthic algae is related to the collective filtration and excretion capacity determined by size, species, population densities of bivalves, the quantity and quality of algae, and environmental factors such as temperature, dissolved oxygen, pH, and hydrodynamic. Small scale bivalve biomanipulation experiments are mostly conducted in lakes, urban ponds, and reservoirs with some success, applying in the whole ecosystem should consider more questions such as natural conditions, selection and death or reproduction of bivalves, and ecological disturbances. This review provides new considerations for technical issues such as the sustainable cultivation of bivalves and the implementation of biomanipulation in eutrophic waters.
Collapse
Affiliation(s)
- Yu Sun
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaobo Yu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Weizhi Yao
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Straquadine NRW, Kudela RM, Gobler CJ. Hepatotoxic shellfish poisoning: Accumulation of microcystins in Eastern oysters (Crassostrea virginica) and Asian clams (Corbicula fluminea) exposed to wild and cultured populations of the harmful cyanobacteria, Microcystis. HARMFUL ALGAE 2022; 115:102236. [PMID: 35623692 DOI: 10.1016/j.hal.2022.102236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
The Asian clam (Corbicula fluminea) and eastern oyster (Crassostrea virginica) are important resource bivalves found in and downstream of waterways afflicted with cyanobacterial harmful algae blooms (CHABs), respectively. This study examined the potential for C. fluminea and C. virginica to become vectors of the hepatotoxin, microcystin, from the CHAB Microcystis. Laboratory experiments were performed to quantify clearance rates, particle selection, and accumulation of the hepatotoxin, microcystin, using a microcystin-producing Microcystis culture isolated from Lake Erie (strain LE-3) and field experiments were performed with water from Microcystis blooms in Lake Agawam, NY, USA. Clearance rates of Microcystis were faster (p<0.05) than those of Raphidocelis for C. fluminea, while C. virginica cleared Microcystis and Tisochrysis at similar rates. For both bivalves, clearance rates of bloom water were slower than cultures and clams displayed significantly greater electivity for green algae compared to wild populations of cyanobacteria in field experiments while oysters did not. In experiments with cultured Microcystis comprised of single and double cells, both bivalves accumulated >3 µg microcystins g - 1 (wet weight) in 24 - 72 h, several orders of magnitude beyond California guidance value (10 ng g - 1) but accumulated only up to 2 ng microcystins g - 1 when fed bloom water dominated by large Microcystis colonies for four days. For Asian clams, clearance rates and tissue microcystin content decreased when exposed to toxic Microcystis for 3 - 4 days. In contrast, eastern oysters did not depurate microcystin over 3 - 4-day exposures and accumulated an order of magnitude more microcystin than clams. This contrast suggests Asian clams are likely to accumulate minor amounts of microcystin by reducing clearance rates during blooms of Microcystis, selectively feeding on green algae, and depurating microcystin whereas oysters are more likely to accumulate microcystins and thus are more likely to be a vector for hepatotoxic shellfish poisoning in estuaries downstream of Microcystis blooms.
Collapse
Affiliation(s)
- Nora R W Straquadine
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk HWY, Southampton, NY 11968, USA
| | - Raphael M Kudela
- University of California Santa Cruz, 1156 High Street Santa Cruz, CA 95064, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk HWY, Southampton, NY 11968, USA.
| |
Collapse
|
6
|
Müller T, Labecka AM, Zając K, Czarnoleski M. Growth patterns of the pan-European freshwater mussel, Anodonta anatina (Linnaeus, 1758) (Bivalvia: Unionidae), vary with sex and mortality in populations. Ecol Evol 2021; 11:2907-2918. [PMID: 33767846 PMCID: PMC7981199 DOI: 10.1002/ece3.7250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022] Open
Abstract
Post-maturation growth leading to indeterminate growth patterns is widespread in nature. However, its adaptive value is unclear. Life history theory suggests this allocation strategy may be favored by temporal pulses in the intensity of mortality and/or the capacity to produce new tissues.Addressing the origin of indeterminate growth and the variability of growth patterns, we studied the growth of duck mussels, Anodonta anatina, a pan-European unionid, in 18 Polish lakes. For each population, the sex, size, and age of collected mussels were measured to estimate Bertalanffy's growth curve parameters. We integrated information on A. anatina mortality rates, lake trophy, biofouling by zebra mussels, Dreissena polymorpha, and the prevalence of parasitic trematode larvae to identify selective conditions in lakes.We found two sources of mortality in A. anatina populations, pertaining to adverse effects of zebra mussel biofouling and trophy state on mussel survival. Additionally, populations with heavier biofouling presented a smaller abundance of parasites, indicative of a relationship between filtering intensity and contraction of water-borne trematode larvae by filtering A. anatina.Consistently for each sex, populations with a greater trophy-related mortality were characterized in A. anatina by a smaller asymptotic size Lmax , indicative of a life history response to mortality risk involving early maturation at a smaller body size. In all populations, females featured higher mortality and larger asymptotic size versus males.Our findings support a theoretical view that adaptive responses to selection involve adjustments in the lifetime resource allocation patterns. These adjustments should be considered drivers of the origin of indeterminate growth strategy in species taking parental care by offspring brooding in body cavities.
