1
|
Mejía-Guzmán JE, Belmont-Hernández RA, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Metabolic-Dysfunction-Associated Steatotic Liver Disease: Molecular Mechanisms, Clinical Implications, and Emerging Therapeutic Strategies. Int J Mol Sci 2025; 26:2959. [PMID: 40243565 PMCID: PMC11988898 DOI: 10.3390/ijms26072959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a highly prevalent metabolic disorder characterized by hepatic steatosis in conjunction with at least one cardiometabolic risk factor, such as obesity, type 2 diabetes, hypertension, or dyslipidemia. As global rates of obesity and metabolic syndrome continue to rise, MASLD is becoming a major public health concern, with projections indicating a substantial increase in prevalence over the coming decades. The disease spectrum ranges from simple steatosis to metabolic-dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis, and hepatocellular carcinoma, contributing to significant morbidity and mortality worldwide. This review delves into the molecular mechanisms driving MASLD pathogenesis, including dysregulation of lipid metabolism, chronic inflammation, oxidative stress, mitochondrial dysfunction, and gut microbiota alterations. Recent advances in research have highlighted the role of genetic and epigenetic factors in disease progression, as well as novel therapeutic targets such as peroxisome proliferator-activated receptors (PPARs), fibroblast growth factors, and thyroid hormone receptor beta agonists. Given the multifaceted nature of MASLD, a multidisciplinary approach integrating early diagnosis, molecular insights, lifestyle interventions, and personalized therapies is critical. This review underscores the urgent need for continued research into innovative treatment strategies and precision medicine approaches to halt MASLD progression and improve patient outcomes.
Collapse
Affiliation(s)
- Jeysson E. Mejía-Guzmán
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (J.E.M.-G.); (R.A.B.-H.); (N.C.C.-T.)
| | - Ramón A. Belmont-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (J.E.M.-G.); (R.A.B.-H.); (N.C.C.-T.)
- Postgraduate Program in Experimental Biology, División de Ciencias Básicas y de la Salud (DCBS), Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Norberto C. Chávez-Tapia
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (J.E.M.-G.); (R.A.B.-H.); (N.C.C.-T.)
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
| | - Natalia Nuño-Lámbarri
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (J.E.M.-G.); (R.A.B.-H.); (N.C.C.-T.)
- Surgery Department, Faculty of Medicine, The National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
2
|
Wu X, Miller JA, Lee BTK, Wang Y, Ruedl C. Reducing microglial lipid load enhances β amyloid phagocytosis in an Alzheimer's disease mouse model. SCIENCE ADVANCES 2025; 11:eadq6038. [PMID: 39908361 DOI: 10.1126/sciadv.adq6038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Macrophages accumulate lipid droplets (LDs) under stress and inflammatory conditions. Despite the presence of LD-loaded macrophages in many tissues, including the brain, their contribution to neurodegenerative disorders remains elusive. This study investigated the role of lipid metabolism in Alzheimer's disease (AD) by assessing the contribution of LD-loaded brain macrophages, including microglia and border-associated macrophages (BAMs), in an AD mouse model. Particularly, BAMs and activated CD11c+ microglia localized near β amyloid (Aβ) plaques exhibited a pronounced lipid-associated gene signature and a high LD load. Having observed that elevated intracellular LD content correlated inversely with microglial phagocytic activities, we subsequently inhibited LD formation specifically in CX3CR1+ brain macrophages using an inducible APP-KI/Fit2iΔMφ transgenic mouse model. We demonstrated that reducing LD content in microglia and CX3CR1+ BAMs remarkably improved their phagocytic ability. Furthermore, lowering microglial LDs consistently enhanced their efferocytosis capacities and notably reduced Aβ deposition in the brain parenchyma. Therefore, mitigating LD accumulation in brain macrophages provides perspectives for AD treatment.
