1
|
Elhorany M, El-Horany HE, Abd-Ellatif RN, Dawood LM, Watany MM, Basiouny MA, Hegab II, Alsheikh MY, Kabel AM, Atef MM. The expression and significance of long noncoding RNA XIST/microRNA-340-5p axis and metabolic reprogramming biomarkers in acute cerebrovascular stroke patients: A cross-sectional study. Medicine (Baltimore) 2024; 103:e41092. [PMID: 39969331 PMCID: PMC11688033 DOI: 10.1097/md.0000000000041092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Stroke represents a worldwide major cause of death and long-term adult disability. Various human diseases pathogenesis, including stroke, are associated with dysregulation of long noncoding RNA (LncRNA) and microRNA (miR). However, their potential role is yet to be elucidated. This work aimed to assess the role of LncRNA X-inactive specific transcript (XIST), miR-340-5p, and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)3 as peripheral blood biomarkers for acute cerebrovascular stroke diagnosis and severity prediction. This cross-sectional study included 120 participants divided into 3 groups; healthy controls, acute ischemic stroke patients, and acute hemorrhagic stroke patients. XIST, miR-340-5p, and PFKFB3 expression were assessed by RT-qPCR, whereas PFKFB3, hypoxia inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF) serum proteins were measured by ELISA. Compared to healthy control, XIST and PFKFB3 mRNA expression were significantly upregulated in stroke patients, with the highest levels in hemorrhagic type, while miR-340-5p expression was significantly downregulated and its lowest level was in hemorrhagic stroke. Serum PFKFB3, HIF-1α, and VEGF levels were significantly elevated in stroke patients with the highest levels in hemorrhagic stroke. These biomarkers correlated with National Institute of Health Stroke Scale (NIHSS). Regression analysis using NIHSS as dependent variable confirmed that PFKFB3 mRNA relative expression was the independent predictor (β = 0.7, P = .003). Receiver operating characteristic analyses revealed that XIST, miR-340-5p, and PFKFB3 mRNA relative expression levels were useful biomarkers discriminating ischemic from hemorrhagic stroke (AUC were 0.99, 0.979, and 0.980, respectively). XIST, miR-340-5p, and PFKFB3 might be involved in acute cerebrovascular stroke pathogenesis and progression providing opportunities for early detection and assessing the severity.
Collapse
Affiliation(s)
- Mahmoud Elhorany
- Neuropsychiatry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hemat E. El-Horany
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Biochemistry Department, College of Medicine, University of Hail, Hail, Saudi Arabia
| | | | - Lamees M. Dawood
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mona M. Watany
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Islam Ibrahim Hegab
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Bio-Physiology Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Mona Y. Alsheikh
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Marwa M. Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Schöpe PC, Torke S, Kobelt D, Kortüm B, Treese C, Dumbani M, Güllü N, Walther W, Stein U. MACC1 revisited - an in-depth review of a master of metastasis. Biomark Res 2024; 12:146. [PMID: 39580452 PMCID: PMC11585957 DOI: 10.1186/s40364-024-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Cancer metastasis remains the most lethal characteristic of tumors mediating the majority of cancer-related deaths. Identifying key molecules responsible for metastasis, understanding their biological functions and therapeutically targeting these molecules is therefore of tremendous value. Metastasis Associated in Colon Cancer 1 (MACC1), a gene first described in 2009, is such a key driver of metastatic processes, initiating cellular proliferation, migration, invasion, and metastasis in vitro and in vivo. Since its discovery, the value of MACC1 as a prognostic biomarker has been confirmed in over 20 cancer entities. Additionally, several therapeutic strategies targeting MACC1 and its pro-metastatic functions have been developed. In this review, we will provide a comprehensive overview on MACC1, from its clinical relevance, towards its structure and role in signaling cascades as well as molecular networks. We will highlight specific biological consequences of MACC1 expression, such as an increase in stem cell properties, its immune-modulatory effects and induced therapy resistance. Lastly, we will explore various strategies interfering with MACC1 expression and/or its functions. Conclusively, this review underlines the importance of understanding the role of individual molecules in mediating metastasis.
Collapse
Affiliation(s)
- Paul Curtis Schöpe
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Sebastian Torke
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Benedikt Kortüm
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Christoph Treese
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Malti Dumbani
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Nazli Güllü
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- German Cancer Consortium (DKTK), Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
4
|
Glorieux C, Buc Calderon P. Targeting catalase in cancer. Redox Biol 2024; 77:103404. [PMID: 39447253 PMCID: PMC11539659 DOI: 10.1016/j.redox.2024.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Healthy cells have developed a sophisticated network of antioxidant molecules to prevent the toxic accumulation of reactive oxygen species (ROS) generated by diverse environmental stresses. On the opposite, cancer cells often exhibit high levels of ROS and an altered levels of antioxidant molecules compared to normal cells. Among them, the antioxidant enzyme catalase plays an essential role in cell defense against oxidative stress through the dismutation of hydrogen peroxide into water and molecular oxygen, and its expression is often decreased in cancer cells. The elevation of ROS in cancer cells provides them proliferative advantages, and leads to metabolic reprogramming, immune escape and metastasis. In this context, catalase is of critical importance to control these cellular processes in cancer through various mechanisms. In this review, we will discuss the major progresses and challenges in understanding the role of catalase in cancer for this last decade. This review also aims to provide important updates regarding the regulation of catalase expression, subcellular localization and discuss about the potential role of microbial catalases in tumor environment. Finally, we will describe the different catalase-based therapies and address the advantages, disadvantages, and limitations associated with modulating catalase therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060, Guangzhou, China.