Collapse
Affiliation(s)
- Tomasz Müller
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Anna Maria Labecka
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Katarzyna Zając
- Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| | - Marcin Czarnoleski
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| |
Collapse
|
7
|
Using Freshwater Bivalves (Corbicula Fluminea) to Alleviate Harmful Effects of Small-Sized Crucian Carp (Carassius Carassius) on Growth of Submerged Macrophytes during Lake Restoration by Biomanipulation. WATER 2020. [DOI: 10.3390/w12113161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased recruitment of small-sized fish following biomanipulation by reducing the biomass of plankti-benthivorous fish, not least in (sub)tropical lakes, may deteriorate water quality and thereby potentially hamper the recovery of submerged macrophytes. Filter-feeding bivalves remove suspended particles from the water and may, thereby, somewhat or fully counteract this negative effect of the increasing abundance of small-sized fish. So far, only few studies have investigated the interactive effects of fish and bivalves on water clarity and macrophyte growth. We conducted a 2 × 2 factorial designed outdoor mesocosm experiment with two densities of small crucian carp Carassius carassius (low 10 g m−2 and high 40 g m−2) and two densities of bivalves Corbicula fluminea (low 204 g m−2 and high 816 g m−2). We found significant interactive effect of fish and bivalves on the growth of the macrophyte Vallisneria natans. In the low density bivalve regime, the relative growth rates, root mass, root:shoot ratio and number of tubers were 30.3%, 30.8%, 21.6% and 27.8% lower in the high than in the low density fish treatments, while the decrease was less pronounced in the high density bivalve regime: 1.2%, 8.7%, 2.1% and 13.3%, respectively. Thus, bivalves reduced the negative effects of fish, not least when bivalve density was high. The weaker effects of small fish on plants in the high- than in the low-density C. fluminea regime can be attributed to lower total suspended solids (TSS) and Chl a in the first week of the experiment. Better light conditions further stimulated the growth of benthic algae, potentially increasing the removal of nutrients from the water and reducing fish-driven resuspension of the sediment. In addition, high densities of C. fluminea also enriched the sediment total nitrogen (TN) and total phosphorus (TP) content, favouring plant growth as indicated by an increase in leaf tissue TN and TP contents. Our results demonstrate that filter-feeding bivalves can alleviate harmful effects of small fish by prolonging a clear-water state that facilitates submerged macrophyte growth. Addition of the bivalve C. fluminea can be a promising tool for the restoration of submerged macrophytes in shallow eutrophic lakes, in particular lakes containing small, rapidly reproducing fish that due to their small sizes are not capable of controlling the bivalves.
