1
|
Abbas M, Tangney M. The oncobiome; what, so what, now what? MICROBIOME RESEARCH REPORTS 2025; 4:16. [PMID: 40207280 PMCID: PMC11977386 DOI: 10.20517/mrr.2024.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 04/11/2025]
Abstract
Microbial communities inhabiting various body sites play critical roles in the initiation, progression, and treatment of cancer. The gut microbiota, a highly diverse microbial ecosystem, interacts with immune cells to modulate inflammation and immune surveillance, influencing cancer risk and therapeutic outcomes. Local tissue microbiota may impact the transition from premalignant states to malignancy. Characterization of the intratumoral microbiota increasingly reveals distinct microbiomes that may influence tumor growth, immune responses, and treatment efficacy. Various bacteria species have been reported to modulate cancer therapies through mechanisms such as altering drug metabolism and shaping the tumor microenvironment (TME). For instance, gut or intratumoral bacterial enzymatic activity can convert prodrugs into active forms, enhancing therapeutic effects or, conversely, inactivating small-molecule chemotherapeutics. Specific bacterial species have also been linked to improved responses to immunotherapy, underscoring the microbiome's role in treatment outcomes. Furthermore, unique microbial signatures in cancer patients, compared with healthy individuals, demonstrate the diagnostic potential of microbiota. Beyond the gut, tumor-associated and local microbiomes also affect therapy by influencing inflammation, tumor progression, and drug resistance. This review explores the multifaceted relationships between microbiomes and cancer, focusing on their roles in modulating the TME, immune activation, and treatment efficacy. The diagnostic and therapeutic potential of bacterial members of microbiota represents a promising avenue for advancing precision oncology and improving patient outcomes. By leveraging microbial biomarkers and interventions, new strategies can be developed to optimize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Munawar Abbas
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
- Cancer Research@UCC, University College Cork, Cork, T12 XF62, Ireland
| | - Mark Tangney
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
- Cancer Research@UCC, University College Cork, Cork, T12 XF62, Ireland
| |
Collapse
|
2
|
Sun HY, Wu LC, Xu MJ, Zheng ED, Yu YC, Ye Y. Clinical Significance of Serum Bile Acid Profiles in Fatty Liver. Diabetes Metab Syndr Obes 2024; 17:4843-4856. [PMID: 39722833 PMCID: PMC11668968 DOI: 10.2147/dmso.s494810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
Objective This study aims to investigate the alterations in serum bile acid profiles among individuals with fatty liver (including non-alcoholic fatty liver (NAFL) and alcoholic fatty liver (AFL) and evaluate their clinical significance when combined with liver enzyme levels. Methods A cohort of 110 individuals with fatty liver (including non-alcoholic fatty liver 58 individuals and alcoholic fatty liver 52 individuals) was selected from the Department of Gastroenterology at Wenzhou People's Hospital between January 2021 and December 2022, while a control group of 66 healthy individuals was recruited from the hospital's health examination center during the same period. Clinical data and blood samples were collected from all participants. Serum bile acid profiles were quantified using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Statistical analysis was conducted in conjunction with liver enzyme indicators. Results In the NAFL group, GCA, TCA, and TCDCA levels were significantly elevated compared to the control group, with GCA (AUC 0.754, sensitivity 0.707, specificity 0.712), TCA (AUC 0.770, sensitivity 0.724, specificity 0.712), and TCDCA (AUC 0.782, sensitivity 0.810, specificity 0.652) showing strong diagnostic value. In the AFL group, TCDCA, TCA, GCA, TUDCA, and GUDCA were significantly elevated, with AUC values ranging from 0.848 to 0.912. Among these, TUDCA had the highest sensitivity (0.885) and specificity (0.773) for AFL diagnosis. TUDCA (sensitivity 0.615, specificity 0.897) was the key bile acid distinguishing AFL from NAFL, with an optimal cut-off of 36.33 nmol/L. These bile acids show significant diagnostic potential for differentiating NAFL and AFL. Conclusion The bile acid profiles in both NAFL and AFL patients show changes, which hold potential clinical significance and may serve as serum biomarkers to differentiate NAFL from AFL.