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, 1100000, Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000, Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
5
|
Wang Y, Xu X, Shui X, Ren R, Liu Y. Molecular subtype identification of cerebral ischemic stroke based on ferroptosis-related genes. Sci Rep 2024; 14:9350. [PMID: 38653998 PMCID: PMC11039763 DOI: 10.1038/s41598-024-53327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/31/2024] [Indexed: 04/25/2024] Open
Abstract
Cerebral ischemic stroke (CIS) has the characteristics of a high incidence, disability, and mortality rate. Here, we aimed to explore the potential pathogenic mechanisms of ferroptosis-related genes (FRGs) in CIS. Three microarray datasets from the Gene Expression Omnibus (GEO) database were utilized to analyze differentially expressed genes (DEGs) between CIS and normal controls. FRGs were obtained from a literature report and the FerrDb database. Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network were used to screen hub genes. The receiver operating characteristic (ROC) curve was adopted to evaluate the diagnostic value of key genes in CIS, followed by analysis of immune microenvironment, transcription factor (TF) regulatory network, drug prediction, and molecular docking. In total, 128 CIS samples were divided into 2 subgroups after clustering analysis. Compared with cluster A, 1560 DEGs were identified in cluster B. After the construction of the WGCNA and PPI network, 5 hub genes, including MAPK3, WAS, DNAJC5, PRKCD, and GRB2, were identified for CIS. Interestingly, MAPK3 was a FRG that differentially expressed between cluster A and cluster B. The expression levels of 5 hub genes were all specifically highly in cluster A subtype. It is noted that neutrophils were the most positively correlated with all 5 real hub genes. PRKCD was one of the target genes of FASUDIL. In conclusion, five real hub genes were identified as potential diagnostic markers, which can distinguish the two subtypes well.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China.
| | - Xinjuan Xu
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China
| | - Xinjun Shui
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China
| | - Ruilin Ren
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China
| | - Yu Liu
- Department of Surgical, Peking University First Hospital Taiyuan, Taiyuan, China
| |
Collapse
|
6
|
Han Y, Barasa P, Zeger L, Salomonsson SB, Zanotti F, Egli M, Zavan B, Trentini M, Florin G, Vaerneus A, Aldskogius H, Fredriksson R, Kozlova EN. Effects of microgravity on neural crest stem cells. Front Neurosci 2024; 18:1379076. [PMID: 38660221 PMCID: PMC11041629 DOI: 10.3389/fnins.2024.1379076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Exposure to microgravity (μg) results in a range of systemic changes in the organism, but may also have beneficial cellular effects. In a previous study we detected increased proliferation capacity and upregulation of genes related to proliferation and survival in boundary cap neural crest stem cells (BC) after MASER14 sounding rocket flight compared to ground-based controls. However, whether these changes were due to μg or hypergravity was not clarified. In the current MASER15 experiment BCs were exposed simultaneously to μg and 1 g conditions provided by an onboard centrifuge. BCs exposed to μg displayed a markedly increased proliferation capacity compared to 1 g on board controls, and genetic analysis of BCs harvested 5 h after flight revealed an upregulation, specifically in μg-exposed BCs, of Zfp462 transcription factor, a key regulator of cell pluripotency and neuronal fate. This was associated with alterations in exosome microRNA content between μg and 1 g exposed MASER15 specimens. Since the specimens from MASER14 were obtained for analysis with 1 week's delay, we examined whether gene expression and exosome content were different compared to the current MASER15 experiments, in which specimens were harvested 5 h after flight. The overall pattern of gene expression was different and Zfp462 expression was down-regulated in MASER14 BC μg compared to directly harvested specimens (MASER15). MicroRNA exosome content was markedly altered in medium harvested with delay compared to directly collected samples. In conclusion, our analysis indicates that even short exposure to μg alters gene expression, leading to increased BC capacity for proliferation and survival, lasting for a long time after μg exposure. With delayed harvest of specimens, a situation which may occur due to special post-flight circumstances, the exosome microRNA content is modified compared to fast specimen harvest, and the direct effects from μg exposure may be partially attenuated, whereas other effects can last for a long time after return to ground conditions.