Collapse
|
8
|
Boegehold AG, Johnson NS, Kashian DR. Dreissenid (quagga and zebra mussel) veligers are adversely affected by bloom forming cyanobacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109426. [PMID: 31301595 DOI: 10.1016/j.ecoenv.2019.109426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/26/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Quagga (Dreissena rostriformis bugensis) and zebra (D. polymorpha) mussels are broadcast spawners that produce planktonic, free swimming veligers, a life history strategy dissimilar to native North American freshwater bivalves. Dreissenid veligers require highly nutritious food to grow and survive, and thus may be susceptible to increased mortality rates during harsh environmental conditions like cyanobacteria blooms. However, the impact of cyanobacteria and one of the toxins they can produce (microcystin) has not been evaluated in dreissenid veligers. Therefore, we exposed dreissenid veligers to eleven distinct cultures (isolates) of cyanobacteria representing Anabaena, Aphanizomenon, Dolichospermum, Microcystis, and Planktothrix species and the cyanotoxin microcystin to determine the lethality of cyanobacteria on dreissenid veligers. Six-day laboratory bioassays were performed in microplates using dreissenid veligers collected from the Detroit River, Michigan, USA. Veligers were exposed to increasing concentrations of cyanobacteria and microcystin using the green algae Chlorella minutissima as a control. Based on dose response curves formulated from a Probit model, the LC50 values for cyanobacteria used in this study range between 15.06 and 135.06 μg/L chlorophyll-a, with the LC50 for microcystin-LR at 13.03 μg/L. Because LC50 values were within ranges observed in natural waterbodies, it is possible that dreissenid recruitment may be suppressed when veliger abundances overlap with seasonal cyanobacteria blooms. Thus, the toxicity of cyanobacteria to dreissenid veligers may be useful to include in models forecasting dreissenid mussel abundance and spread.
Collapse
Affiliation(s)
- Anna G Boegehold
- Wayne State University Department of Biological Sciences, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Nicholas S Johnson
- U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road Millersburg, MI, 49759, USA
| | - Donna R Kashian
- Wayne State University Department of Biological Sciences, 5047 Gullen Mall, Detroit, MI, 48202, USA.
| |
Collapse
|
9
|
Lin JJ, Liu YC, Chang CJ, Pan MH, Lee MF, Pan BS. Hepatoprotective mechanism of freshwater clam extract alleviates non-alcoholic fatty liver disease: elucidated in vitro and in vivo models. Food Funct 2018; 9:6315-6325. [DOI: 10.1039/c8fo01758a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In vitro and in vivo hepatoprotective model-verified freshwater clam extract alleviated NAFLD.
Collapse
Affiliation(s)
- Jing-Jen Lin
- Department of Food Science
- National Taiwan Ocean University
- Taiwan
| | - Yeuk-Chuen Liu
- Department of Food Science
- National Taiwan Ocean University
- Taiwan
| | - Chun-Ju Chang
- Department of Food Science
- National Taiwan Ocean University
- Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology
- National Taiwan University
- Taipei
- Taiwan
| | - Mong-Fong Lee
- Department of Aquaculture
- National Penghu University of Science and Technology
- Taiwan
| | - Bonnie Sun Pan
- Department of Food Science
- National Taiwan Ocean University
- Taiwan
| |
Collapse
|
10
|
Groendahl S, Fink P. High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms. BMC Ecol 2017; 17:20. [PMID: 28521755 PMCID: PMC5437396 DOI: 10.1186/s12898-017-0130-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/09/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mass occurrences of cyanobacteria frequently cause detrimental effects to the functioning of aquatic ecosystems. Consequently, attempts haven been made to control cyanobacterial blooms through naturally co-occurring herbivores. Control of cyanobacteria through herbivores often appears to be constrained by their low dietary quality, rather than by the possession of toxins, as also non-toxic cyanobacteria are hardly consumed by many herbivores. It was thus hypothesized that the consumption of non-toxic cyanobacteria may be improved when complemented with other high quality prey. We conducted a laboratory experiment in which we fed the herbivorous freshwater gastropod Lymnaea stagnalis single non-toxic cyanobacterial and unialgal diets or a mixed diet to test if diet-mixing may enable these herbivores to control non-toxic cyanobacterial mass abundances. RESULTS The treatments where L. stagnalis were fed non-toxic cyanobacteria and a mixed diet provided a significantly higher shell and soft-body growth rate than the average of all single algal, but not the non-toxic cyanobacterial diets. However, the increase in growth provided by the non-toxic cyanobacteria diets could not be related to typical determinants of dietary quality such as toxicity, nutrient stoichiometry or essential fatty acid content. CONCLUSIONS These results strongly contradict previous research which describes non-toxic cyanobacteria as a low quality food resource for freshwater herbivores in general. Our findings thus have strong implications to gastropod-cyanobacteria relationships and suggest that freshwater gastropods may be able to control mass occurrences of benthic non-toxic cyanobacteria, frequently observed in eutrophied water bodies worldwide.
