1
|
Lo SY, Lai MJ, Yang CH, Li HC. Unveiling the Connection: Viral Infections and Genes in dNTP Metabolism. Viruses 2024; 16:1412. [PMID: 39339888 PMCID: PMC11437409 DOI: 10.3390/v16091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Deoxynucleoside triphosphates (dNTPs) are crucial for the replication and maintenance of genomic information within cells. The balance of the dNTP pool involves several cellular enzymes, including dihydrofolate reductase (DHFR), ribonucleotide reductase (RNR), and SAM and HD domain-containing protein 1 (SAMHD1), among others. DHFR is vital for the de novo synthesis of purines and deoxythymidine monophosphate, which are necessary for DNA synthesis. SAMHD1, a ubiquitously expressed deoxynucleotide triphosphohydrolase, converts dNTPs into deoxynucleosides and inorganic triphosphates. This process counteracts the de novo dNTP synthesis primarily carried out by RNR and cellular deoxynucleoside kinases, which are most active during the S phase of the cell cycle. The intracellular levels of dNTPs can influence various viral infections. This review provides a concise summary of the interactions between different viruses and the genes involved in dNTP metabolism.
Collapse
Affiliation(s)
- Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Meng-Jiun Lai
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
2
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
3
|
Banga R, Procopio FA, Lana E, Gladkov GT, Roseto I, Parsons EM, Lian X, Armani-Tourret M, Bellefroid M, Gao C, Kauzlaric A, Foglierini M, Alfageme-Abello O, Sluka SHM, Munoz O, Mastrangelo A, Fenwick C, Muller Y, Mkindi CG, Daubenberger C, Cavassini M, Trunfio R, Déglise S, Corpataux JM, Delorenzi M, Lichterfeld M, Pantaleo G, Perreau M. Lymph node dendritic cells harbor inducible replication-competent HIV despite years of suppressive ART. Cell Host Microbe 2023; 31:1714-1731.e9. [PMID: 37751747 PMCID: PMC11068440 DOI: 10.1016/j.chom.2023.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/02/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Although gut and lymph node (LN) memory CD4 T cells represent major HIV and simian immunodeficiency virus (SIV) tissue reservoirs, the study of the role of dendritic cells (DCs) in HIV persistence has long been limited to the blood due to difficulties to access lymphoid tissue samples. In this study, we show that LN migratory and resident DC subpopulations harbor distinct phenotypic and transcriptomic profiles. Interestingly, both LN DC subpopulations contain HIV intact provirus and inducible replication-competent HIV despite the expression of the antiviral restriction factor SAMHD1. Notably, LN DC subpopulations isolated from HIV-infected individuals treated for up to 14 years are transcriptionally silent but harbor replication-competent virus that can be induced upon TLR7/8 stimulation. Taken together, these results uncover a potential important contribution of LN DCs to HIV infection in the presence of ART.
Collapse
Affiliation(s)
- Riddhima Banga
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Francesco Andrea Procopio
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Erica Lana
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | | | | | - Elizabeth M Parsons
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Annamaria Kauzlaric
- Translational Bioinformatics and Statistics Department of Oncology, University of Lausanne Swiss Cancer Center, Lausanne, Switzerland
| | - Mathilde Foglierini
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Oscar Alfageme-Abello
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Susanna H M Sluka
- Newborn Screening Switzerland, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Olivia Munoz
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Andrea Mastrangelo
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Craig Fenwick
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Yannick Muller
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Catherine Gerald Mkindi
- Ifakara Health Institute, Bagamoyo, United Republic of Tanzania; Department of Medical Parasitology and Infection Biology, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Matthias Cavassini
- Services of Infectious Diseases, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Rafael Trunfio
- Services of Vascular Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Sébastien Déglise
- Services of Vascular Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Jean-Marc Corpataux
- Services of Vascular Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Mauro Delorenzi
- Translational Bioinformatics and Statistics Department of Oncology, University of Lausanne Swiss Cancer Center, Lausanne, Switzerland
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Giuseppe Pantaleo
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Matthieu Perreau
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
4
|
Hendricks CM, Cordeiro T, Gomes AP, Stevenson M. The Interplay of HIV-1 and Macrophages in Viral Persistence. Front Microbiol 2021; 12:646447. [PMID: 33897659 PMCID: PMC8058371 DOI: 10.3389/fmicb.2021.646447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
HIV-1 has evolved mechanisms to evade host cell immune responses and persist for lifelong infection. Latent cellular reservoirs are responsible for this persistence of HIV-1 despite the powerful effects of highly active antiretroviral therapies (HAART) to control circulating viral load. While cellular reservoirs have been extensively studied, much of these studies have focused on peripheral blood and resting memory CD4+ T cells containing latent HIV-1 provirus; however, efforts to eradicate cellular reservoirs have been stunted by reservoirs found in tissues compartments that are not easily accessible. These tissues contain resting memory CD4+ T cells and tissue resident macrophages, another latent cellular reservoir to HIV-1. Tissue resident macrophages have been associated with HIV-1 infection since the 1980s, and evidence has continued to grow regarding their role in HIV-1 persistence. Specific biological characteristics play a vital role as to why macrophages are latent cellular reservoirs for HIV-1, and in vitro and in vivo studies exhibit how macrophages contribute to viral persistence in individuals and animals on antiretroviral therapies. In this review, we characterize the role and evolutionary advantages of macrophage reservoirs to HIV-1 and their contribution to HIV-1 persistence. In acknowledging the interplay of HIV-1 and macrophages in the host, we identify reasons why current strategies are incapable of eliminating HIV-1 reservoirs and why efforts must focus on eradicating reservoirs to find a future functional cure.