Collapse
Affiliation(s)
- Yilin Han
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Povilas Barasa
- Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Lukas Zeger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sara B. Salomonsson
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marcel Egli
- Space Biology Group, School of Engineering and Architecture, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland
- National Center for Biomedical Research in Space, Innovation Cluster Space and Aviation, University of Zurich, Zurich, Switzerland
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | | | - Håkan Aldskogius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| | - Elena N. Kozlova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Wang Y, Zhang Y, Qu Y, Li S, Xi W, Liu B, Ye L. eIF4A3-mediated circEHMT1 regulation in retinal microvascular endothelial dysfunction in diabetic retinopathy. Microvasc Res 2024; 151:104612. [PMID: 37839527 DOI: 10.1016/j.mvr.2023.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Literature has reported that circular RNAs (circRNAs) are crucially associated with diabetic retinopathy (DR). Furthermore, circEHMT1 has been identified to maintain endothelial cell barrier function. This study aimed to investigate the mechanisms that regulate aberrant circEHMT1 expression and its role in the pathogenesis of DR. METHODS In this study, retinal microvascular endothelial cells were exposed to a high glucose (HG) environment, and subsequently, tube formation and intercellular junction proteins were evaluated. Furthermore, the biological functions of circEHMT1 and its potential regulatory factor, eIF4A3, in microvascular endothelial cells under HG conditions were also assessed. In addition, the regulatory role of eIF4A3 on circEHMT1 expression was confirmed. Moreover, to elucidate the in vivo functions of eIF4A3 and circEHMT1, streptozotocin (STZ) was used to establish a DR model in rats. RESULTS It was revealed that HG condition decreased circEHMT1 and eIF4A3 expressions and reduced ZO-1, Claudin-5, and Occludin levels in retinal microvascular endothelial cells. Furthermore, it was observed that eIF4A3 could regulate the expression of circEHMT1. Overexpression of eIF4A3 or circEHMT1 under HG conditions improved endothelial cell injury and decreased tube-formation ability. Additionally, in the DR rat model, eIF4A3 overexpression restored circEHMT1 levels and ameliorated retinal vasculature changes. CONCLUSION Altogether, eIF4A3 regulates circEHMT1 expression, thereby affecting microvascular endothelial cell injury and tube formation. Further understanding the regulatory effect of eIF4A3 on circEHMT1 may provide novel therapeutic targets for DR.
Collapse
Affiliation(s)
- Yuan Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China; Shenzhen Eye Institute, Shenzhen 518040, China
| | - Yongxin Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China; Shenzhen Eye Institute, Shenzhen 518040, China
| | - Yunhao Qu
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Shixu Li
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Wenqun Xi
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China; Shenzhen Eye Institute, Shenzhen 518040, China
| | - Beian Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Lin Ye
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China; Shenzhen Eye Institute, Shenzhen 518040, China.
| |
Collapse
|
8
|
Anchesi I, Schepici G, Mazzon E. LncRNAs and CircRNAs as Strategies against Pathological Conditions Caused by a Hypoxic/Anoxic State. Biomolecules 2023; 13:1622. [PMID: 38002304 PMCID: PMC10669691 DOI: 10.3390/biom13111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Brain damage can be induced by oxygen deprivation. It is known that hypoxic or anoxic conditions can lead to changes in the expression levels of non-coding RNAs (ncRNAs), which, in turn, can be related to Central Nervous System (CNS) injuries. Therefore, it could be useful to investigate the involvement of non-coding RNAs (ncRNAs), as well as the underlying mechanisms which are able to modulate them in brain damage induced by hypoxic or anoxic conditions. In this review, we focused on recent research that associates these conditions with long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). The results of this review demonstrate that the expression of both lncRNAs and circRNAs can be influenced by oxygen deprivation conditions and so they can contribute to inducing damage or providing neuroprotection by affecting specific molecular pathways. Furthermore, several experimental studies have shown that ncRNA activity can be regulated by compounds, thus also modifying their transcriptomic profile and their effects on CNS damages induced by hypoxic/anoxic events.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Strada Statale 113, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
9
|
Li D, Liu L, He X, Wang N, Sun R, Li X, Yu T, Chu XM. Roles of long non-coding RNAs in angiogenesis-related diseases: Focusing on non-neoplastic aspects. Life Sci 2023; 330:122006. [PMID: 37544376 DOI: 10.1016/j.lfs.2023.122006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Angiogenesis is a key process in organ and tissue morphogenesis, as well as growth during human development, and is coordinated by pro- and anti-angiogenic factors. When this balance is affected, the related physiological and pathological changes lead to disease. Long non-coding RNAs (lncRNAs) are an important class of non-coding RNAs that do not encode proteins, but play a dynamic role in regulating gene expression. LncRNAs have been reported to be extensively involved in angiogenesis, particularly tumor angiogenesis. The non-tumor aspects have received relatively little attention and summary, but there is a broad space for research and exploration on lncRNA-targeted angiogenesis in this area. In this review, we focus on lncRNAs in angiogenesis-related diseases other than tumors, such as atherosclerosis, myocardial infarction, stroke, diabetic complications, hypertension, osteoporosis, dermatosis, as well as, endocrine, neurological, and other systemic disorders. Moreover, multiple cell types have been implicated in lncRNA-targeted angiogenesis, but only endothelial cells have attracted widespread attention. Thus, we explore the roles of other cells. Finally, we summarize the potential research directions in the area of lncRNAs and angiogenesis that can be undertaken by combining cutting-edge technology and interdisciplinary research, which will provide new insights into the involvement of lncRNAs in angiogenesis-related diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Lili Liu
- School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Echocardiography, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Ni Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Ruicong Sun
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Xiaolu Li
- Department of Echocardiography, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, People's Republic of China.