Collapse
Affiliation(s)
- Sophie Groendahl
- Cologne Biocenter, Workgroup Aquatic Chemical Ecology, University of Cologne, Zuelpicher Strasse 47b, 50674 Koeln, Germany
| | - Patrick Fink
- Cologne Biocenter, Workgroup Aquatic Chemical Ecology, University of Cologne, Zuelpicher Strasse 47b, 50674 Koeln, Germany
- Institute for Zoomorphology and Cell Biology, Heinrich-Heine University of Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| |
Collapse
|
11
|
Bartsch MR, Bartsch LA, Richardson WB, Vallazza JM, Moraska Lafrancois B. Effects of food resources on the fatty acid composition, growth and survival of freshwater mussels. PLoS One 2017; 12:e0173419. [PMID: 28267810 PMCID: PMC5340365 DOI: 10.1371/journal.pone.0173419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/19/2017] [Indexed: 11/29/2022] Open
Abstract
Increased nutrient and sediment loading in rivers have caused observable changes in algal community composition, and thereby, altered the quality and quantity of food resources available to native freshwater mussels. Our objective was to characterize the relationship between nutrient conditions and mussel food quality and examine the effects on fatty acid composition, growth and survival of juvenile mussels. Juvenile Lampsilis cardium and L. siliquoidea were deployed in cages for 28 d at four riverine and four lacustrine sites in the lower St. Croix River, Minnesota/Wisconsin, USA. Mussel foot tissue and food resources (four seston fractions and surficial sediment) were analyzed for quantitative fatty acid (FA) composition. Green algae were abundant in riverine sites, whereas cyanobacteria were most abundant in the lacustrine sites. Mussel survival was high (95%) for both species. Lampsilis cardium exhibited lower growth relative to L. siliquoidea (p <0.0001), but growth of L. cardium was not significantly different across sites (p = 0.13). In contrast, growth of L. siliquoidea was significantly greater at the most upstream riverine site compared to the lower three lacustrine sites (p = 0.002). In situ growth of Lampsilis siliquoidea was positively related to volatile solids (10 – 32 μm fraction), total phosphorus (<10 and 10 – 32 μm fractions), and select FA in the seston (docosapentaeonic acid, DPA, 22:5n3; 4,7,10,13,16-docosapentaenoic, 22:5n6; arachidonic acid, ARA, 20:4n6; and 24:0 in the <10 and 10 – 32 μm fractions). Our laboratory feeding experiment also indicated high accumulation ratios for 22:5n3, 22:5n6, and 20:4n6 in mussel tissue relative to supplied algal diet. In contrast, growth of L. siliquiodea was negatively related to nearly all FAs in the largest size fraction (i.e., >63 μm) of seston, including the bacterial FAs, and several of the FAs associated with sediments. Reduced mussel growth was observed in L. siliquoidea when the abundance of cyanobacteria exceeded 9% of the total phytoplankton biovolume. Areas dominated by cyanobacteria may not provide sufficient food quality to promote or sustain mussel growth.
Collapse
Affiliation(s)
- Michelle R. Bartsch
- United States Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, United States of America
- * E-mail:
| | - Lynn A. Bartsch
- United States Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, United States of America
| | - William B. Richardson
- United States Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, United States of America
| | - Jon M. Vallazza
- United States Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, United States of America
| | | |
Collapse
|
12
|
Bril JS, Langenfeld K, Just CL, Spak SN, Newton TJ. Simulated mussel mortality thresholds as a function of mussel biomass and nutrient loading. PeerJ 2017; 5:e2838. [PMID: 28070462 PMCID: PMC5217613 DOI: 10.7717/peerj.2838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/28/2016] [Indexed: 11/21/2022] Open
Abstract
A freshwater “mussel mortality threshold” was explored as a function of porewater ammonium (NH4+) concentration, mussel biomass, and total nitrogen (N) utilizing a numerical model calibrated with data from mesocosms with and without mussels. A mortality threshold of 2 mg-N L−1 porewater NH4+ was selected based on a study that estimated 100% mortality of juvenile Lampsilis mussels exposed to 1.9 mg-N L−1 NH4+ in equilibrium with 0.18 mg-N L−1 NH3. At the highest simulated mussel biomass (560 g m−2) and the lowest simulated influent water “food” concentration (0.1 mg-N L−1), the porewater NH4+ concentration after a 2,160 h timespan without mussels was 0.5 mg-N L−1 compared to 2.25 mg-N L−1 with mussels. Continuing these simulations while varying mussel biomass and N content yielded a mortality threshold contour that was essentially linear which contradicted the non-linear and non-monotonic relationship suggested by Strayer (2014). Our model suggests that mussels spatially focus nutrients from the overlying water to the sediments as evidenced by elevated porewater NH4+ in mesocosms with mussels. However, our previous work and the model utilized here show elevated concentrations of nitrite and nitrate in overlying waters as an indirect consequence of mussel activity. Even when the simulated overlying water food availability was quite low, the mortality threshold was reached at a mussel biomass of about 480 g m−2. At a food concentration of 10 mg-N L−1, the mortality threshold was reached at a biomass of about 250 g m−2. Our model suggests the mortality threshold for juvenile Lampsilis species could be exceeded at low mussel biomass if exposed for even a short time to the highly elevated total N loadings endemic to the agricultural Midwest.