Collapse
Affiliation(s)
- Hao-Yue Sun
- Department of Gastroenterology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Le-Can Wu
- Department of Gastroenterology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Meng-Jie Xu
- Department of Laboratory Medicine, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - En-Dian Zheng
- Department of Gastroenterology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Ying-Cong Yu
- Department of Gastroenterology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Yi Ye
- Department of Gastroenterology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| |
Collapse
|
3
|
Zhang H, Zong R, Wu H, Jiang J, Liu C, Liu S. Transcription factor ASCL1 targets SLC6A13 to inhibit the progression of hepatocellular carcinoma via the glycine-inflammasome signaling. BIOMOLECULES & BIOMEDICINE 2024; 24:1606-1619. [PMID: 38780447 PMCID: PMC11496862 DOI: 10.17305/bb.2024.10328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, typically arises from chronic liver conditions such as hepatitis, cirrhosis, or other chronic liver diseases, and is characterized by its aggressive nature and poor prognosis. The purpose of this research was to clarify the function of achaete-scute family bHLH transcription factor 1 (ASCL1) and solute carrier family 6 member 13 (SLC6A13) in influencing tumor cell behavior, inflammatory responses, and the regulation of inflammasomes. We analyzed the differentially expressed genes (DEGs) in the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) database, as well as in the GSE14520 and GSE67764 datasets, to identify the expression changes of SLC6A13 in liver cancer. The prognostic significance of SLC6A13 in LIHC was assessed through Kaplan-Meier survival curve analysis. Transcriptional regulation of SLC6A13 by ASCL1 was explored using the Joint Annotation of the Human Genome and other species by the Systematic Pipeline for the Annotation of Regulatory Regions (JASPAR) database and dual-luciferase assays. In vitro experiments investigated the impact of ASCL1 and SLC6A13 overexpression on HCC cell growth. Additionally, the effects of ethanol treatment and glycine modulation on the inflammatory response in HCC cell lines were evaluated. HCC samples showed reduced levels of SLC6A13, which correlates with a better prognosis for liver metastases. Elevated SLC6A13 expression correlated with improved overall survival (OS), progression-free survival (PFS), recurrence-free survival (RFS), and disease-specific survival (DSS). ASCL1 upregulated SLC6A13 and inhibited proliferation, migration, and invasion of HCC cells. Ethanol induced the production of inflammatory cytokines, which was enhanced by overexpression of SLC6A13 but counteracted by glycine. This study highlighted elevated expression of SLC6A13 in LIHC which has been correlated with improved OS, PFS, RFS, and DSS. Overexpression of SLC6A13 and ASCL1 in HCC cells enhanced inflammasome activation, which was exacerbated by ethanol and attenuated by glycine.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Intensive Care Medicine, The Third Hospital Affiliated to Naval Medical University, Jiading District, Shanghai, China
| | - Ruiqing Zong
- Department of Intensive Care Medicine, The Third Hospital Affiliated to Naval Medical University, Jiading District, Shanghai, China
| | - Huiqi Wu
- Department of Intensive Care Medicine, The Third Hospital Affiliated to Naval Medical University, Jiading District, Shanghai, China
| | - Jun Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Chuanyong Liu
- Department of Medical Services, The First Hospital Affiliated to Naval Medical University, Yangpu District, Shanghai, China
| | - Suiyi Liu
- Department of Medical Engineering, The Third Hospital Affiliated to Naval Medical University, Jiading District, Shanghai, China
| |
Collapse
|
4
|
Scarlata GGM, Cicino C, Spagnuolo R, Marascio N, Quirino A, Matera G, Dumitrașcu DL, Luzza F, Abenavoli L. Impact of diet and gut microbiota changes in the development of hepatocellular carcinoma. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2023.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer that occurs with a frequency of 85% in patients with liver cirrhosis. It is the sixth most common type of cancer globally. Asia is the continent with the highest incidence (72%), followed by Europe (8%) and Africa (5%). Men are four times more likely than women to develop this cancer, especially in the 70-80 age group. Risk factors include alcoholic liver disease, tobacco use, genetic predisposition, dysmetabolic comorbidities such as type 2 diabetes mellitus and obesity, hepatitis B virus and hepatitis C virus infections, and non-alcoholic fatty liver disease. Unhealthy dietary regimens and gut dysbiosis are additional risk factors that have been recently investigated. These two factors are closely related because the gut microbiota performs several biological functions, including nutrient metabolism, a process that promotes gut homeostasis, known as eubiosis. With regard to the correlation between diet, gut microbiota, and HCC development, there are several mechanisms that have not yet been fully elucidated. This narrative review aims to evaluate the impact of diet and gut microbiota changes in the development of HCC. Our analysis, performed on several clinical and pre-clinical studies, showed that a high-fat diet promotes gut dysbiosis and hepatic fat accumulation, leading to the progression from simple steatosis to HCC, while the Mediterranean diet, rich in fiber and monounsaturated fatty acids, had a protective role. For this reason, international employment of this dietary regimen for therapeutic purposes should be encouraged.
Collapse
|
5
|
Saikia PJ, Pathak L, Mitra S, Das B. The emerging role of oral microbiota in oral cancer initiation, progression and stemness. Front Immunol 2023; 14:1198269. [PMID: 37954619 PMCID: PMC10639169 DOI: 10.3389/fimmu.2023.1198269] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/23/2023] [Indexed: 11/14/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy among the Head and Neck cancer. OSCCs are highly inflammatory, immune-suppressive, and aggressive tumors. Recent sequencing based studies demonstrated the involvement of different oral microbiota in oral cavity diseases leading OSCC carcinogenesis, initiation and progression. Researches showed that oral microbiota can activate different inflammatory pathways and cancer stem cells (CSCs) associated stemness pathways for tumor progression. We speculate that CSCs and their niche cells may interact with the microbiotas to promote tumor progression and stemness. Certain oral microbiotas are reported to be involved in dysbiosis, pre-cancerous lesions, and OSCC development. Identification of these specific microbiota including Human papillomavirus (HPV), Porphyromonas gingivalis (PG), and Fusobacterium nucleatum (FN) provides us with a new opportunity to study the bacteria/stem cell, as well as bacteria/OSCC cells interaction that promote OSCC initiation, progression and stemness. Importantly, these evidences enabled us to develop in-vitro and in-vivo models to study microbiota interaction with stem cell niche defense as well as CSC niche defense. Thus in this review, the role of oral microbiota in OSCC has been explored with a special focus on how oral microbiota induces OSCC initiation and stemness by modulating the oral mucosal stem cell and CSC niche defense.