| |
Collapse
|
10
|
Ren ZL, Kang XD, Zheng YX, Shi HF, Chen CA, Shi YY, Wang QG, Cheng FF, Wang XQ, Li CX. Emerging effects of non-coding RNA in vascular endothelial cells during strokes. Vascul Pharmacol 2023; 150:107169. [PMID: 37059212 DOI: 10.1016/j.vph.2023.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 03/24/2023] [Indexed: 04/16/2023]
Abstract
Vascular and neurological damage are the typical outcomes of ischemic strokes. Vascular endothelial cells (VECs), a substantial component of the blood-brain barrier (BBB), are necessary for normal cerebrovascular physiology. During an ischemic stroke (IS), changes in the brain endothelium can lead to a BBB rupture, inflammation, and vasogenic brain edema, and VECs are essential for neurotrophic effects and angiogenesis. Non-coding RNAs (nc-RNAs) are endogenous molecules, and brain ischemia quickly changes the expression patterns of several non-coding RNA types, such as microRNA (miRNA/miR), long non-coding RNA (lncRNA), and circular RNA (circRNA). Furthermore, vascular endothelium-associated nc-RNAs are important mediators in the maintenance of healthy cerebrovascular function. In order to better understand how VECs are regulated epigenetically during an IS, in this review, we attempted to assemble the molecular functions of nc-RNAs that are linked with VECs during an IS.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiang-Dong Kang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu-Xiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han-Fen Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Yu-Yu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qing-Guo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
11
|
Zhang M, Zhou H, He R, Yang J, Zou Y, Deng Y, Xie H, Yan Z. Up-regulating microRNA-214-3p relieves hypoxic-ischemic brain damage through inhibiting TXNIP expression. Mol Cell Biochem 2023; 478:597-608. [PMID: 35980563 DOI: 10.1007/s11010-022-04530-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
A list of microRNAs (miRs) has been referred to involve in the development of hypoxic-ischemic brain damage (HIBD). Based on that, we probed the concrete role of miR-214-3p regulating thioredoxin-interacting protein (TXNIP) in the illness. A neonatal HIBD mouse model was established using the Rice-Vannucci method, followed by measurements of miR-214-3p and TXNIP levels in brain tissues. After modeling, mice were given brain injection of the compounds that could alter miR-214-3p and TXNIP expression. Afterward, neurological function, neuronal inflammation, neuronal apoptosis, neuron morphology, and the number of Nissl body were assessed in HIBD mice. The binding of miR-214-3p to TXNIP was analyzed. Lower miR-214-3p and higher TXNIP were analyzed in brain tissues of mice with HIBD. Up-regulating miR-214-3p or depleting TXNIP improved neurological function, reduced neuronal inflammation and neuronal apoptosis, attenuated morphological damage of neurons, and increased the number of Nissl bodies in mice with HIBD. TXNIP was targeted by miR-214-3p and overexpressing TXNIP reversed the therapeutic effect of miR-214-3p on HIBD mice. It is noted that promotion of miR-214-3p relieves HIBD in mice through inhibiting TXNIP expression.
Collapse
Affiliation(s)
- Miaoyu Zhang
- Department of Neurology, The Second Clinical College of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Haiyang Zhou
- Department of Neurology, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Rongni He
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China
| | - Juan Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China
| | - Yang Zou
- Department of Neurology, The Second Clinical College of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yiting Deng
- Department of Neurology, The Second Clinical College of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Huifang Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China.
| | - Zhenxing Yan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
12
|
Ma Z, Wang G, Hu L. lncRNA EGFEM1P Drives the Progression of Papillary Thyroid Cancer by Regulating miR-6867-5p/CHI3L1 Axis. Crit Rev Eukaryot Gene Expr 2023; 33:29-41. [PMID: 37522543 DOI: 10.1615/critreveukaryotgeneexpr.2023047995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Long noncoding RNA (lncRNA), a subgroup of noncoding RNA with > 200 nt, plays critical roles in cancer progression. Here, we aimed to explore the detailed biological function of lncRNA EGFEM1P during papillary thyroid cancer (PTC) progression. RT-qPCR and Western blot were used to analyze the expression of lncRNA EGFEM1P, miR-6867-5p, and CHI3L1. CCK8, colony formation, and Transwell migration assays were undertaken to assess PTC cell proliferation and migration. A xenograft tumor mouse model was also used to establish tumor growth in vivo. Luciferase reporter and anti-AGO2 RNA immunoprecipitation (RIP) assays were used to clarify the interplay between miR-6867-5p and lncRNA EGFEM1P or CHI3L1. We found lncRNA EGFEM1P and CHI3L1 to be highly expressed in PTC tissues and cells, while miR-6867-5p expression decreases. Functionally, lncRNA EGFEM1P silence delays PTC cell proliferation and migration, and impairs tumorigenesis in vivo. LncRNA EGFEM1P targets miR-6867-5p, and CHI3L1 is a target gene of miR-6867-5p. LncRNA EGFEM1P silence decreases the pro-proliferation and pro-migration caused by the miR-6867-5p inhibitor in PTC cells, and CHI3L1 silence abrogates the pro-tumorigenic action resulting from the miR-6867-5p inhibitor in PTC cells. Our data showed that lncRNA EGFEM1P targeting of the miR-6867-5p/CHI3L1 axis drives PTC progression, suggesting lncRNA EGFEM1P as a therapeutically target for PTC.