Collapse
Affiliation(s)
- Jeremy S Bril
- Department of Civil and Environmental Engineering, University of Iowa , Iowa City , IA , United States
| | - Kathryn Langenfeld
- Department of Civil and Environmental Engineering, University of Iowa , Iowa City , IA , United States
| | - Craig L Just
- Department of Civil and Environmental Engineering, University of Iowa , Iowa City , IA , United States
| | - Scott N Spak
- Department of Civil and Environmental Engineering, University of Iowa , Iowa City , IA , United States
| | - Teresa J Newton
- Upper Midwest Environmental Sciences Center, US Geological Survey , La Crosse , WI , United States
| |
Collapse
|
13
|
Lange B, Reuter M, Ebert D, Muylaert K, Decaestecker E. Diet quality determines interspecific parasite interactions in host populations. Ecol Evol 2014; 4:3093-102. [PMID: 25247066 PMCID: PMC4161182 DOI: 10.1002/ece3.1167] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/08/2022] Open
Abstract
The widespread occurrence of multiple infections and the often vast range of nutritional resources for their hosts allow that interspecific parasite interactions in natural host populations might be determined by host diet quality. Nevertheless, the role of diet quality with respect to multispecies parasite interactions on host population level is not clear. We here tested the effect of host population diet quality on the parasite community in an experimental study using Daphnia populations. We studied the effect of diet quality on Daphnia population demography and the interactions in multispecies parasite infections of this freshwater crustacean host. The results of our experiment show that the fitness of a low-virulent microsporidian parasite decreased in low, but not in high-host-diet quality conditions. Interestingly, infections with the microsporidium protected Daphnia populations against a more virulent bacterial parasite. The observed interspecific parasite interactions are discussed with respect to the role of diet quality-dependent changes in host fecundity. This study reflects that exploitation competition in multispecies parasite infections is environmentally dependent, more in particular it shows that diet quality affects interspecific parasite competition within a single host and that this can be mediated by host population-level effects.
Collapse
Affiliation(s)
- Benjamin Lange
- Laboratory Aquatic Biology, Science & Technology-Kulak, KU LeuvenKortrijk, 8500, Belgium
| | - Max Reuter
- Department of Genetics, Evolution & Environment, University College LondonLondon, WC1E 6BT, UK
| | - Dieter Ebert
- Zoological Institute, University of BaselBasel, CH-4051, Switzerland
| | - Koenraad Muylaert
- Laboratory Aquatic Biology, Science & Technology-Kulak, KU LeuvenKortrijk, 8500, Belgium
| | - Ellen Decaestecker
- Laboratory Aquatic Biology, Science & Technology-Kulak, KU LeuvenKortrijk, 8500, Belgium
| |
Collapse
|
14
|
Avila-Poveda OH, Torres-Ariño A, Girón-Cruz DA, Cuevas-Aguirre A. Evidence for accumulation of Synechococcus elongatus (Cyanobacteria: Cyanophyceae) in the tissues of the oyster Crassostrea gigas (Mollusca: Bivalvia). Tissue Cell 2014; 46:379-87. [PMID: 25109761 DOI: 10.1016/j.tice.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 06/30/2014] [Accepted: 07/15/2014] [Indexed: 11/28/2022]
Abstract
Cyanobacteria appear to have direct relations with mollusks in several aspects. This is the first time, distinguishing Gram-negative cyanoprokaryotic Synechococcus elongatus as bright yellow-gold autofluorescence by Lillie's and Hiss' staining methods on paraffin-embedded tissues of Crassostrea gigas. Three diets: cyanoprokaryotes, cyanoprokaryotes with microalgae, and only microalgae were evaluated. Cyanoprokaryotes were intact, densely bundled, and immersed in the cytosol of the digestive gland, connective tissue, mantle, and gonad of C. gigas, revealing an accumulation systemic without tissue damage observed by histology. Unexpectedly, cyanoprokaryotes were slightly most accumulated with microalgae diet by each of the tissues of the C. gigas than with any other diets. Cyanoprokaryotes tend to be in