Collapse
Affiliation(s)
- Xiaoting Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James Alastair Miller
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Bernett Teck Kwong Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yulan Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Longo L, Guerreiro GTS, Behrens L, Pereira MHM, Pinzon CE, Cerski CTS, Uribe-Cruz C, Álvares-da-Silva MR. Rifaximin prophylaxis in MASLD‑hepatocellular carcinoma: Lessons from a negative animal model. Biomed Rep 2025; 22:4. [PMID: 39529613 PMCID: PMC11552077 DOI: 10.3892/br.2024.1882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/13/2024] [Indexed: 11/16/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) has been rising, particularly among individuals diagnosed with metabolic dysfunction-associated steatotic liver disease. In the present study, the prophylactic effects of rifaximin (RIF) on HCC, inflammatory markers and cardiovascular risk (CVR) were investigated in an animal model. Adult Sprague-Dawley rats were randomly allocated into three groups (n=10, each): Control [standard diet/water plus gavage with vehicle (Veh)], HCC [high-fat choline deficient diet (HFCD)/diethylnitrosamine (DEN) in drinking water/Veh gavage] and RIF [HFCD/DEN/RIF (50 mg/kg/day) gavage] groups. After euthanasia at week 16, biochemical/inflammatory markers and the liver histology were assessed. The results demonstrated that the HCC and RIF animals had a significant increase in fresh liver weight, liver weight/body weight ratio, serum total cholesterol (TC), high-density lipoprotein-cholesterol, triglycerides, hepatic lipid accumulation and hepatic concentration of triglycerides and TC, relative to the controls (P<0.001, for all). Additionally, the HCC and RIF animals had higher plasminogen activator inhibitor, intercellular adhesion molecule-1, E-selectin and CVR scores than the controls (P<0.001, for all). The HCC animals had higher interleukin (IL)-1β (P=0.011), IL-10 (P<0.001), toll-like receptor-2 (P=0.012), lipopolysaccharide-binding protein (P=0.018) and metalloproteinase-2 (P=0.003) levels than the RIF animals. Furthermore, liver steatosis, inflammation and fibrosis, along with increased collagen fiber deposition occurred in the HCC and RIF groups. However, HCC occurred only in 2 RIF rats. In conclusion, although most animals did not develop HCC in the present study, RIF positively affected liver inflammation markers involved in steatohepatitis pathogenesis.
Collapse
Affiliation(s)
- Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Gabriel Tayguara Silveira Guerreiro
- Graduate Program in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Luiza Behrens
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Matheus Henrique Mariano Pereira
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Carlos Eduardo Pinzon
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Carlos Thadeu Schmidt Cerski
- Graduate Program in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
- Unit of Surgical Pathology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
- Faculty of Health Sciences, Catholic University of The Missions, Posadas, Misiones 3300, Argentina
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
- National Council for Scientific and Technological Development Researcher, Brasília 71.605-001, Brazil
| |
Collapse
|
4
|
Chmielarz M, Bromke MA, Olbromski M, Środa-Pomianek K, Frej-Mądrzak M, Dzięgiel P, Sobieszczańska B. Lipidomics Analysis of Human HMC3 Microglial Cells in an In Vitro Model of Metabolic Syndrome. Biomolecules 2024; 14:1238. [PMID: 39456170 PMCID: PMC11506612 DOI: 10.3390/biom14101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic endotoxemia (ME) is associated with bacterial lipopolysaccharide (LPS, endotoxin) and increased levels of saturated fatty acids (SFAs) in the bloodstream, causing systemic inflammation. ME usually accompanies obesity and a diet rich in fats, especially SFAs. Numerous studies confirm the effect of ME-related endotoxin on microglial activation. Our study aimed to assess lipid metabolism and immune response in microglia pre-stimulated with TNFα (Tumor Necrosis Factor α) and then with endotoxin and palmitic acid (PA). Using ELISA, we determined cytokines IL-1β, IL-10, IL-13 (interleukin-1β, -10, -13, and TGFβ (Transforming Growth Factor β) in the culture medium from microglial cells stimulated for 24 h with TNFα and then treated with LPS (10 ng/mL) and PA (200 µM) for 24 h. HMC3 (Human Microglial Cells clone 3) cells produced negligible amounts of IL-1β, IL-10, and IL-13 after stimulation but secreted moderate levels of TGFβ. Changes in lipid metabolism accompanied changes in TREM2 (Triggering Receptor Expressed on Myeloid Cells 2) expression. HMC3 stimulation with endotoxin increased TREM2 expression, while PA treatment decreased it. Endotoxin increased ceramide levels, while PA increased triglyceride levels. These results indicated that pre-stimulation of microglia with TNFα significantly affects its interactions with LPS and PA and modulates lipid metabolism, which may lead to microglial activation silencing and neurodegeneration.
Collapse
Affiliation(s)
- Mateusz Chmielarz
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (M.C.); (M.F.-M.)
| | - Mariusz Aleksander Bromke
- Department of Biochemistry and Immunochemistry, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland;
| | - Mateusz Olbromski
- Department of Human Morphology and Embryology, Faculty of Medicine, Division of Histology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 3a, 50-368 Wroclaw, Poland;
| | - Magdalena Frej-Mądrzak
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (M.C.); (M.F.-M.)