Collapse
Affiliation(s)
- Zhanwu Ma
- Department of Medical Clinical Laboratory, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Guoxian Wang
- Department of Radiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Lin Hu
- Department of Medical Clinical Laboratory, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, Hubei, China
| |
Collapse
|
13
|
Pang B, Gan Y, Wang J, Qu S. lncRNA ARAP1-AS1 enhances proliferation and impairs apoptosis of lymphoma cells by sponging miR-6867-5p. Cancer Biomark 2023; 38:333-342. [PMID: 37599524 DOI: 10.3233/cbm-230103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND Numerous evidence have suggested the vital role of lncRNAs in human tumorigenesis. And lncRNA APAP1-AS1 has been proved to act as an oncogene. OBJECTIVE Nevertheless, the molecular process underlying ARAP1-AS1 for the lymphoma progression has not been well studied. METHODS RT-qPCR was used to ascertain the miR-6867-5p and ARAP1-AS1 in lymphoma cells and tissues. The localization of ARAP1-AS1 was determined via subcellular fractionation analysis. A xenograft model was used to investigate the influence of ARAP1-AS1 in formation of tumor in vivo. In addition, interactions between ARAP-AS1 and miR-6867-5p were tested by bioinformatics analysis, RIP assay, luciferase reporter and Pearson's correlation analysis. Combined with loss-of-function experiments, MTT assays and flow cytometry were performed to evaluate the function of miR-6867-5p and also ARAP-AS1 in proliferation and apoptosis of lymphoma cells, respectively. RESULTS ARAP1-AS1 was remarkably upregulated in lymphoma cells and tissues, while miR-6867-5p expression was downregulated. Furthermore, high ARAP1-AS1 expression suppressed miR-6867-5p expression in lymphoma cell lines (Raji and CA46), and Pearson's analysis showed negative correlation between ARAP1-AS1 expression and also miR-6867-5p expression. In addition, knockdown of ARAP1-AS1 resulted in weakened cell viability and uplifted apoptosis rate of lymphoma cells (Raji and CA46) as well as a delay in the tumor growth in vivo. Further investigations illustrated that miR-6867-5p inhibitor reversed all above biological activities. CONCLUSIONS LncRNA ARAP1-AS1 served as a tumor-promoter in lymphoma cells by sponging with miR-6867-5p, which may help to provide potential therapeutic target gene for lymphoma patients.
Collapse
Affiliation(s)
- Bo Pang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Yanfang Gan
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jing Wang
- Department of Cardiovascular Medicine, Wuhan Asia Heart Hospital, Wuhan, Hubei, China
| | - Shifang Qu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Zhou Z, Hu Q, Guo H, Wang X. CircSEC11A knockdown alleviates oxidative stress and apoptosis and promotes cell proliferation and angiogenesis by regulating miR-29a-3p/SEMA3A axis in OGD-induced human brain microvascular endothelial cells (HBMECs). Clin Hemorheol Microcirc 2023; 84:247-262. [PMID: 36872771 DOI: 10.3233/ch-221689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND Circular RNA (circRNA) has been found to play an important role in the progression of many diseases, including ischemic stroke. However, the regulatory mechanism of circSEC11A in ischemic stroke progression need to further investigation. METHODS Human brain microvascular endothelial cells (HBMECs) were stimulated by oxygen glucose deprivation (OGD). CircSEC11A, SEC11A mRNA and miR (microRNA)-29a-3p were quantified by quantitative real-time PCR (qRT-PCR). SEMA3A, BAX and BCL2 protein level was quantified by western blot. Oxidative stress, cell proliferation, angiogenesis and apoptosis abilities were gauged by oxidative stress assay kit, 5-Ethynyl-2'-Deoxyuridine (EdU) staining, tube formation assay and flow cytometry assays, respectively. Direct relationship between miR-29a-3p and circSEC11A or SEMA3A was validated by dual-luciferase reporter assay, RIP assay and RNA pull-down assay. RESULTS CircSEC11A was upregulated in OGD-induced HBMECs. OGD promoted the oxidative stress and apoptosis and inhibited cell proliferation and angiogenesis, while circSEC11A knockdown relieved the effects. CircSEC11A functioned as the sponge for miR-29a-3p, and miR-29a-3p inhibitor reversed the effects of si-circSEC11A on OGD-induced HBMECs oxidative injuries. Moreover, SEMA3A served as the target gene of miR-29a-3p. MiR-29a-3p inhibition ameliorated OGD-induced HBMECs oxidative injuries, while SEMA3A overexpression rescued the impacts of miR-29a-3p mimic. CONCLUSION CircSEC11A promoted the malignant progression in OGD-induced HBMECs through the mediation of miR-29a-3p/SEMA3A axis. This study has provided the new insight into the underlying application of circSEC11A in cell model of ischemic stroke.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Neurology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qian Hu
- Department of Neurology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Hongmei Guo
- Department of Neurology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xijia Wang
- Department of Neurology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Cheng L, Liu Z, Xia J. New insights into circRNA and its mechanisms in angiogenesis regulation in ischemic stroke: a biomarker and therapeutic target. Mol Biol Rep 2023; 50:829-840. [PMID: 36331748 DOI: 10.1007/s11033-022-07949-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke accounts for about 71% of strokes worldwide. Due to limited recommended therapeutics for ischemic stroke, more attention is focused on angiogenesis in ischemic stroke. Not long after ischemic stroke, angiogenesis arises and is vital for the prognosis. Various pro-angiogenic, anti-angiogenic factors and their downstream pathways engage in angiogenesis regulation. CircRNAs are differentially expressed after ischemic stroke. Up to now, circRNAs have been found to exert many functions in regulating apoptosis, autophagy, proliferation, and differentiation of neurons and neural stem cells mainly as miRNAs sponges or proteins decoy. Thus, many circRNAs are considered promising biomarkers or therapeutic targets for ischemic stroke. Besides, circRNAs participate in the modulation of endothelial-mesenchymal transition and blood-brain barrier maintenance. Moreover, circRNAs play significant roles in endothelial dysfunction concerning inflammation responses, apoptosis, proliferation, and migration. They correlate with many angiogenesis-related signaling pathways and genes via the circRNA/miRNA/mRNA network. Novel insights into circRNAs significance in angiogenesis regulation in ischemic stroke could be provided for further researches on the clinical application of circRNAs in ischemic stroke.