Collapse
Affiliation(s)
- Partha Jyoti Saikia
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Lekhika Pathak
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Shirsajit Mitra
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| |
Collapse
|
6
|
Aghara H, Chadha P, Zala D, Mandal P. Stress mechanism involved in the progression of alcoholic liver disease and the therapeutic efficacy of nanoparticles. Front Immunol 2023; 14:1205821. [PMID: 37841267 PMCID: PMC10570533 DOI: 10.3389/fimmu.2023.1205821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Alcoholic liver disease (ALD) poses a significant threat to human health, with excessive alcohol intake disrupting the immunotolerant environment of the liver and initiating a cascade of pathological events. This progressive disease unfolds through fat deposition, proinflammatory cytokine upregulation, activation of hepatic stellate cells, and eventual development of end-stage liver disease, known as hepatocellular carcinoma (HCC). ALD is intricately intertwined with stress mechanisms such as oxidative stress mediated by reactive oxygen species, endoplasmic reticulum stress, and alcohol-induced gut dysbiosis, culminating in increased inflammation. While the initial stages of ALD can be reversible with diligent care and abstinence, further progression necessitates alternative treatment approaches. Herbal medicines have shown promise, albeit limited by their poor water solubility and subsequent lack of extensive exploration. Consequently, researchers have embarked on a quest to overcome these challenges by delving into the potential of nanoparticle-mediated therapy. Nanoparticle-based treatments are being explored for liver diseases that share similar mechanisms with alcoholic liver disease. It underscores the potential of these innovative approaches to counteract the complex pathogenesis of ALD, providing new avenues for therapeutic intervention. Nevertheless, further investigations are imperative to fully unravel the therapeutic potential and unlock the promise of nanoparticle-mediated therapy specifically tailored for ALD treatment.
Collapse
Affiliation(s)
| | | | | | - Palash Mandal
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| |
Collapse
|
7
|
Aghara H, Chadha P, Zala D, Mandal P. Stress mechanism involved in the progression of alcoholic liver disease and the therapeutic efficacy of nanoparticles. Front Immunol 2023; 14. [DOI: https:/doi.org/10.3389/fimmu.2023.1205821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Alcoholic liver disease (ALD) poses a significant threat to human health, with excessive alcohol intake disrupting the immunotolerant environment of the liver and initiating a cascade of pathological events. This progressive disease unfolds through fat deposition, proinflammatory cytokine upregulation, activation of hepatic stellate cells, and eventual development of end-stage liver disease, known as hepatocellular carcinoma (HCC). ALD is intricately intertwined with stress mechanisms such as oxidative stress mediated by reactive oxygen species, endoplasmic reticulum stress, and alcohol-induced gut dysbiosis, culminating in increased inflammation. While the initial stages of ALD can be reversible with diligent care and abstinence, further progression necessitates alternative treatment approaches. Herbal medicines have shown promise, albeit limited by their poor water solubility and subsequent lack of extensive exploration. Consequently, researchers have embarked on a quest to overcome these challenges by delving into the potential of nanoparticle-mediated therapy. Nanoparticle-based treatments are being explored for liver diseases that share similar mechanisms with alcoholic liver disease. It underscores the potential of these innovative approaches to counteract the complex pathogenesis of ALD, providing new avenues for therapeutic intervention. Nevertheless, further investigations are imperative to fully unravel the therapeutic potential and unlock the promise of nanoparticle-mediated therapy specifically tailored for ALD treatment.
Collapse
|
8
|
Chang L, Tian Y, Xu L, Hao Q, Song L, Lu Y, Zhen Y. Spotlight on NLRP6 and Tumor Research Situation: A Potential Cancer Participant. J Immunol Res 2023; 2023:6613064. [PMID: 37415625 PMCID: PMC10322559 DOI: 10.1155/2023/6613064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 07/08/2023] Open
Abstract
NOD-like receptor family pyrin domain containing 6 (NLRP6) is a new pattern recognition receptor in the mammalian innate immune system. Both the liver and the gut exhibit substantial levels of cytoplasmic expression. It can speed up cell response to endogenous danger signals or exogenous pathogen infection. NLRP6 can function in various ways as an inflammasome or a noninflammasome. The understanding of NLRP6 is steadily increasing thanks to ongoing investigations, but due to discrepancies in how those studies have described their link with tumors, the significance of NLRP6 in the emergence of cancer is still debatable as of this writing. This article will use the structure and function of NLRP6 as the pivotal point and thoroughly explain the present interactions between NLRP6 and tumors and any possible clinical benefits.
