1
|
Lv J, Ma S, Wang X, Dang J, Ma F. PSMD12 promotes non-small cell lung cancer progression through activating the Nrf2/TrxR1 pathway. Genes Genomics 2024; 46:263-277. [PMID: 38243044 DOI: 10.1007/s13258-023-01484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) contributes to the vast majority of cancer-related deaths. Proteasome 26S subunit, non-ATPase 12 (PSMD12), a subunit of 26S proteasome complex, is known to play the tumor-promoting role in several types of cancer but its function in NSCLC remains elusive. OBJECTIVE To explore the role and underlying mechanisms of PSMD12 in NSCLC. METHODS The PSMD12 expression in human normal lung epithelial cell line (BEAS-2B) and four NSCLC cell lines (A549, NCI-H1299, NCI-H1975, Calu-1) were determined by qRT-PCR and western blot. Malignant phenotypes of NSCLC cells were detected by CCK-8, EdU staining, immunofluorescence staining for E-cadherin, flow cytometry, and Transwell assays to assess cell viability, proliferation, epithelial-mesenchymal transition (EMT), apoptosis, migration and invasion. Dual luciferase assay was used to verify the regulatory role of transcription factor on the promoter. RESULTS We identified the upregulation of PSMD12 in NSCLC tissues based on the GEO datasets, which further verified in NSCLC and BEAS-2B cell lines. PSMD12 knockdown significantly suppressed malignant behaviors of NSCLC cells, including cell growth, invasion, and migration, while PSMD12 overexpression presented the opposite effects. Interestingly, we found that PSMD12 upregulated the tumor-promoting factor TrxR1 mRNA expression. For its potential mechanisms, we demonstrated that PSMD12 elevated transcription factor Nrf2 protein level and promoted Nrf2 nuclear translocation. And Nrf2 further increased TrxR1 promoter activity and enhanced TrxR1 transcription. Meanwhile, we proved that TrxR1 overexpression erased the inhibitory effect of PSMD12 knockdown. CONCLUSION PSMD12 promotes NSCLC progression by activating the Nrf2/TrxR1 pathway, providing a novel prognostic and therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Junqi Lv
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China.
| | - Shengmao Ma
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China
| | - Xiaowen Wang
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China
| | - Jifang Dang
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China
| | - Fuchun Ma
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
2
|
Tang YC, Chuang YJ, Chang HH, Juang SH, Yen GC, Chang JY, Kuo CC. How to deal with frenemy NRF2: Targeting NRF2 for chemoprevention and cancer therapy. J Food Drug Anal 2023; 31:387-407. [PMID: 39666284 PMCID: PMC10629913 DOI: 10.38212/2224-6614.3463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 12/13/2024] Open
Abstract
Induction of antioxidant proteins and phase 2 detoxifying enzymes that neutralize reactive electrophiles are important mechanisms for protection against carcinogenesis. Normal cells provide multifaceted pathways to tightly control NF-E2-related factor 2 (NRF2)-mediated gene expression in response to an assault by a range of endogenous and exogenous oncogenic molecules. Transient activation of NRF2 by its activators is able to induce ARE-mediated cytoprotective proteins which are essential for protection against various toxic and oxidative damages, and NRF2 activators thereby have efficacy in cancer chemoprevention. Because NRF2 has a cytoprotective function, it can protect normal cells from carcinogens like an angel, but when the protective effect acts on cancer cells, it will give rise to invincible cancer cells and play a devilish role in tumor progression. Indeed, aberrant activation of NRF2 has been found in a variety of cancers that create a favorable environment for the proliferation and survival of cancer cells and leads to drug resistance, ultimately leading to the poor clinical prognosis of patients. Therefore, pharmacological inhibition of NRF2 signaling has emerged as a promising approach for cancer therapy. This review aims to compile the regulatory mechanisms of NRF2 and its double-edged role in cancer. In addition, we also summarize the research progress of NRF2 modulators, especially phytochemicals, in chemoprevention and cancer therapy.