Collapse
Affiliation(s)
- Liuyang Cheng
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
16
|
Effects of Long Noncoding RNA HOXA-AS2 on the Proliferation and Migration of Gallbladder Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:6051512. [PMID: 36299503 PMCID: PMC9592229 DOI: 10.1155/2022/6051512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/17/2023]
Abstract
To explore the function and mechanism of lncRNA HOXA-AS2 in cancer-associated fibroblasts (CAFs)-derived exosomes in gallbladder cancer metastasis, and provide new research targets for the treatment of gallbladder cancer. At the same time, in order to clarify the early predictive value of lncRNA HOXA-AS2 for gallbladder cancer metastasis, and to provide a theoretical basis for clinical individualized treatment of gallbladder cancer. Methods. In our previous work, we used TCGA database analysis to find that lncRNA HOXA-AS2 was highly expressed in gallbladder cancer tissues compared with normal tissues. In this study, the expression levels of HOXA-AS2 in gallbladder cancer cell lines and control cells were first verified by QPCR and Western blot methods. Then, lentiviral tools were used to construct knockdown vectors (RNAi#1, RNAi#2) and negative control vectors targeting two different sites of HOXA-AS2, and the vectors were transfected into NOZ and OCUG-1 cells, respectively. Real-time PCR was used to detect knockdown efficiency. Then, the effects of silencing HOXA-AS2 on the proliferation, cell viability, cell migration, and invasion ability of gallbladder cancer cells were detected by MTT, plate cloning assay, Transwell migration chamber assay, and Transwell invasion chamber assay. Finally, the interaction between HOXA-AS2 and miR-6867 and the 3′UTR of YAP1 protein was detected by luciferase reporter gene. The results showed that the expression level of HOXA-AS2 in gallbladder cancer cell lines was higher than that in control cells. The expression of HOXA-AS2 in gallbladder carcinoma tissues was significantly higher than that in adjacent tissues (p < 0.05). After successful knockout of HOXA-AS2 by lentiviral transfection, the expression of HOXA-AS2 in gallbladder cancer cell lines was significantly decreased. Through cell proliferation and plate clone detection, it was found that silencing HOXA-AS2 inhibited cell proliferation and invasion. Through software prediction and fluorescein reporter gene detection, it was found that HOXA-AS2 has a binding site with miR-6867, and the two are negatively correlated, that is, the expression of miR-6867 is enhanced after the expression of HOXA-AS2 is downregulated. And the 3′UTR of YAP1 protein in the Hippo signaling pathway binds to miR-6867. Therefore, HOXA-AS2 may affect the expression of YAP1 protein by regulating miR-6867, thereby inhibiting the Hippo signaling pathway and promoting the proliferation and metastasis of gallbladder cancer cells. HOXA-AS2 is abnormally expressed in gallbladder cancer cells. HOXA-AS2 may promote the migration and invasion of gallbladder cancer cells by regulating the Hippo signaling pathway through miR-6867. HOXA-AS2 may serve as a potential diagnostic and therapeutic target for gallbladder cancer in clinic.
Collapse
|
17
|
Zhang S, Lu Y, Shi W, Ren Y, Xiao K, Chen W, Li L, Zhao J. SIRT1/FOXO1 Axis-Mediated Hippocampal Angiogenesis is Involved in the Antidepressant Effect of Chaihu Shugan San. Drug Des Devel Ther 2022; 16:2783-2801. [PMID: 36039087 PMCID: PMC9419814 DOI: 10.2147/dddt.s370825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Shan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Yujia Lu
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Wei Shi
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Yi Ren
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Kaihui Xiao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Li Li
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Jingjie Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
- Department of Integrated Traditional and Western Medicine, Capital Medical University, Beijing, 100050, People’s Republic of China
- Correspondence: Jingjie Zhao, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Beijing, 100050, People’s Republic of China, Tel/Fax +86 10-63139096, Email
| |
Collapse
|
18
|
Xu X, Zhang Y. Regulation of Oxidative Stress by Long Non-coding RNAs in Central Nervous System Disorders. Front Mol Neurosci 2022; 15:931704. [PMID: 35782387 PMCID: PMC9241987 DOI: 10.3389/fnmol.2022.931704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) disorders, such as ischemic stroke, Alzheimer’s disease, Parkinson’s disease, spinal cord injury, glioma, and epilepsy, involve oxidative stress and neuronal apoptosis, often leading to long-term disability or death. Emerging studies suggest that oxidative stress may induce epigenetic modifications that contribute to CNS disorders. Non-coding RNAs are epigenetic regulators involved in CNS disorders and have attracted extensive attention. Long non-coding RNAs (lncRNAs) are non-coding RNAs more than 200 nucleotides long and have no protein-coding function. However, these molecules exert regulatory functions at the transcriptional, post-transcriptional, and epigenetic levels. However, the major role of lncRNAs in the pathophysiology of CNS disorders, especially related to oxidative stress, remains unclear. Here, we review the molecular functions of lncRNAs in oxidative stress and highlight lncRNAs that exert positive or negative roles in oxidation/antioxidant systems. This review provides novel insights into the therapeutic potential of lncRNAs that mediate oxidative stress in CNS disorders.