Collapse
Affiliation(s)
| | - Yuying Tian
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lei Xu
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Qiuyao Hao
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yinying Lu
- Comprehensive Liver Cancer Center, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Yunhuan Zhen
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004 Guizhou, China
| |
Collapse
|
9
|
Johira Y, Nakahara T, Kinami T, Yamasaki S, Kosaka M, Shirane Y, Miura R, Murakami S, Yano S, Amioka K, Naruto K, Ando Y, Kosaka Y, Kodama K, Uchikawa S, Fujino H, Ono A, Murakami E, Okamoto W, Yamauchi M, Kawaoka T, Hayes CN, Tsuge M, Imamura M, Aikata H, Oka S. Impact and usefulness of the transition to the new MAFLD classification for non-B, non-C HCC: a retrospective cohort study. BMC Gastroenterol 2023; 23:222. [PMID: 37380950 DOI: 10.1186/s12876-023-02851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a new classification system for fatty liver disease. In this study, we investigated the clinical characteristics of patients with MAFLD-hepatocellular carcinoma (HCC) in comparison with those with nonalcoholic fatty liver disease (NAFLD) and considered the validity and challenges of the new criteria. METHODS This study included 237 untreated non-B, non-C HCC patients with hepatic steatosis. We examined the profile and laboratory findings of patients with MAFLD-HCC and NAFLD-HCC. We also classified MAFLD-HCC patients according to the factors on which the diagnosis was based and compared their clinical characteristics. RESULTS A total of 222 (94%) and 101 (43%) patients were diagnosed with MAFLD and NAFLD, respectively. MAFLD-HCC patients were more likely to be male than NAFLD-HCC, but there were no significant differences in metabolic indices, noninvasive liver fibrosis score or HCC status. In a study of MAFLD-HCC patients by diagnostic factor, those with overweight only were younger and had advanced liver fibrosis histologically, and when limited to patients younger than 70 years, the majority were overweight. Redefinition of overweight as BMI ≥ 25 reduced the number of MAFLD-HCC patients by only 5, from 222 to 217. CONCLUSIONS MAFLD accounted for the majority of non-B, non-C HCC cases with hepatic steatosis. Examination of additional cases and revision of the detailed criteria is needed so that it can be used to efficiently select patients with fatty liver who are at high risk of developing HCC.
Collapse
Affiliation(s)
- Yusuke Johira
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Nakahara
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takahiro Kinami
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Yamasaki
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanari Kosaka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Shirane
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryoichi Miura
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Serami Murakami
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeki Yano
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Amioka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kensuke Naruto
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuwa Ando
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yumi Kosaka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenichiro Kodama
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinsuke Uchikawa
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hatsue Fujino
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Ono
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eisuke Murakami
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Okamoto
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masami Yamauchi
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Mori H, Svegliati Baroni G, Marzioni M, Di Nicola F, Santori P, Maroni L, Abenavoli L, Scarpellini E. Farnesoid X Receptor, Bile Acid Metabolism, and Gut Microbiota. Metabolites 2022; 12:647. [PMID: 35888771 PMCID: PMC9320384 DOI: 10.3390/metabo12070647] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD) are characterized by the concepts of lipo- and glucotoxicity. NAFLD is characterized by the accumulation of different lipidic species within the hepatocytes. Bile acids (BA), derived from cholesterol, and conjugated and stored in the gallbladder, help the absorption/processing of lipids, and modulate host inflammatory responses and gut microbiota (GM) composition. The latter is the new "actor" that links the GI tract and liver in NAFLD pathogenesis. In fact, the discovery and mechanistic characterization of hepatic and intestinal farnesoid X receptor (FXR) shed new light on the gut-liver axis. We conducted a search on the main medical databases for original articles, reviews, meta-analyses of randomized clinical trials, and case series using the following keywords, their acronyms, and their associations: farnesoid X receptor, bile acids metabolism, gut microbiota, dysbiosis, and liver steatosis. Findings on the synthesis, metabolism, and conjugation processes of BAs, and their action on FXR, change the understanding of NAFLD physiopathology. In detail, BAs act as ligands to several FXRs with GM modulation. On the other hand, the BAs pool is modulated by GM, thus, regulating FXRs functioning in the frame of liver fat deposition and fibrosis development. In conclusion, BAs passed from their role of simple lipid absorption and metabolism agents to messengers between the gut and liver, modulated by GM.