Collapse
Affiliation(s)
- Chynna M. Hendricks
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thaissa Cordeiro
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ana Paula Gomes
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mario Stevenson
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
5
|
Veenhuis RT, Abreu CM, Shirk EN, Gama L, Clements JE. HIV replication and latency in monocytes and macrophages. Semin Immunol 2021; 51:101472. [PMID: 33648815 PMCID: PMC10171083 DOI: 10.1016/j.smim.2021.101472] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
Abstract
The relevance of monocyte and macrophage reservoirs in virally suppressed people with HIV (vsPWH) has previously been debatable. Macrophages were assumed to have a moderate life span and lack self-renewing potential. However, recent studies have challenged this dogma and now suggest an important role of these cell as long-lived HIV reservoirs. Lentiviruses have a long-documented association with macrophages and abundant evidence exists that macrophages are important target cells for HIV in vivo. A critical understanding of HIV infection, replication, and latency in macrophages is needed in order to determine the appropriate method of measuring and eliminating this cellular reservoir. This review provides a brief discussion of the biology and acute and chronic infection of monocytes and macrophages, with a more substantial focus on replication, latency and measurement of the reservoir in cells of myeloid origin.
Collapse
Affiliation(s)
- Rebecca T Veenhuis
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Celina M Abreu
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erin N Shirk
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lucio Gama
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| | - Janice E Clements
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
6
|
Coggins SA, Kim DH, Schinazi RF, Desrosier RC, Kim B. Enhanced enzyme kinetics of reverse transcriptase variants cloned from animals infected with SIVmac239 lacking viral protein X. J Biol Chem 2020; 295:16975-16986. [PMID: 33008888 PMCID: PMC7863885 DOI: 10.1074/jbc.ra120.015273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
HIV Type 1 (HIV-1) and simian immunodeficiency virus (SIV) display differential replication kinetics in macrophages. This is because high expression levels of the active host deoxynucleotide triphosphohydrolase sterile α motif domain and histidine-aspartate domain-containing protein 1 (SAMHD1) deplete intracellular dNTPs, which restrict HIV-1 reverse transcription, and result in a restrictive infection in this myeloid cell type. Some SIVs overcome SAMHD1 restriction using viral protein X (Vpx), a viral accessory protein that induces proteasomal degradation of SAMHD1, increasing cellular dNTP concentrations and enabling efficient proviral DNA synthesis. We previously reported that SAMHD1-noncounteracting lentiviruses may have evolved to harbor RT proteins that efficiently polymerize DNA, even at low dNTP concentrations, to circumvent SAMHD1 restriction. Here we investigated whether RTs from SIVmac239 virus lacking a Vpx protein evolve during in vivo infection to more efficiently synthesize DNA at the low dNTP concentrations found in macrophages. Sequence analysis of RTs cloned from Vpx (+) and Vpx (-) SIVmac239-infected animals revealed that Vpx (-) RTs contained more extensive mutations than Vpx (+) RTs. Although the amino acid substitutions were dispersed indiscriminately across the protein, steady-state and pre-steady-state analysis demonstrated that selected SIVmac239 Vpx (-) RTs are characterized by higher catalytic efficiency and incorporation efficiency values than RTs cloned from SIVmac239 Vpx (+) infections. Overall, this study supports the possibility that the loss of Vpx may generate in vivo SIVmac239 RT variants that can counteract the limited availability of dNTP substrate in macrophages.
Collapse
Affiliation(s)
- Si'Ana A Coggins
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dong-Hyun Kim
- Department of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ronald C Desrosier
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
7
|
Zhang Z, Zheng L, Yu Y, Wu J, Yang F, Xu Y, Guo Q, Wu X, Cao S, Cao L, Song X. Involvement of SAMHD1 in dNTP homeostasis and the maintenance of genomic integrity and oncotherapy (Review). Int J Oncol 2020; 56:879-888. [PMID: 32319570 DOI: 10.3892/ijo.2020.4988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/07/2020] [Indexed: 11/06/2022] Open
Abstract
Sterile alpha motif and histidine/aspartic acid domain‑containing protein 1 (SAMHD1), the only deoxynucleotide triphosphate (dNTP) hydrolase in eukaryotes, plays a crucial role in regulating the dynamic balance and ratio of cellular dNTP pools. Furthermore, SAMHD1 has been reported to be involved in the pathological process of several diseases. Homozygous SAMHD1 mutations have been identified in immune system disorders, such as autoimmune disease Aicardi‑Goutières syndrome (AGS), whose primary pathogenesis is associated with the abnormal accumulation and disproportion of dNTPs. SAMHD1 is also considered to be an intrinsic virus‑restriction factor by suppressing the viral infection process, including reverse transcription, replication, packaging and transmission. In addition, SAMHD1 has been shown to promote genome integrity during homologous recombination following DNA damage, thus being considered a promising candidate for oncotherapy applications. The present review summarizes the molecular mechanisms of SAMHD1 regarding the regulation of dNTP homeostasis and DNA damage response. Additionally, its potential effects on tumorigenesis and oncotherapy are reported.
Collapse
Affiliation(s)
- Zhou Zhang
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Lixia Zheng
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yang Yu
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jinying Wu
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Fan Yang
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yingxi Xu
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Qiqiang Guo
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xuan Wu
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Sunrun Cao
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaoyu Song
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|