Collapse
Affiliation(s)
- Xiaoman Xu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yi Zhang,
| |
Collapse
|
19
|
Zhang S, Zhu T, Li Q, Sun G, Sun X. Long Non-Coding RNA-Mediated Competing Endogenous RNA Networks in Ischemic Stroke: Molecular Mechanisms, Therapeutic Implications, and Challenges. Front Pharmacol 2021; 12:765075. [PMID: 34867389 PMCID: PMC8635732 DOI: 10.3389/fphar.2021.765075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke (IS) is a disease that is characterized by high mortality and disability. Recent studies have shown that LncRNA-mediated competing endogenous RNA (ceRNA) networks play roles in the occurrence and development of cerebral I/R injury by regulating different signaling pathways. However, no systematic analysis of ceRNA mechanisms in IS has been reported. In this review, we discuss molecular mechanisms of LncRNA-mediated ceRNA networks under I/R injury. The expression levels of LncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) and their effects in four major cell types of the neurovascular unit (NVU) are also involved. We further summarize studies of LncRNAs as biomarkers and therapeutic targets. Finally, we analyze the advantages and limitations of using LncRNAs as therapeutics for IS.
Collapse
Affiliation(s)
- Shuxia Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Ting Zhu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Qiaoyu Li
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Pan Y, Jiao Q, Wei W, Zheng T, Yang X, Xin W. Emerging Role of LncRNAs in Ischemic Stroke-Novel Insights into the Regulation of Inflammation. J Inflamm Res 2021; 14:4467-4483. [PMID: 34522116 PMCID: PMC8434908 DOI: 10.2147/jir.s327291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
As a crucial kind of pervasive gene, long noncoding RNAs (lncRNAs) are abundant and key players in brain function as well as numerous neurological disorders, especially ischemic stroke. The mechanisms underlying ischemic stroke include angiogenesis, autophagy, apoptosis, cell death, and neuroinflammation. Inflammation plays a vital role in the pathological process of ischemic stroke, and systemic inflammation affects the patient’s prognosis. Although a great deal of research has illustrated that various lncRNAs are closely relevant to regulate neuroinflammation and microglial activation in ischemic stroke, the specific interactional relationships and mechanisms between lncRNAs and neuroinflammation have not been described clearly. This review aimed to summarize the therapeutic effects and action mechanisms of lncRNAs on ischemia by regulating inflammation and microglial activation. In addition, we emphasize that lncRNAs have the potential to modulate inflammation by inhibiting and activating various signaling pathways, such as microRNAs, NF‐κB and ERK.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Qingzheng Jiao
- Second Department of Internal Medicine, Gucheng County Hospital, Gucheng, Hebei, People's Republic of China
| | - Wei Wei
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People's Republic of China
| | - Tianyang Zheng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
21
|
Huang Y, Wang Y, Liu X, Ouyang Y. Silencing lncRNA HOTAIR improves the recovery of neurological function in ischemic stroke via the miR-148a-3p/KLF6 axis. Brain Res Bull 2021; 176:43-53. [PMID: 34391823 DOI: 10.1016/j.brainresbull.2021.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/18/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022]
Abstract
Ischemic stroke (IS), caused by a permanent or transient local reduction in blood supply to the brain, is one of the most widespread causes of public health problems in modern society. Long non-coding RNA (LncRNA) has been reported to be related to angiogenesis following IS. In this study, we explored the effect and potential molecular mechanism of lncRNA homeobox antisense non-coding RNA (HOTAIR) in IS. Permanent middle cerebral artery occlusion (pMCAO) model and oxygen and glucose deprivation (OGD) model were established. HOTAIR was increased in vivo and in vitro models post-ischemic. HOTAIR knockdown promoted neurological function recovery, manifesting in decreased modified neurological severity score, cerebral infarcted area, apoptosis and inflammation, and improved balance ability, spatial learning and memory ability. Silencing HOTAIR also improved the viability of OGD-induced N2a cells, and attenuated apoptosis and inflammation. HOTAIR can compete with KLF6 to bind to miR-148a-3p. miR-148a-3p knockdown or KLF6 overexpression partially reversed the effect of sh-HOTAIR on OGD-induced N2a cells. HOTAIR suppressed the activation of STAT3 pathway via the miR-148a-3p/KLF6 axis. To summarize, this study demonstrated that lncRNA HOTAIR absorbed miR-148a-3p and up-regulated KLF6 expression through ceRNA mechanism, and inhibited STAT3 pathway, promoted apoptosis and inflammation, and aggravated neurological injury post-IS.