Collapse
Affiliation(s)
- Ya-Chu Tang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu,
Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu,
Taiwan
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
| | - Shin-Hun Juang
- School of Pharmacy, China Medical University, Taichung,
Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung,
Taiwan
| | - Jang-Yang Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
- Taipei Cancer Center, Taipei Medical University Hospital, Taipei,
Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei,
Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung,
Taiwan
| |
Collapse
|
3
|
Bai S, Wang Z, Wang M, Li J, Wei Y, Xu R, Du J. Tumor-Derived Exosomes Modulate Primary Site Tumor Metastasis. Front Cell Dev Biol 2022; 10:752818. [PMID: 35309949 PMCID: PMC8924426 DOI: 10.3389/fcell.2022.752818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-derived exosomes (TDEs) are actively produced and released by tumor cells and carry messages from tumor cells to healthy cells or abnormal cells, and they participate in tumor metastasis. In this review, we explore the underlying mechanism of action of TDEs in tumor metastasis. TDEs transport tumor-derived proteins and non-coding RNA to tumor cells and promote migration. Transport to normal cells, such as vascular endothelial cells and immune cells, promotes angiogenesis, inhibits immune cell activation, and improves chances of tumor implantation. Thus, TDEs contribute to tumor metastasis. We summarize the function of TDEs and their components in tumor metastasis and illuminate shortcomings for advancing research on TDEs in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zunyun Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Minghua Wang
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Junai Li
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Yuan Wei
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Ruihuan Xu
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Juan Du
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
4
|
Carpenter EL, Becker AL, Indra AK. NRF2 and Key Transcriptional Targets in Melanoma Redox Manipulation. Cancers (Basel) 2022; 14:cancers14061531. [PMID: 35326683 PMCID: PMC8946769 DOI: 10.3390/cancers14061531] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Melanocytes are dendritic, pigment-producing cells located in the skin and are responsible for its protection against the deleterious effects of solar ultraviolet radiation (UVR), which include DNA damage and elevated reactive oxygen species (ROS). They do so by synthesizing photoprotective melanin pigments and distributing them to adjacent skin cells (e.g., keratinocytes). However, melanocytes encounter a large burden of oxidative stress during this process, due to both exogenous and endogenous sources. Therefore, melanocytes employ numerous antioxidant defenses to protect themselves; these are largely regulated by the master stress response transcription factor, nuclear factor erythroid 2-related factor 2 (NRF2). Key effector transcriptional targets of NRF2 include the components of the glutathione and thioredoxin antioxidant systems. Despite these defenses, melanocyte DNA often is subject to mutations that result in the dysregulation of the proliferative mitogen-activated protein kinase (MAPK) pathway and the cell cycle. Following tumor initiation, endogenous antioxidant systems are co-opted, a consequence of elevated oxidative stress caused by metabolic reprogramming, to establish an altered redox homeostasis. This altered redox homeostasis contributes to tumor progression and metastasis, while also complicating the application of exogenous antioxidant treatments. Further understanding of melanocyte redox homeostasis, in the presence or absence of disease, would contribute to the development of novel therapies to aid in the prevention and treatment of melanomas and other skin diseases.
Collapse
Affiliation(s)
- Evan L. Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (E.L.C.); (A.L.B.)
| | - Alyssa L. Becker
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (E.L.C.); (A.L.B.)
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (E.L.C.); (A.L.B.)
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
5
|
Oxidative Stress-Related Mechanisms in Melanoma and in the Acquired Resistance to Targeted Therapies. Antioxidants (Basel) 2021; 10:antiox10121942. [PMID: 34943045 PMCID: PMC8750393 DOI: 10.3390/antiox10121942] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a highly aggressive cancer with the poorest prognosis, representing the deadliest form of skin cancer. Activating mutations in BRAF are the most frequent genetic alterations, present in approximately 50% of all melanoma cases. The use of specific inhibitors towards mutant BRAF variants and MEK, a downstream signaling target of BRAF in the MAPK pathway, has significantly improved progression-free and overall survival in advanced melanoma patients carrying BRAF mutations. Nevertheless, despite these improvements, resistance still develops within the first year of therapy in around 50% of patients, which is a significant problem in managing BRAF-mutated advanced melanoma. Understanding these mechanisms is one of the mainstreams of the research on BRAFi/MEKi acquired resistance. Both genetic and epigenetic mechanisms have been described. Moreover, in recent years, oxidative stress has emerged as another major force involved in all the phases of melanoma development, from initiation to progression until the onsets of the metastatic phenotype and chemoresistance, and has thus become a target for therapy. In the present review, we discuss the current knowledge on oxidative stress and its signaling in melanoma, as well as the oxidative stress-related mechanisms in the acquired resistance to targeted therapies.