mean slightly higher in the digestive gland than in any other tissues respectively for each diet, although these values are closely similar to connective tissue. A possible order of exposure of the oyster tissues to accumulation of cyanoprokaryotes was digestive gland, connective tissue, mantle, and gonad. Thereby, the digestive gland could be the major target tissue for the accumulation. Our observations provide a valuable insight regarding the ability of cyanoprokaryotes to penetrate, spread, and remain inside the oyster tissues, suggesting for S. elongatus: (1) a pre-accumulation in oyster tissues from the natural environment, (2) a phagocytosis and/or endocytosis process rather than ingestion and extracellular digestion, (3) an apparent cellular division in the cytosol of oyster tissues, (4) an apparent inter-tissue movement, and (5) a possible endosymbiosis between C. gigas and S. elongatus. Hereby, it is possible that S. elongatus have a well-developed host-endobiont relationship with oysters, and thereby support future work toward a description of the escape and spreading mechanisms of S. elongatus inside the tissues of mollusks, and put forward questions as why it is there? and are the cells active or inactive?
Collapse
Affiliation(s)
| | - Alejandra Torres-Ariño
- Instituto de Industrias, Universidad del Mar (UMAR), Puerto Ángel, Oaxaca C.P. 70902, Mexico; Laboratorio de Biotecnología de Microalgas (LBM), Universidad del Mar (UMAR), Puerto Ángel, Oaxaca C.P. 70902, Mexico.
| | - Diego Ademir Girón-Cruz
- Licenciatura en Biología Marina, Universidad del Mar (UMAR), Puerto Ángel, Oaxaca C.P. 70902, Mexico
| | - Angel Cuevas-Aguirre
- Instituto de Industrias, Universidad del Mar (UMAR), Puerto Ángel, Oaxaca C.P. 70902, Mexico
| |
Collapse
|
15
|
Lee CE, Moss WE, Olson N, Chau KF, Chang YM, Johnson KE. Feasting in fresh water: impacts of food concentration on freshwater tolerance and the evolution of food × salinity response during the expansion from saline into fresh water habitats. Evol Appl 2013; 6:673-89. [PMID: 23789033 PMCID: PMC3684747 DOI: 10.1111/eva.12054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/14/2013] [Indexed: 11/28/2022] Open
Abstract
Saline to freshwater invasions have become increasingly common in recent years. A key hypothesis is that rates of freshwater invasions have been amplified in recent years by increased food concentration, yet this hypothesis has remained unexplored. We examined whether elevated food concentration could enhance freshwater tolerance, and whether this effect evolves following saline to freshwater invasions. We examined physiological response to salinity and food concentration in a 2 × 2 factorial design, using ancestral brackish and freshwater invading populations of the copepod Eurytemora affinis. We found that high food concentration significantly increases low-salinity tolerance. This effect was reduced in the freshwater population, indicating evolution following the freshwater invasion. Thus, ample food could enable freshwater invasions, allowing subsequent evolution of low-salinity tolerance even under food-poor conditions. We also compared effects of food concentration on freshwater survival between two brackish populations from the native range. Impacts of food concentration on freshwater survival differed between the brackish populations, suggesting variation in functional properties affecting their propensity to invade freshwater habitats. The key implication is that high food concentration could profoundly extend range expansions of brackishwater species into freshwater habitats, potentially allowing for condition-specific competition between saline invaders and resident freshwater species.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Center of Rapid Evolution (CORE), University of Wisconsin Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
16
|
Basen T, Rothhaupt KO, Martin-Creuzburg D. Absence of sterols constrains food quality of cyanobacteria for an invasive freshwater bivalve. Oecologia 2012; 170:57-64. [DOI: 10.1007/s00442-012-2294-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
|