Collapse
Affiliation(s)
- Hideki Mori
- T.A.R.G.I.D., Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | | | - Marco Marzioni
- Gastroenterology Clinic; Università Politecnica delle Marche, 60121 Ancona, Italy; (M.M.); (L.M.)
| | - Francesca Di Nicola
- Hepatology Outpatient Clinic and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy; (F.D.N.); (P.S.)
| | - Pierangelo Santori
- Hepatology Outpatient Clinic and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy; (F.D.N.); (P.S.)
| | - Luca Maroni
- Gastroenterology Clinic; Università Politecnica delle Marche, 60121 Ancona, Italy; (M.M.); (L.M.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Emidio Scarpellini
- T.A.R.G.I.D., Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Hepatology Outpatient Clinic and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy; (F.D.N.); (P.S.)
| |
Collapse
|
11
|
Liu X, Vigorito M, Huang W, Khan MAS, Chang SL. The Impact of Alcohol-Induced Dysbiosis on Diseases and Disorders of the Central Nervous System. J Neuroimmune Pharmacol 2022; 17:131-151. [PMID: 34843074 DOI: 10.1007/s11481-021-10033-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022]
Abstract
The human digestive tract contains a diverse and abundant microbiota that is important for health. Excessive alcohol use can disrupt the balance of these microbes (known as dysbiosis), leading to elevated blood endotoxin levels and systemic inflammation. Using QIAGEN Ingenuity Pathway Analysis (IPA) bioinformatics tool, we have confirmed that peripheral endotoxin (lipopolysaccharide) mediates various cytokines to enhance the neuroinflammation signaling pathway. The literature has identified alcohol-mediated neuroinflammation as a possible risk factor for the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), and psychiatric disorders such as addiction to alcohol and other drugs. In this review, we discuss alcohol-use-induced dysbiosis in the gut and other body parts as a causal factor in the progression of Central Nervous System (CNS) diseases including neurodegenerative disease and possibly alcohol use disorder.
Collapse
Affiliation(s)
- Xiangqian Liu
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Michael Vigorito
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Psychology, Seton Hall University, South Orange, NJ, 07079, USA
| | - Wenfei Huang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA
| | - Mohammed A S Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, MA, 02114, USA.
| | - Sulie L Chang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA.
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA.
| |
Collapse
|
12
|
Scarpellini E, Abenavoli L, Cassano V, Rinninella E, Sorge M, Capretti F, Rasetti C, Svegliati Baroni G, Luzza F, Santori P, Sciacqua A. The Apparent Asymmetrical Relationship Between Small Bowel Bacterial Overgrowth, Endotoxemia, and Liver Steatosis and Fibrosis in Cirrhotic and Non-Cirrhotic Patients: A Single-Center Pilot Study. Front Med (Lausanne) 2022; 9:872428. [PMID: 35559337 PMCID: PMC9090439 DOI: 10.3389/fmed.2022.872428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Gut microbiota are a complex ecosystem harboring our intestine. They maintain human body equilibrium, while their derangement, namely, “dysbiosis“, has been associated with several gastrointestinal diseases, such as liver steatosis (NAFLD) and liver cirrhosis. Small intestinal bacterial overgrowth (SIBO) is an example of dysbiosis of the upper gastrointestinal (GI) tract. Aim The aim of this study is to evaluate the relationship between SIBO and levels of endotoxemia and grade of liver steatosis (LS) and liver fibrosis (LF) in hepatologic patients. Materials and Methods Consecutive outpatients referred to our hepatology clinic were tested for SIBO by the lactulose breath test (LBT) and peripheral blood levels of endotoxemia; LS grading and LF were assessed by abdominal ultrasound and transient elastography, respectively. Results Fifty-two consecutive patients (17 with alcohol abuse (4.5 ± 0.8 alcohol units per day), 4 with HCV and 2 with HBV infection, 24 of metabolic origin, 2 of autoimmune origin, and 3 with cholangiopathies; mean age 54.7 ± 8.3 years, 31 F, BMI 24.1 ± 1.1 Kg/m2) and 14 healthy volunteers (HV) (mean age 50.1 ± 4.3 years, 9 F, BMI 23.3 ± 1.1 Kg/m2) were enrolled. SIBO prevalence was significantly higher in cirrhotic (LC) vs. non-cirrhotic (LNC) patients and vs. HV (all, p < 0.05), with a significant positive trend according to Child-Pugh status (all, p < 0.05). SIBO prevalence was not correlated with LS stages (all, p = NS). Consensually, endotoxin levels were significantly higher in LC vs. LNC and vs. HV (all, p < 0.05) and significantly correlated with LF in patients with LC, according to Child-Pugh status (all, p < 0.05). Conclusion This study shows that SIBO prevalence and relative endotoxin blood levels seem to be significantly associated with the grade of LF vs. LS in LC. SIBO is also present under pre-cirrhotic conditions, but its prevalence seems to correlate with liver disease irreversible derangement.