Collapse
|
6
|
Jiang J, Dong C, Zhai L, Lou J, Jin J, Cheng S, Chen Z, Guo X, Lin D, Ding J, Gao W. Paeoniflorin Suppresses TBHP-Induced Oxidative Stress and Apoptosis in Human Umbilical Vein Endothelial Cells via the Nrf2/HO-1 Signaling Pathway and Improves Skin Flap Survival. Front Pharmacol 2021; 12:735530. [PMID: 34803685 PMCID: PMC8600365 DOI: 10.3389/fphar.2021.735530] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
Random-pattern skin flap is a vital technique frequently applied in reconstruction surgeries for its convenience and effectiveness in solving skin defects. However, ischemic necrosis, especially in the distal areas of the flap, still needs extra attention after surgery. Earlier evidence has suggested that paeoniflorin (PF) could stimulate angiogenesis and suppress ischemic cardiovascular disease. However, few studies have focused on the role of PF in flap survival. In this study, we have demonstrated that the human umbilical vein endothelial cells (HUVECs) treated with PF can alleviate tert-butyl hydroperoxide (TBHP)-stimulated cellular dysfunction and apoptosis. To better evaluate, HUVECs' physiology, cell tube formation, migration, and adhesion were assessed. Mechanistically, PF protects HUVECs against apoptosis via stimulating the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. PF also downregulates mitochondrial ROS production to reduce excessive intracellular ROS production induced by TBHP and restore TBHP-induced mitochondrial depolarization. As a result, silencing Nrf2 partially abolishes the protective effect of PF exposure on HUVECs. In in vivo experiments, the oral administration of PF was shown to have enhanced the vascularization of regenerated tissues and promote flap survival. However, the PF-mediated protection was partially lost after co-treatment with ML385, a selective Nrf2 inhibitor, suggesting that PF is a crucial modulator regulating the Nrf2/HO-1 signaling pathway. In summary, our data have provided a new insight into PF as a potential therapy for enhancing random-pattern flap viability.
Collapse
Affiliation(s)
- Jingtao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Chengji Dong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Liang Zhai
- Department of Medical Cosmetology, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, China
| | - Junsheng Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Sheng Cheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhuliu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xiaoshan Guo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Damu Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| |
Collapse
|
7
|
ROS Pleiotropy in Melanoma and Local Therapy with Physical Modalities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6816214. [PMID: 34777692 PMCID: PMC8580636 DOI: 10.1155/2021/6816214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Metabolic energy production naturally generates unwanted products such as reactive oxygen species (ROS), causing oxidative damage. Oxidative damage has been linked to several pathologies, including diabetes, premature aging, neurodegenerative diseases, and cancer. ROS were therefore originally anticipated as an imperative evil, a product of an imperfect system. More recently, however, the role of ROS in signaling and tumor treatment is increasingly acknowledged. This review addresses the main types, sources, and pathways of ROS in melanoma by linking their pleiotropic roles in antioxidant and oxidant regulation, hypoxia, metabolism, and cell death. In addition, the implications of ROS in various physical therapy modalities targeting melanoma, such as radiotherapy, electrochemotherapy, hyperthermia, photodynamic therapy, and medical gas plasma, are also discussed. By including ROS in the main picture of melanoma skin cancer and as an integral part of cancer therapies, a greater understanding of melanoma cell biology is presented, which ultimately may elucidate additional clues on targeting therapy resistance of this most deadly form of skin cancer.