Collapse
Affiliation(s)
- Yiwen Huang
- Department of Emergency, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuanyuan Wang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaobin Liu
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yingjun Ouyang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Yang H, Wang H, Zhang X, Yang Y, Li H. Upregulated LINC00319 aggravates neuronal injury induced by oxygen-glucose deprivation via modulating miR-200a-3p. Exp Ther Med 2021; 22:844. [PMID: 34149890 PMCID: PMC8210224 DOI: 10.3892/etm.2021.10276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/12/2020] [Indexed: 11/11/2022] Open
Abstract
Ischemic stroke is one of the main causes of physical disability and mortality worldwide. Long non-coding RNAs (lncRNAs) are reported to be dysregulated in various biological progressions and serve important roles in pathological processes of cerebral ischemia. However, their biological actions and potential mechanisms in the progression of ischemic stroke remain unknown. The present study aimed to investigate the functions of LINC00319 on ischemic brain injury. It was identified that LINC00319 was significantly upregulated in the Gene Expression Omnibus profile of ischemic stroke. Furthermore, LINC00319 overexpression elevated caspase-3 activity and increased the apoptotic rate of neuronal cells, as well as decreased cell viability and glucose uptake. It was also demonstrated that LINC00319 participated in oxygen-glucose deprivation (OGD)-induced cerebral ischemic injury. LINC00319 could competitively bind with microRNA (miR)-200a-3p and decrease its expression. Moreover, miR-200a-3p could partly offset the negative effects of LINC00319 overexpression on neuronal injury caused by OGD. Collectively, the present results suggested that LINC00319 promoted apoptosis and aggravated neuronal injury induced by OGD by regulating miR-200a-3p, which may be important for ischemic stroke treatment.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - He Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - Xiaodan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - Yuehan Yang
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - Hongbin Li
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| |
Collapse
|
23
|
Zhang S, Zhang Y, Wang N, Wang Y, Nie H, Zhang Y, Han H, Wang S, Liu W, Bo C. Long non-coding RNA MIAT impairs neurological function in ischemic stroke via up-regulating microRNA-874-3p-targeted IL1B. Brain Res Bull 2021; 175:81-89. [PMID: 34265390 DOI: 10.1016/j.brainresbull.2021.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) have diagnostic and therapeutic values in the setting of ischemic stroke (IS). Here, we evaluated the value of myocardial infarction-associated transcript (MIAT) in IS with the involvement of microRNA (miR)-874-3p/interleukin (IL) 1B. METHODS MIAT, miR-874-3p and IL1B levels in serum of patients with IS were measured. A middle cerebral artery occlusion (MCAO) model was established in mice. MCAO mice were injected with Agomir of miR-874-3p, shRNA or overexpression vector of MIAT or siRNA of IL1B. Subsequently, behavioral activities and neurological function of mice were assessed. The number of Nissl bodies, brain damage, neuronal apoptosis and inflammatory factors in brain tissues of mice were measured. The targeting relationship between MIAT and miR-874-3p, as well as that between miR-874-3p and IL1B was explored. RESULTS In patients with IS, MIAT and IL1B were up-regulated and miR-874-3p was down-regulated. MIAT absorbed miR-874-3p while miR-874-3p targeted IL1B. Silencing of MIAT or IL1B, or promotion of miR-874-3p improved behavioral activities and neurological function of mice, reduced the number of Nissl bodies, as well as improved brain damage, neuronal apoptosis and inflammation. Overexpression of miR-874-3p abrogated up-regulated MIAT-mediated influence on MCAO mice. CONCLUSION Shortly, this study figures out that MIAT impairs neurological function in IS via up-regulating miR-874-3p-targeted IL1B.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Yue Zhang
- Department of Respiratory, General Hospital of Heilongjiang Province Farms & Land Reclamation Administration, Harbin 150088, China
| | - Na Wang
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Yu Wang
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Huan Nie
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Yueyue Zhang
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Huiying Han
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Shan Wang
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Wenjuan Liu
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China.
| | - Chunrui Bo
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
24
|
Chen J, Liu P, Dong X, Jin J, Xu Y. The role of lncRNAs in ischemic stroke. Neurochem Int 2021; 147:105019. [PMID: 33905763 DOI: 10.1016/j.neuint.2021.105019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide due to the narrow therapeutic time window of the only two approved therapies, intravenous thrombolysis and thrombectomy. The pathophysiological processes of ischemic stroke are driven by multiple complex molecular and cellular interactions that ultimately induce brain damage and neurobehavioral impairment. Long non-coding RNAs (LncRNAs) are significantly altered in the blood and brains of ischemic stroke patients and play a critical role in the pathogenesis of stroke, which serve as potential targets for stroke interventions. In this review, we provide an overview of the roles of lncRNAs in the pathophysiology of ischemic stroke and discuss the opportunities and challenges for the clinical application of lncRNAs in the diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Xiaohong Dong
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
| |
Collapse
|
25
|
Gan L, Liao S, Xing Y, Deng S. The Regulatory Functions of lncRNAs on Angiogenesis Following Ischemic Stroke. Front Mol Neurosci 2021; 13:613976. [PMID: 33613191 PMCID: PMC7890233 DOI: 10.3389/fnmol.2020.613976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is one of the leading causes of global mortality and disability. It is a multi-factorial disease involving multiple factors, and gene dysregulation is considered as the major molecular mechanisms underlying disease progression. Angiogenesis can promote collateral circulation, which helps the restoration of blood supply in the ischemic area and reduces ischemic necrosis following ischemic injury. Aberrant expression of long non-coding RNAs (lncRNAs) in ischemic stroke is associated with various biological functions of endothelial cells and serves essential roles on the angiogenesis of ischemic stroke. The key roles of lncRNAs on angiogenesis suggest their potential as novel therapeutic targets for future diagnosis and treatment. This review elucidates the detailed regulatory functions of lncRNAs on angiogenesis following ischemic stroke through numerous mechanisms, such as interaction with target microRNAs, downstream signaling pathways and target molecules.
Collapse
Affiliation(s)
- Li Gan
- Laboratory of Forensic and Biomedical Information, Chongqing Medical University, Chongqing, China
| | - Shengtao Liao
- Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Xing
- Laboratory of Forensic and Biomedical Information, Chongqing Medical University, Chongqing, China
| | - Shixiong Deng
- Laboratory of Forensic and Biomedical Information, Chongqing Medical University, Chongqing, China
| |
Collapse
|