Collapse
Affiliation(s)
- E. Scarpellini
- Hepatology and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, San Benedetto del Tronto, Italy
- T.A.R.G.I.D., Gasthuisberg University Hospital, KULeuven, Lueven, Belgium
- *Correspondence: E. Scarpellini
| | - L. Abenavoli
- Department of Health Sciences, University “Magna Græcia”, Catanzaro, Italy
| | - V. Cassano
- Department of Medical and Surgical Sciences, University “Magna Græcia”, Catanzaro, Italy
| | - E. Rinninella
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M. Sorge
- Gastroenterology and Endoscopy Unit “Madonna del Soccorso” General Hospital, San Benedetto del Tronto, Italy
| | - F. Capretti
- Gastroenterology and Endoscopy Unit “Madonna del Soccorso” General Hospital, San Benedetto del Tronto, Italy
| | - C. Rasetti
- Hepatology and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, San Benedetto del Tronto, Italy
| | - G. Svegliati Baroni
- Gastroenterology Clinic, “Riuniti University Hospital”, Polytechnics University of Marche, Ancona, Italy
| | - F. Luzza
- Department of Health Sciences, University “Magna Græcia”, Catanzaro, Italy
| | - P. Santori
- Hepatology and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, San Benedetto del Tronto, Italy
| | - A. Sciacqua
- Department of Medical and Surgical Sciences, University “Magna Græcia”, Catanzaro, Italy
| |
Collapse
|
13
|
Neuman MG, Seitz HK, Teschke R, Malnick S, Johnson-Davis KL, Cohen LB, German A, Hohmann N, Moreira B, Moussa G, Opris M. Molecular, Viral and Clinical Features of Alcohol- and Non-Alcohol-Induced Liver Injury. Curr Issues Mol Biol 2022; 44:1294-1315. [PMID: 35723310 PMCID: PMC8947098 DOI: 10.3390/cimb44030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 01/08/2023] Open
Abstract
Hepatic cells are sensitive to internal and external signals. Ethanol is one of the oldest and most widely used drugs in the world. The focus on the mechanistic engine of the alcohol-induced injury has been in the liver, which is responsible for the pathways of alcohol metabolism. Ethanol undergoes a phase I type of reaction, mainly catalyzed by the cytoplasmic enzyme, alcohol dehydrogenase (ADH), and by the microsomal ethanol-oxidizing system (MEOS). Reactive oxygen species (ROS) generated by cytochrome (CYP) 2E1 activity and MEOS contribute to ethanol-induced toxicity. We aimed to: (1) Describe the cellular, pathophysiological and clinical effects of alcohol misuse on the liver; (2) Select the biomarkers and analytical methods utilized by the clinical laboratory to assess alcohol exposure; (3) Provide therapeutic ideas to prevent/reduce alcohol-induced liver injury; (4) Provide up-to-date knowledge regarding the Corona virus and its affect on the liver; (5) Link rare diseases with alcohol consumption. The current review contributes to risk identification of patients with alcoholic, as well as non-alcoholic, liver disease and metabolic syndrome. Additional prevalence of ethnic, genetic, and viral vulnerabilities are presented.
Collapse
Affiliation(s)
- Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology and the Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada; (G.M.); (M.O.)
- Correspondence:
| | - Helmut K. Seitz
- Centre of Liver and Alcohol Diseases, Ethianum Clinic and Department of Clinical Pharmacology and Pharmacoepidemiology, Faculty of Medicine, University of Heidelberg, 69115 Heidelberg, Germany; (H.K.S.); (N.H.); (B.M.)
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60323 Frankfurt, Germany;
| | - Stephen Malnick
- Department of Internal Medicine C. Kaplan Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel; (S.M.); (A.G.)
| | - Kamisha L. Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Centre and Division of Toxicology, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84115, USA;
| | - Lawrence B. Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre and Department of Medicine, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M4N 3N5, Canada;
| | - Anit German
- Department of Internal Medicine C. Kaplan Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel; (S.M.); (A.G.)
| | - Nicolas Hohmann
- Centre of Liver and Alcohol Diseases, Ethianum Clinic and Department of Clinical Pharmacology and Pharmacoepidemiology, Faculty of Medicine, University of Heidelberg, 69115 Heidelberg, Germany; (H.K.S.); (N.H.); (B.M.)
| | - Bernhardo Moreira
- Centre of Liver and Alcohol Diseases, Ethianum Clinic and Department of Clinical Pharmacology and Pharmacoepidemiology, Faculty of Medicine, University of Heidelberg, 69115 Heidelberg, Germany; (H.K.S.); (N.H.); (B.M.)
| | - George Moussa
- In Vitro Drug Safety and Biotechnology and the Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada; (G.M.); (M.O.)
| | - Mihai Opris
- In Vitro Drug Safety and Biotechnology and the Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada; (G.M.); (M.O.)
- Family Medicine Clinic CAR, 010362 Bucharest, Romania
| |
Collapse
|
14
|
Bacterial Translocation in Gastrointestinal Cancers and Cancer Treatment. Biomedicines 2022; 10:biomedicines10020380. [PMID: 35203589 PMCID: PMC8962358 DOI: 10.3390/biomedicines10020380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been increasing evidence that gut microbiota is associated with the onset and exacerbation of various diseases, such as gastrointestinal cancer. For instance, it is well known that local inflammation of the intestinal tract in colorectal cancer that is caused by the increased number of Fusobacterium, due to changes in the intestinal bacterial flora, is involved in carcinogenesis. In contrast, gut bacteria or their products, pathogen-associated molecular patterns, not only cause intestinal inflammation but also invade the bloodstream through dysbiosis and gut barrier dysfunction, thereby leading to systemic inflammation, namely bacterial translocation. The involvement of bacterial translocation in the carcinogenesis of gastrointestinal cancers and their prognosis is increasingly being recognized. The Toll-like receptor signaling pathways plays an important role in the carcinogenesis of such cancers. In addition, bacterial translocation influences the treatment of cancers such as surgery and chemotherapy. In this review, we outline the concept of bacterial translocation, summarize the current knowledge on the relationship between gut bacteria and gastrointestinal cancer, and provide future perspectives of this field.