Collapse
|
8
|
Abstract
The gene expression program induced by NRF2 transcription factor plays a critical role in cell defense responses against a broad variety of cellular stresses, most importantly oxidative stress. NRF2 stability is fine-tuned regulated by KEAP1, which drives its degradation in the absence of oxidative stress. In the context of cancer, NRF2 cytoprotective functions were initially linked to anti-oncogenic properties. However, in the last few decades, growing evidence indicates that NRF2 acts as a tumor driver, inducing metastasis and resistance to chemotherapy. Constitutive activation of NRF2 has been found to be frequent in several tumors, including some lung cancer sub-types and it has been associated to the maintenance of a malignant cell phenotype. This apparently contradictory effect of the NRF2/KEAP1 signaling pathway in cancer (cell protection against cancer versus pro-tumoral properties) has generated a great controversy about its functions in this disease. In this review, we will describe the molecular mechanism regulating this signaling pathway in physiological conditions and summarize the most important findings related to the role of NRF2/KEAP1 in lung cancer. The focus will be placed on NRF2 activation mechanisms, the implication of those in lung cancer progression and current therapeutic strategies directed at blocking NRF2 action.
Collapse
|
9
|
Hartman ML. Non-Apoptotic Cell Death Signaling Pathways in Melanoma. Int J Mol Sci 2020; 21:E2980. [PMID: 32340261 PMCID: PMC7215321 DOI: 10.3390/ijms21082980] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Resisting cell death is a hallmark of cancer. Disturbances in the execution of cell death programs promote carcinogenesis and survival of cancer cells under unfavorable conditions, including exposition to anti-cancer therapies. Specific modalities of regulated cell death (RCD) have been classified based on different criteria, including morphological features, biochemical alterations and immunological consequences. Although melanoma cells are broadly equipped with the anti-apoptotic machinery and recurrent genetic alterations in the components of the RAS/RAF/MEK/ERK signaling markedly contribute to the pro-survival phenotype of melanoma, the roles of autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and parthanatos have recently gained great interest. These signaling cascades are involved in melanoma cell response and resistance to the therapeutics used in the clinic, including inhibitors of BRAFmut and MEK1/2, and immunotherapy. In addition, the relationships between sensitivity to non-apoptotic cell death routes and specific cell phenotypes have been demonstrated, suggesting that plasticity of melanoma cells can be exploited to modulate response of these cells to different cell death stimuli. In this review, the current knowledge on the non-apoptotic cell death signaling pathways in melanoma cell biology and response to anti-cancer drugs has been discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
10
|
Molagoda IMN, Lee KT, Choi YH, Kim GY. Anthocyanins from Hibiscus syriacus L. Inhibit Oxidative Stress-Mediated Apoptosis by Activating the Nrf2/HO-1 Signaling Pathway. Antioxidants (Basel) 2020; 9:antiox9010042. [PMID: 31947843 PMCID: PMC7022859 DOI: 10.3390/antiox9010042] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/24/2019] [Accepted: 01/01/2020] [Indexed: 12/18/2022] Open
Abstract
Hibiscus syriacus L. is distributed widely throughout Eastern and Southern Asia and considered as the national flower of South Korea. The extraction of several plant parts of H. syriacus L. is currently used as a natural remedy for several diseases, including breast and lung cancer, microbial infection, and chronic inflammation. However, the effect of the anthocyanin extract of H. syriacus L. petals (PS) in oxidative stress conditions has not been studied. In this study, we evaluated the cytoprotective effect of PS against H2O2-induced oxidative stress in HaCaT keratinocytes. In this study, we found that PS significantly inhibited H2O2-induced apoptosis of HaCaT keratinocytes. We also revealed that PS mediated-cytoprotective effect was associated with the increased expression of heme oxygenase-1 (HO-1) arising from the activation of nuclear factor erythroid 2-related factor-2 (Nrf2). PS also decreased H2O2-induced excessive intracellular ROS generation and restored H2O2-induced mitochondrial depolarization through the downregulation of mitochondrial ROS production. Furthermore, H2O2-induced Bax and caspase-3 expression was markedly abolished in the presence of PS. The inhibition of HO-1 by zinc protoporphyrin significantly attenuated the cytoprotective effect of PS in H2O2-treated HaCaT keratinocytes along with ROS generation, indicating that HO-1 crucially affects PS-mediated cytoprotective properties. Collectively, our results suggested that, under H2O2-mediated oxidative stress conditions, PS sustained a normal level of mitochondrial membrane potential and ROS generation in HaCaT keratinocytes by activating the Nrf2/HO-1 axis, exerting cytoprotective effects against oxidative stress.