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Faculty of Medicine, Division of Histology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Beata Sobieszczańska
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (M.C.); (M.F.-M.)
| |
Collapse
|
5
|
Niu MY, Dong GT, Li Y, Luo Q, Cao L, Wang XM, Wang QW, Wang YT, Zhang Z, Zhong XW, Dai WB, Li LY. Fanlian Huazhuo Formula alleviates high-fat diet-induced non-alcoholic fatty liver disease by modulating autophagy and lipid synthesis signaling pathway. World J Gastroenterol 2024; 30:3584-3608. [PMID: 39193572 PMCID: PMC11346146 DOI: 10.3748/wjg.v30.i30.3584] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/08/2024] Open
Abstract
BACKGROUND Fanlian Huazhuo Formula (FLHZF) has the functions of invigorating spleen and resolving phlegm, clearing heat and purging turbidity. It has been identified to have therapeutic effects on type 2 diabetes mellitus (T2DM) in clinical application. Non-alcoholic fatty liver disease (NAFLD) is frequently diagnosed in patients with T2DM. However, the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation. AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro. METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model. Subsequently, experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours. C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD, and then treated with the different concentrations of FLHZF for 10 weeks. RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro. Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress, regulating the AMPKα/SREBP-1C signaling pathway, activating autophagy, and inhibiting hepatocyte apoptosis. CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species, autophagy, apoptosis, and lipid synthesis signaling pathways, indicating its potential for clinical application in NAFLD.
Collapse
Affiliation(s)
- Meng-Yuan Niu
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Geng-Ting Dong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi Li
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qing Luo
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Liu Cao
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Min Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qi-Wen Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi-Ting Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Zhe Zhang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Wen Zhong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Wei-Bo Dai
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Le-Yu Li
- Department of Endocrinology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| |
Collapse
|
6
|
Yu L, Gao F, Li Y, Su D, Han L, Li Y, Zhang X, Feng Z. Role of pattern recognition receptors in the development of MASLD and potential therapeutic applications. Biomed Pharmacother 2024; 175:116724. [PMID: 38761424 DOI: 10.1016/j.biopha.2024.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become one of the most prevalent liver diseases worldwide, and its occurrence is strongly associated with obesity, insulin resistance (IR), genetics, and metabolic stress. Ranging from simple fatty liver to metabolic dysfunction-associated steatohepatitis (MASH), even to severe complications such as liver fibrosis and advanced cirrhosis or hepatocellular carcinoma, the underlying mechanisms of MASLD progression are complex and involve multiple cellular mediators and related signaling pathways. Pattern recognition receptors (PRRs) from the innate immune system, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs), and DNA receptors, have been demonstrated to potentially contribute to the pathogenesis for MASLD. Their signaling pathways can induce inflammation, mediate oxidative stress, and affect the gut microbiota balance, ultimately resulting in hepatic steatosis, inflammatory injury and fibrosis. Here we review the available literature regarding the involvement of PRR-associated signals in the pathogenic and clinical features of MASLD, in vitro and in animal models of MASLD. We also discuss the emerging targets from PRRs for drug developments that involved agent therapies intended to arrest or reverse disease progression, thus enabling the refinement of therapeutic targets that can accelerate drug development.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Feifei Gao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Yaoxin Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Dan Su
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Liping Han
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yueming Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Xuehan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.
| |
Collapse
|
7
|
Gao S, Wei L, Qin Y, Zhang P, Quan T, Liang F, Huang G. Network pharmacological analysis on the mechanism of Linggui Zhugan decoction for nonalcoholic fatty liver disease. Medicine (Baltimore) 2024; 103:e37281. [PMID: 38457573 PMCID: PMC10919485 DOI: 10.1097/md.0000000000037281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), represents a chronic progressive disease that imposes a significant burden on patients and the healthcare system. Linggui Zhugan decoction (LGZGD) plays a substantial role in treating NAFLD, but its exact molecular mechanism is unknown. Using network pharmacology, this study aimed to investigate the mechanism of action of LGZGD in treating NAFLD. Active ingredients and targets were identified through the integration of data from the TCMSP, GEO, GeneCards, and OMIM databases. Cytoscape 3.9.1 software, in conjunction with the STRING platform, was employed to construct network diagrams and screen core targets. The enrichment analysis of gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathways were conducted by using the R. Molecular docking of the active ingredients and core targets was performed with AutoDock Vina software. We obtained 93 and 112 active ingredients and potential targets using the bioinformatic analysis of LGZGD in treating NAFLD. The primary ingredients of LGZGD included quercetin, kaempferol, and naringenin. The core targets were identified AKT1, MYC, HSP90AA1, HIF1A, ESR1, TP53, and STAT3. Gene ontology function enrichment analysis revealed associations with responses to nutrient and oxygen levels, nuclear receptor activity, and ligand-activated transcription factor activity. Kyoto Encyclopedia of Genes and Genomes signaling pathway analysis implicated the involvement of the PI3K-Akt, IL-17, TNF, Th17 cell differentiation, HIF-1, and TLR signaling pathways. Molecular docking studies indicated strong binding affinities between active ingredients and targets. LGZGD intervenes in NAFLD through a multi-ingredient, multi-target, and multi-pathway approach. Treatment with LGZGD can improve insulin resistance, oxidative stress, inflammation, and lipid metabolism associated with NAFLD.