Collapse
|
15
|
Bi C, Xiao G, Liu C, Yan J, Chen J, Si W, Zhang J, Liu Z. Molecular Immune Mechanism of Intestinal Microbiota and Their Metabolites in the Occurrence and Development of Liver Cancer. Front Cell Dev Biol 2021; 9:702414. [PMID: 34957088 PMCID: PMC8693382 DOI: 10.3389/fcell.2021.702414] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal microorganisms are closely associated with immunity, metabolism, and inflammation, and play an important role in health and diseases such as inflammatory bowel disease, diabetes, cardiovascular disease, Parkinson’s disease, and cancer. Liver cancer is one of the most fatal cancers in humans. Most of liver cancers are slowly transformed from viral hepatitis, alcoholic liver disease, and non-alcoholic fatty liver disease. However, the relationship between intestinal microbiota and their metabolites, including short-chain fatty acids, bile acids, indoles, and ethanol, and liver cancer remains unclear. Here, we summarize the molecular immune mechanism of intestinal microbiota and their metabolites in the occurrence and development of liver cancer and reveal the important role of the microbiota-gut-liver axis in liver cancer. In addition, we describe how the intestinal flora can be balanced by antibiotics, probiotics, postbiotics, and fecal bacteria transplantation to improve the treatment of liver cancer. This review describes the immunomolecular mechanism of intestinal microbiota and their metabolites in the occurrence and development of hepatic cancer and provides theoretical evidence support for future clinical practice.
Collapse
Affiliation(s)
- Chenchen Bi
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Geqiong Xiao
- Department of Oncology, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Chunyan Liu
- Department of Clinical Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Junwei Yan
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Jiaqi Chen
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Wenzhang Si
- Department of General Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Jian Zhang
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Zheng Liu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| |
Collapse
|
16
|
Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int J Mol Sci 2021; 22:ijms221910419. [PMID: 34638760 PMCID: PMC8508847 DOI: 10.3390/ijms221910419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Saturated and unsaturated pyrrolizidine alkaloids (PAs) are present in more than 6000 plant species growing in countries all over the world. They have a typical heterocyclic structure in common, but differ in their potential toxicity, depending on the presence or absence of a double bond between C1 and C2. Fortunately, most plants contain saturated PAs without this double bond and are therefore not toxic for consumption by humans or animals. In a minority of plants, however, PAs with this double bond between C1 and C2 exhibit strong hepatotoxic, genotoxic, cytotoxic, neurotoxic, and tumorigenic potentials. If consumed in error and in large emouns, plants with 1,2-unsaturated PAs induce metabolic breaking-off of the double bonds of the unsaturated PAs, generating PA radicals that may trigger severe liver injury through a process involving microsomal P450 (CYP), with preference of its isoforms CYP 2A6, CYP 3A4, and CYP 3A5. This toxifying CYP-dependent conversion occurs primarily in the endoplasmic reticulum of the hepatocytes equivalent to the microsomal fraction. Toxified PAs injure the protein membranes of hepatocytes, and after passing their plasma membranes, more so the liver sinusoidal endothelial cells (LSECs), leading to life-threatening hepatic sinusoidal obstruction syndrome (HSOS). This injury is easily diagnosed by blood pyrrolizidine protein adducts, which are perfect diagnostic biomarkers, supporting causality evaluation using the updated RUCAM (Roussel Uclaf Causality Assessment Method). HSOS is clinically characterized by weight gain due to fluid accumulation (ascites, pleural effusion, and edema), and may lead to acute liver failure, liver transplantation, or death. In conclusion, plant-derived PAs with a double bond between C1 and C2 are potentially hepatotoxic after metabolic removal of the double bond, and may cause PA-HSOS with a potential lethal outcome, even if PA consumption is stopped.
Collapse
|
17
|
Treating the Metabolic Syndrome by Fecal Transplantation-Current Status. BIOLOGY 2021; 10:biology10050447. [PMID: 34065241 PMCID: PMC8161223 DOI: 10.3390/biology10050447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
The intestinal microbiome (IM) is important for normal gastrointestinal (GI) and other organ systems' functioning. An alteration in the normal IM, dysbiosis, and changes in intestinal motility result in microorganisms' overgrowth and an alteration in intestinal permeability. The gut-brain axis is also of importance in the irritable bowel syndrome (IBS) and associated bowel overgrowth. Secondary to the epidemic of obesity, the metabolic syndrome has become a major health problem. Disturbances in the fecal microbiome are associated with the metabolic syndrome. Metabolic-associated fatty liver disease (MAFLD) is now the current terminology for non-alcoholic fatty liver disease. IM alteration by fecal transplantation is an approved treatment method for recurrent Clostridioides difficile infection. Initially performed by either duodenal infusion or colonoscopy, it is now easily performed by the administration of capsules containing stools. We discuss the intestinal microbiome-its composition, as well as the qualitative changes of microbiome composition leading to inflammation. In addition, we discuss the evidence of the effect of fecal transplantation on the metabolic syndrome and MAFLD, as well as its clinical indications.