Collapse
Affiliation(s)
| | - Kyoung Tae Lee
- Forest Biomaterials Research Center, National Institute of Forest Science, Jinju 52817, Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Korea;
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea;
- Correspondence:
| |
Collapse
|
11
|
Zhu H, Kauffman ME, Trush MA, Jia Z, Li YR. A Simple Bioluminescence Imaging Method for Studying Cancer Cell Growth and Metastasis after Subcutaneous Injection of Lewis Lung Carcinoma Cells in Syngeneic C57BL/6 Mice. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2018; 5:118-125. [PMID: 29780885 DOI: 10.20455/ros.2018.813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In vivo imaging of cancer cell growth and invasion is instrumental in studying cancer cell behavior and in developing effective anticancer agents. In this ROS Protocols article, we report the experimental protocol and steps involving the implantation of luciferase-expressing Lewis lung carcinoma (LLC) cells in normal syngeneic C57BL/6 mice. Using the Berthold NightOwl LB981 in vivo imaging system, we observe the time-dependent growth and invasion of the lung cancer cells following subcutaneous injection of luciferase-expressing LLC cells. The three-dimensional image and counts of photon emission of the tumor mass are obtained to estimate the relative size of the tumor. Ex vivo imaging of the isolated lungs supplemented with D-luciferin and adenosine triphosphate (ATP) is obtained to determine lung metastasis of the LLC cells. The LLC cell load in entire mouse lungs is further determined by quantitative bioluminometry with a concurrently run standard curve of the number of LLC cells versus bioluminescence intensity. This in vivo imaging system in live mice, in combination with ex vivo imaging of isolated lungs as well as quantitative bioluminometry of target tissues, may provide important information on the in vivo cancer cell dynamics in immunocompetent syngeneic C57BL/6 mice and offer a valuable tool for studying experimental anticancer agents, including redox-modulating compounds, which are promising anticancer modalities.
Collapse
Affiliation(s)
- Hong Zhu
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
| | - Megan E Kauffman
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
| | - Michael A Trush
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Zhenquan Jia
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA.,College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA.,Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Y Robert Li
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA.,College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA.,Department of Biology, University of North Carolina, Greensboro, NC 27412, USA.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA.,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
12
|
Zhu H, Jia Z, Trush MA, Li YR. In Vivo Bioluminescence Imaging of Nuclear Factor kappaB Activation: A Valuable Model for Studying Inflammatory and Oxidative Stress in Live Mice. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2017; 4:382-388. [PMID: 29732415 PMCID: PMC5931218 DOI: 10.20455/ros.2017.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The nuclear factor kappaB (NF-κB) is a redox-sensitive transcription factor that plays a critical role in inflammation among other biological functions. This ROS Protocol article describes an in vivo bioluminescence imaging assay for assessing NF-κB activation using the commercially available transgenic mice carrying NF-κB response element-luciferase reporter gene (NF-κB-RE-Luc). Using the highly sensitive Berthold NightOwl LB981 in vivo bioluminescence imaging system, we are able to visualize the NF-κB activation in live mice under basal conditions, suggesting constitutive activation of NF-κB as a part of its fundamental biology. Treatment of mice with lipopolysaccharides (LPS) results in a drastic increase in bioluminescence, proving the validity of the model in assessing inflammatory stress. Treatment of mice with 3H-1,2-dithiole-3-thione (D3T), an activator of nuclear factor E-2 related factor 2 (Nrf2), led to a significant reduction in both basal and LPS-induced activation of NF-κB in the live mice, suggesting a value of this model in assessing drug efficacy in suppressing NF-κB activation and inflammatory stress. The protocols of this valuable model are detailed in this article along with a discussion of its potential use in studying disease conditions involving inflammatory and oxidative stress mechanisms and in assessing therapeutic modalities targeting the NF-κB signaling for disease intervention.
Collapse
Affiliation(s)
- Hong Zhu
- Campbell University School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | - Zhenquan Jia
- Campbell University School of Osteopathic Medicine, Buies Creek, NC 27506, USA
- Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC 27506, USA
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Michael A Trush
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Y Robert Li
- Campbell University School of Osteopathic Medicine, Buies Creek, NC 27506, USA
- Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC 27506, USA
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|