Collapse
Affiliation(s)
- Songlin Gao
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liuting Wei
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yan Qin
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Peng Zhang
- Department of Nephrology, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou, Guangxi, China
| | - Tingwei Quan
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fei Liang
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Guihua Huang
- Department of Spleen and Stomach Liver Diseases, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
8
|
Mooring M, Yeung GA, Luukkonen P, Liu S, Akbar MW, Zhang GJ, Balogun O, Yu X, Mo R, Nejak-Bowen K, Poyurovsky MV, Booth CJ, Konnikova L, Shulman GI, Yimlamai D. Hepatocyte CYR61 polarizes profibrotic macrophages to orchestrate NASH fibrosis. Sci Transl Med 2023; 15:eade3157. [PMID: 37756381 PMCID: PMC10874639 DOI: 10.1126/scitranslmed.ade3157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Obesity is increasing worldwide and leads to a multitude of metabolic diseases, including cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis (NASH). Cysteine-rich angiogenic inducer 61 (CYR61) is associated with the progression of NASH, but it has been described to have anti- and proinflammatory properties. We sought to examine the role of liver CYR61 in NASH progression. CYR61 liver-specific knockout mice on a NASH diet showed improved glucose tolerance, decreased liver inflammation, and reduced fibrosis. CYR61 polarized infiltrating monocytes promoting a proinflammatory/profibrotic phenotype through an IRAK4/SYK/NF-κB signaling cascade. In vitro, CYR61 activated a profibrotic program, including PDGFa/PDGFb expression in macrophages, in an IRAK4/SYK/NF-κB-dependent manner. Furthermore, targeted-antibody blockade reduced CYR61-driven signaling in macrophages in vitro and in vivo, reducing fibrotic development. This study demonstrates that CYR61 is a key driver of liver inflammation and fibrosis in NASH.
Collapse
Affiliation(s)
- Meghan Mooring
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
- These authors contributed equally to this work
| | - Grace A. Yeung
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
- These authors contributed equally to this work
| | - Panu Luukkonen
- Department of Internal Medicine, Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Silvia Liu
- Department of Pathology, School of Medicine, University of Pittsburgh
- Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
| | - Muhammad Waqas Akbar
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Gary J. Zhang
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Oluwashanu Balogun
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh
| | - Xuemei Yu
- Kadmon Corporation, LLC; 450 East 29th Street, New York, New York 10016, USA
| | - Rigen Mo
- Kadmon Corporation, LLC; 450 East 29th Street, New York, New York 10016, USA
| | - Kari Nejak-Bowen
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh
- Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
| | - Masha V. Poyurovsky
- Kadmon Corporation, LLC; 450 East 29th Street, New York, New York 10016, USA
| | - Carmen J. Booth
- Department of Comparative Medicine; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Liza Konnikova
- Section of Neonatology; Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine; New Haven, Connecticut 06514, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Dean Yimlamai
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- The Yale Liver Center, Yale School of Medicine; New Haven, Connecticut 06514, USA
| |
Collapse
|
9
|
Manilla V, Santopaolo F, Gasbarrini A, Ponziani FR. Type 2 Diabetes Mellitus and Liver Disease: Across the Gut-Liver Axis from Fibrosis to Cancer. Nutrients 2023; 15:nu15112521. [PMID: 37299482 DOI: 10.3390/nu15112521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Type 2 diabetes mellitus is a widespread disease worldwide, and is one of the cornerstones of metabolic syndrome. The existence of a strong relationship between diabetes and the progression of liver fibrosis has been demonstrated by several studies, using invasive and noninvasive techniques. Patients with type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) show faster progression of fibrosis than patients without diabetes. Many confounding factors make it difficult to determine the exact mechanisms involved. What we know so far is that both liver fibrosis and T2DM are expressions of metabolic dysfunction, and we recognize similar risk factors. Interestingly, both are promoted by metabolic endotoxemia, a low-grade inflammatory condition caused by increased endotoxin levels and linked to intestinal dysbiosis and increased intestinal permeability. There is broad evidence on the role of the gut microbiota in the progression of liver disease, through both metabolic and inflammatory mechanisms. Therefore, dysbiosis that is associated with diabetes can act as a modifier of the natural evolution of NAFLD. In addition to diet, hypoglycemic drugs play an important role in this scenario, and their benefit is also the result of effects exerted in the gut. Here, we provide an overview of the mechanisms that explain why diabetic patients show a more rapid progression of liver disease up to hepatocellular carcinoma (HCC), focusing especially on those involving the gut-liver axis.
Collapse
Affiliation(s)
- Vittoria Manilla
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|