Collapse
|
18
|
Hernández-Ceballos W, Cordova-Gallardo J, Mendez-Sanchez N. Gut Microbiota in Metabolic-associated Fatty Liver Disease and in Other Chronic Metabolic Diseases. J Clin Transl Hepatol 2021; 9:227-238. [PMID: 34007805 PMCID: PMC8111113 DOI: 10.14218/jcth.2020.00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome plays a key role in the health-disease balance in the human body. Although its composition is unique for each person and tends to remain stable throughout lifetime, it has been shown that certain bacterial patterns may be determining factors in the onset of certain chronic metabolic diseases, such as type 2 diabetes mellitus (T2DM), obesity, metabolic-associated fatty liver disease (MAFLD), and metabolic syndrome. The gut-liver axis embodies the close relationship between the gut and the liver; disturbance of the normal gut microbiota, also known as dysbiosis, may lead to a cascade of mechanisms that modify the epithelial properties and facilitate bacterial translocation. Regulation of gut microbiota is fundamental to maintaining gut integrity, as well as the bile acids composition. In the present review, we summarize the current knowledge regarding the microbiota, bile acids composition and their association with MAFLD, obesity, T2DM and metabolic syndrome.
Collapse
Affiliation(s)
- Winston Hernández-Ceballos
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jacqueline Cordova-Gallardo
- Department of Hepatology, Service of Surgery and Obesity Clinic, General Hospital “Dr. Manuel Gea González”, Mexico City, Mexico
- Faculty of Medicine. National Autonomous University of Mexico, Mexico City, Mexico
| | - Nahum Mendez-Sanchez
- Faculty of Medicine. National Autonomous University of Mexico, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Correspondence to: Nahum Méndez-Sánchez, Liver Research Unit, Medica Sur Clinic & Foundation and Faculty of Medicine, National Autonomous University of Mexico, Mexico City 14050, Mexico. ORCID: https://orcid.org/0000-0001-5257-8048. Tel: +525-55424-4629, Fax: +525-55666-4031, E-mail: ,
| |
Collapse
|
19
|
Seitz HK, Neuman MG. The History of Alcoholic Liver Disease: From an Unrecognized Disease to One of the Most Frequent Diseases in Hepatology. J Clin Med 2021; 10:858. [PMID: 33669694 PMCID: PMC7921942 DOI: 10.3390/jcm10040858] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023] Open
Abstract
This review describes the history of alcoholic liver disease from the beginning of the 1950s until now. It details how the hepatotoxicity of alcohol was discovered by epidemiology and basic research primarily by using new feeding techniques in rodents and primates. The article also recognizes the pioneering work of scientists who contributed to the understanding of the pathophysiology of alcoholic liver disease. In addition, clinical aspects, such as the development of diagnostics and treatment options for alcoholic liver disease, are discussed. Up-to-date knowledge of the mechanism of the disease in 2020 is presented.
Collapse
Affiliation(s)
- Helmut K. Seitz
- Centre of Liver and Alcohol Diseases, Ethianum Clinic, 69115 Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, 69117 Heidelberg, Germany
| | - Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology and the Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada;
| |
Collapse
|
20
|
Ren R, Wang Z, Wu M, Wang H. Emerging Roles of SIRT1 in Alcoholic Liver Disease. Int J Biol Sci 2020; 16:3174-3183. [PMID: 33162823 PMCID: PMC7645991 DOI: 10.7150/ijbs.49535] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is the most prevalent type of chronic liver disease worldwide with a wide spectrum of liver pathologies ranging from simple steatosis to steatohepatitis, cirrhosis, and even hepatocellular carcinoma. It has been demonstrated that ALD is mediated in whole or in part by a central signaling molecule sirtuin 1 (SIRT1), a conserved class III histone deacetylase.SIRT1 plays beneficial roles in regulating hepatic lipid metabolism, inhibiting hepatic inflammation, controlling hepatic fibrosis and mediating hepatocellular carcinoma in ALD. However, underlying molecular mechanisms are complex and remain incompletely understood. The aim of this review was to highlight the latest advances in understanding of SIRT1 regulatory mechanisms in ALD and discuss their unique potential role as novel therapeutic target for ALD treatment.
Collapse
Affiliation(s)
- Ruixue Ren
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Ziming Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Miaomiao Wu
- School of Pharmacy, Institute of Liver Diseases, Anhui Medical University, Hefei 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.,School of Pharmacy, Institute of Liver Diseases, Anhui Medical University, Hefei 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, Anhui, China
| |
Collapse
|